KR100740767B1 - Heat insulator of insulated cargo tanks of LNG carrier - Google Patents

Heat insulator of insulated cargo tanks of LNG carrier Download PDF

Info

Publication number
KR100740767B1
KR100740767B1 KR1020030093534A KR20030093534A KR100740767B1 KR 100740767 B1 KR100740767 B1 KR 100740767B1 KR 1020030093534 A KR1020030093534 A KR 1020030093534A KR 20030093534 A KR20030093534 A KR 20030093534A KR 100740767 B1 KR100740767 B1 KR 100740767B1
Authority
KR
South Korea
Prior art keywords
insulation
airgel
lng carrier
polyurethane foam
heat insulating
Prior art date
Application number
KR1020030093534A
Other languages
Korean (ko)
Other versions
KR20050061915A (en
Inventor
민계식
김외현
김병만
Original Assignee
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대중공업 주식회사 filed Critical 현대중공업 주식회사
Priority to KR1020030093534A priority Critical patent/KR100740767B1/en
Publication of KR20050061915A publication Critical patent/KR20050061915A/en
Application granted granted Critical
Publication of KR100740767B1 publication Critical patent/KR100740767B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/02Wall construction
    • B65D90/06Coverings, e.g. for insulating purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/02Large containers rigid
    • B65D88/12Large containers rigid specially adapted for transport
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/001Thermal insulation specially adapted for cryogenic vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0325Aerogel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • F17C2203/0333Polyurethane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 LNG 운반선 단열탱크의 단열재에 관한 것으로, 그 목적은 LNG운반선의 단열 탱크에 단열성이 우수한 단열재를 적용하여 단열성능을 향상시키고, 운항시 단열층 무게에 의한 운송비용 손실을 개선하며, 단열층의 두께를 줄여 화물 적재량을 증대시키는 데에 있다.The present invention relates to a heat insulating material of the LNG carrier insulation tank, the purpose of which is to apply a heat insulating material excellent insulation to the insulation tank of the LNG carrier to improve the insulation performance, improve the transportation cost loss by the weight of the insulation layer during operation, It is to increase the cargo load by reducing the thickness.

상기 목적을 달성하기 위하여 본 발명은 LNG 운반선의 단열탱크에 사용되는 단열재에 있어서, 액체 상태의 폴리우레탄 폼이 경화되는 과정에 입자(또는 천)상의 에어로젤을 투입하여 혼합조성한 후 고형화 시키거나, 알루미늄 박판으로 생성한 진공실린더에 충전한 에어로젤을 일정한 간격으로 배열 구성한 후 고형화시켜 형성한 에어로젤과 폴리우레탄 폼의 복합체로 구성된 단열재를 LNG 운반선의 단열탱크에 채택하는 것을 그 기술적 특징으로 한다.
In order to achieve the above object, the present invention, in the heat insulating material used in the insulation tank of the LNG carrier, in the process of curing the polyurethane foam in the liquid state by adding a particle (or cloth) of the airgel in the form of a mixed composition to solidify or aluminum The technical feature is to adopt a heat insulating material composed of a composite of airgel and polyurethane foam formed by solidifying the airgel filled in the vacuum cylinder made of thin plates at regular intervals and then solidifying it.

에어로젤, LNG운반선, 단열탱크, 취성, 폴리우레탄 폼Airgel, LNG Carrier, Insulation Tank, Brittle, Polyurethane Foam

Description

LNG 운반선 단열탱크의 단열재{Heat insulator of insulated cargo tanks of LNG carrier} Heat insulator of insulated cargo tanks of LNG carrier             

도 1은 종래의 LNG 운반선의 단열탱크 구조도,1 is a structural diagram of a heat insulation tank of a conventional LNG carrier;

도 2는 본 발명의 실시예에 따른 단열재 단면도,2 is a cross-sectional view of the insulating material according to an embodiment of the present invention,

도 3은 본 발명의 다른 실시예에 따른 단열재 단면도,3 is a cross-sectional view of the heat insulating material according to another embodiment of the present invention,

도 4는 본 발명의 다른 실시예에 따른 단열재의 사시도이다.4 is a perspective view of a heat insulating material according to another embodiment of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

(20) : 폴리우레탄 폼20: polyurethane foam

(21, 33) : 에어로젤(21, 33): aerogel

(30) : 진공실린더
30: vacuum cylinder

본 발명은 LNG 운반선 단열탱크의 단열재에 관한 것으로, 특히 에어로젤과 폴리우레탄 폼을 사용한 단열재에 관한 것이다. The present invention relates to a heat insulating material of the LNG carrier insulation tank, and more particularly to a heat insulating material using airgel and polyurethane foam.                         

일반적으로 액화천연가스(LNG; Liquefied Natural Gas, 이하 'LNG'라 함)는 지하에서 뽑아 올린 탄화수소 계열의 천연 가스를, 운송과 저장의 편의를 위해 -162℃로 압축, 냉각, 액화시켜 부피를 1/600으로 줄인 극저온의 액체를 말한다. 이는 가격에 비해 열량이 우수하여 석유 대체에너지로 각광받고 있으며, 청정에너지로서 LNG 교역량 증가에 따라 LNG운반선의 수요도 증가하고 있다.
In general, Liquefied Natural Gas (LNG) is a hydrocarbon-based natural gas extracted from the ground, compressed, cooled, and liquefied to -162 ° C for convenience of transportation and storage. Cryogenic liquid reduced to 1/600. It has a high calorie value compared to the price, making it the spotlight as an alternative to petroleum.

상기와 같은 액화천연가스를 운반하는 LNG운반선은 액화천연가스의 특성 때문에 단열탱크의 형식 및 성능이 중요한데 LNG화물이 적재되는 단열탱크의 형식에 따라 구형(독립형)과 멤브레인형으로 나누어진다.
LNG carriers carrying liquefied natural gas as described above are important because of the characteristics of liquefied natural gas, and the type and performance of the insulation tank are important.

도 1은 이러한 단열탱크의 형식의 하나로서 선행특허 1999-0028834에 따른 종래의 멤브레인형 LNG운반선의 단열탱크 구조를 도시하고 있다. 이 단열탱크의 구조는 도시된 바와 같이 이중 방벽 구조로 되어 있으며, 순차적으로, LNG가 직접 접촉하는 제 1 밀봉벽인 멤브레인 금속판넬(1)과, 멤브레인에 일정한 하중이 걸리게 하는 제 1 플라이 우드(2)와, 제 1 단열벽인 폴리우레탄 폼(3)과, 제 2 밀봉벽인 알루미늄 금속판(4)과 제 2 단열벽인 폴리우레탄 폼(5)과, 제 2 플라이우드(6)와, 화물과 단열탱크의 중량을 선체(7)에 전달하는 마스틱(10)과 단열탱크를 선체에 고정하는 고정 수단으로서 볼트(8)와 너트(9)로 구성되어 있다.
Figure 1 shows a structure of the insulation tank of the conventional membrane type LNG carrier according to the prior patent 1999-0028834 as one of the types of such insulation tank. The insulation tank has a double barrier structure as shown in the drawing, and in turn, the membrane metal panel 1, which is the first sealing wall to which LNG directly contacts, and the first plywood to apply a constant load to the membrane ( 2), the polyurethane foam 3 which is a 1st heat insulation wall, the aluminum metal plate 4 which is a 2nd sealing wall, the polyurethane foam 5 which is a 2nd heat insulation wall, the 2nd plywood 6, It consists of the bolt 8 and the nut 9 as a fixing means for fixing the mastic 10 which transmits the weight of a cargo and a heat insulating tank to the hull 7, and a heat insulating tank to a hull.

그러나, 종래의 멤브레인형 단열탱크 구조는 보온을 위한 단열층이 폴리우레 탄 폼으로만 구성됨으로써 두께가 과도하게 두껍고 무거우므로 단열층 제조비용이 과다하며, 단열층의 무게에 의해 운송비용이 증가하고, 화물적재 용량의 손실을 초래한다.However, the conventional membrane-type insulation tank structure is excessively thick and heavy because the insulation layer is made of polyurethane foam for thermal insulation, so the insulation layer manufacturing cost is excessive, transportation cost is increased by the weight of the insulation layer, cargo Resulting in a loss of loading capacity.

일례로 종래의 단열탱크 구조에 의해 건조된 145,000m3급 LNG운반선의 경우 단열층의 두께로 인하여 약 3%정도의 적재용량 손실을 초래하고 있고, 또한 단열시스템의 단열성능은 하루에 적재 LNG의 0.15%가 기화되는 것으로 알려져 있다. For example, 145,000m Class 3 LNG carriers constructed by conventional insulation tank structure cause loss of loading capacity by about 3% due to the thickness of insulation layer, and insulation performance of insulation system is 0.15 of LNG It is known that% is vaporized.

이러한 문제를 해결하기 위하여, 단열층의 소재를 변경하려는 연구가 활발하게 이루어지고 있으나, 적재하중을 견뎌야하는 문제점과, 극저온하에서 소재의 단열 특성을 유지해야하는 문제점 등에 의해 많은 어려움이 있었다.
In order to solve this problem, studies to change the material of the thermal insulation layer has been actively conducted, but there are a lot of difficulties due to the problem of having to withstand the load load, and the problem of maintaining the thermal insulation properties of the material under cryogenic temperatures.

이러한 단열을 위한 신소재로서 에어로젤(Aerogel)이 있는데 미국특허 6,485,805와 2002/0094426등에서 그 특징이 언급되어 있다. 에어로젤은 나노단위의 기공성 구조를 가진 저밀도 물질이며, 열전도도, 음파 전도도가 극히 낮으며, 단열·방음·방진·적외선 차단성 및 충격흡수 특성이 우수한 것으로 밝혀졌으나, 입자 형태의 에어로젤의 재질적 취성과 천 형태의 에어로젤의 압축시 단열성능이 저하되는 문제점에 의해 LNG운반선의 단열재로 사용하는데 어려움이 있었다.
Aerogel is a new material for such insulation, and its characteristics are mentioned in US Pat. Nos. 6,485,805 and 2002/0094426. Aerogels are low-density materials with a porous structure in nano units, have extremely low thermal conductivity and acoustic wave conductivity, and have excellent insulation, soundproofing, dustproof, infrared ray blocking, and shock absorption characteristics. Due to the problem that the insulation performance deteriorates during the compression of brittle and cloth-type airgel, it has been difficult to use as insulation for LNG carriers.

상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 단열성능이 우수한 에어로젤의 단점인 취성과 압축시 단열성능 저하를 극복하여, 에어로젤을 LNG운반선의 적재화물의 보온을 위한 단열 탱크의 단열재로 사용할 수 있도록 함으로서, 단열성능을 향상시키고, 운항시 단열층 무게에 의한 운송비용 손실을 개선하며, 단열층의 두께를 줄여 화물 적재량을 증대시키고자 하는 데에 있다.
The object of the present invention for solving the above problems is to overcome the deterioration of the brittleness and the thermal insulation performance during compression, which is a disadvantage of the airgel with excellent thermal insulation performance, it can be used as an insulating material of the thermal insulation tank for insulation of the cargo of LNG carriers. By improving the insulation performance, to improve the transportation cost loss due to the weight of the insulation layer during operation, and to reduce the thickness of the insulation layer to increase the cargo load.

상기한 바와 같은 목적을 달성하기 위하여 본 발명은 LNG 운반선의 단열탱크에 사용되는 단열재에 있어서, 액체 상태의 폴리우레탄 폼이 경화되는 과정에 입자 또는 천 형태의 에어로젤을 투입하여 혼합조성하거나, 알루미늄 박판으로 생성한 진공실린더에 충전한 에어로젤을 일정한 간격으로 배열 구성한 후 고형화시켜 형성한 에어로젤과 폴리우레탄 폼의 복합체로 구성된 단열재를 LNG 운반선의 단열탱크에 채택하는 것을 그 기술적 특징으로 한다.In order to achieve the object as described above, the present invention is a heat insulating material used in the insulation tank of the LNG carrier, in the process of curing the polyurethane foam in the liquid state by mixing the airgel in the form of particles or cloth, or mixed composition, or aluminum sheet The technical feature is to adopt an insulating material composed of a composite of airgel and polyurethane foam formed by solidifying the airgel filled in the vacuum cylinder generated by a predetermined interval and then solidifying it.

이하 본 발명의 실시예인 구성과 그 작용을 첨부도면에 연계시켜 상세히 설명하면 다음과 같다.Hereinafter, the configuration and the operation of the embodiment of the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명의 실시예에 따른 단열재 단면도이고, 도 3은 본 발명의 다른 실시예에 따른 단열재 단면도이며, 도 4는 본 발명의 다른 실시예에 따른 단열재의 사시도이다.2 is a cross-sectional view of the heat insulating material according to an embodiment of the present invention, Figure 3 is a cross-sectional view of the heat insulating material according to another embodiment of the present invention, Figure 4 is a perspective view of a heat insulating material according to another embodiment of the present invention.

도 1을 참조하여 설명하면 단열탱크의 제 1 플라이 우드(2)와 제 2 밀봉벽(4)의 사이 및 제 2 밀봉벽(4)과 제 2 플라이우드(6) 사이에 삽입되는 것이 단열재인데, 본 발명에서는 단열재를 에어로젤의 재질적 단점인 취성 및 압축시 단 열성능이 저하되는 문제점을 극복하기 위하여 다음과 같이 에어로젤과 액상의 폴리우레탄 폼을 사용하여 구성하는데, 이 폴리우레탄 폼은 폴리에테르계 폴리우레탄에 기포가 들어 있는 우레탄폼으로서, 그 제조방법은 산화프로필렌에 얼마간의 산화에틸렌을 섞어서 먼저 폴리에테르로 하고, 그 양끝의 OH기를 톨루일렌디이소시안산과 반응시켜 고분자량의 폴리우레탄으로 만든다.Referring to FIG. 1, the insulating material is inserted between the first plywood 2 and the second sealing wall 4 of the insulating tank and between the second sealing wall 4 and the second plywood 6. In the present invention, in order to overcome the problem that the insulation performance is degraded during brittleness and compression, which is a material disadvantage of the airgel, the airgel and the liquid polyurethane foam is configured as follows, the polyurethane foam is a polyether Polyurethane foam containing air bubbles in the polyurethane system. The manufacturing method is to mix ethylene oxide with some ethylene oxide first to make a polyether, and react OH groups at both ends with toluylene diisocyanic acid to obtain a high molecular weight polyurethane. Make.

또한 폼 성형(成形) 방법으로는 원-숏법(one-shot method)과 프리폴리머법(prepolymer process)의 2가지가 있는데, 원숏법은 원료성분을 한꺼번에 전부 섞어 반응시켜 발포시키므로 경제적이어서 연질폼은 대부분 이 방법으로 만들어진다. 프리폴리머법은 미리 글리콜의 일부와 디이소시안산염을 반응시켜 프리폴리머(부분중합제)를 만들어 두고, 여기에다 나머지 글리콜 ·발포제 ·촉매 따위를 섞어 발포시키는 방법인데, 발포가 고르기 때문에 반경질 폼이나 경질 폼처럼 공업용으로 쓰이는, 품질을 중히 여기는 폼을 만드는 데 이 방법을 이용한다. In addition, there are two types of foam molding methods, one-shot method and prepolymer process. One-shot method is economical because most of the raw materials are mixed and foamed. It is made this way. In the prepolymer method, a part of glycol is reacted with diisocyanate beforehand to form a prepolymer (partial polymerizer), and then the remaining glycol, foaming agent, and catalyst are mixed and foamed. This method is used to create high quality foams for industrial use.

본 발명은 상기와 같은 통상의 폴리우레탄 폼 제조 과정 중 액체 상태의 폴리우레탄 폼이 경화되는 과정에 본 발명의 구성요소인 입자 또는 천 형태의 에어로젤을 투입하여 혼합조성 함으로써 마감재를 제조하게 된다(도 2참조). 이때 투입되는 에어로젤은 액상의 폴리우레탄 폼의 경화중에 마감재 전체부피중에서 에어로젤이 차지하는 부피비의 조성비가 10~30vol%가 되도록 투입 후 고화시켜 단열재를 완성하는 것이 바람직하다. 조성비가 10보다 적거나 30보다 클 경우 본 발명에서 요구하는 성능에 미달하게 되는 단점이 있다.The present invention is to produce a finish by mixing the composition of the airgel in the form of particles or cloth as a component of the present invention in the process of curing the polyurethane foam in the liquid state of the conventional polyurethane foam manufacturing process as described above (Fig. 2). At this time, the injected airgel is preferably solidified after the addition so that the composition ratio of the volume ratio of the airgel in the total volume of the finish during the curing of the liquid polyurethane foam is 10 ~ 30vol% to complete the heat insulating material. If the composition ratio is less than 10 or greater than 30, there is a disadvantage that the performance required by the present invention does not meet.

참고로 도 2에서 도시된 바와 같은 형태(균등간격등)는 혼합 개체간의 구분 을 명확하게 나타내기 위해 편의적으로 도시한 것으로 혼합시 이와 같이 균등 배열되는 것만을 한정하지는 않는다.For reference, the shapes (equal intervals, etc.) shown in FIG. 2 are shown for convenience in order to clearly show the distinction between the mixed objects, and do not limit only those evenly arranged when mixing.

또한 본 발명에 사용되는 에어로젤은 이미 제조되어 있는 제품형태의 것을 사용한다.
In addition, the airgel used in the present invention uses a product form that is already prepared.

또 다른 방법으로는 에어로젤을 알루미늄 박판으로 생성한 진공실린더에 충전하여, 단열재 중심부에 일정한 간격으로 배열하고 액상의 폴리우레탄을 투입하여 폴리우레탄 폼을 경화시키게 된다(도 3, 4참조). 이때 알루미늄 박판의 두께는 0.1~2mm의 것을 사용하고, 에어로젤을 포함하는 알루미늄 진공실린더의 직경은 20~40mm인 것을 사용하며, 특히 에어로젤을 포함하는 알루미늄 진공실린더의 체적이 마감재를 이루는 전체 체적 중에서 10vol% 내지 30vol%가 되도록 하는 것이 바람직하다.
In another method, the aerogel is filled in a vacuum cylinder made of a thin aluminum sheet, arranged at regular intervals in the center of the heat insulator, and a liquid polyurethane is added to cure the polyurethane foam (see FIGS. 3 and 4). At this time, the thickness of the aluminum thin plate is used 0.1 ~ 2mm, the diameter of the aluminum vacuum cylinder containing the airgel is used 20 ~ 40mm, in particular 10vol of the total volume of the aluminum vacuum cylinder containing the airgel forming the finish material. It is preferable to make it from% to 30 vol%.

다음은 상기와 같이 제조된 본 발명의 바람직한 실시예에 따른 실험예이다.
The following is an experimental example according to a preferred embodiment of the present invention prepared as described above.

실험예 1 Experimental Example 1

표 1은 에어로젤의 혼합정도에 따른 신소재 단열재의 열전도도를 실험한 결과값이다. 종래의 LNG운반선 단열재의 소재로 사용된 통상의 폴리우레탄 폼의 열전도도가 대기압에서 29.2 mW/m˚K임을 고려할 때, 12.3 mW/m˚K의 열전도도를 가지는 에어로젤을 혼합하여 생성한 신소재 단열재의 경우, 에어로젤의 혼합비가 10~30vol%일 경우가 바람직한 것으로 나타났다. Table 1 shows the experimental results of the thermal conductivity of the new material insulation according to the mixing degree of the airgel. Considering that the thermal conductivity of a conventional polyurethane foam used as a material for a conventional LNG carrier insulation material is 29.2 mW / m˚K at atmospheric pressure, a new material insulation material produced by mixing an airgel having a thermal conductivity of 12.3 mW / m˚K. In the case of, the mixing ratio of the airgel was found to be 10-30 vol% is preferred.

즉, 30vol%의 비율로 에어로젤을 혼합한 신소재 단열재로 단열시스템을 구성하는 경우, 종래의 LNG운반선의 단열탱크에서 제 1 단열벽의 두께가 90mm이고, 제 2 단열벽의 두께가 180mm인 것을 고려하면, 신소재에 의해 단열탱크의 제 1 단열벽은 63mm, 제 2 단열벽은 126mm로 대체가 가능하다. That is, when the insulation system is composed of a new material insulation material mixed with airgel at a rate of 30 vol%, the thickness of the first insulation wall is 90 mm and the thickness of the second insulation wall is 180 mm in the insulation tank of the conventional LNG carrier. When the new material is used, the first heat insulating wall of the heat insulating tank can be replaced with 63 mm and the second heat insulating wall with 126 mm.

따라서 30vol%의 비율로 에어로젤을 혼합한 경우 단열탱크의 단열층 두께를 30% 감소시켜 적재화물 손실을 기존 폴리우레탄 폼 단열재 대비 30% 감소시키는 효과가 있으며, 단열층 무게 감소에 따른 운항비를 개선하는 효과도 있다. Therefore, when airgel is mixed at a rate of 30 vol%, the insulation layer thickness of the insulation tank is reduced by 30%, thereby reducing the load loss by 30% compared to the existing polyurethane foam insulation, and improving the operating cost according to the weight reduction of the insulation layer. There is also.

또한 에어로젤을 혼합함으로써 발생하는 강도저하 문제는 수지(resine)를 적절히 첨가하여 극복할 수도 있다.
In addition, the strength reduction problem caused by mixing the airgel can be overcome by appropriately adding a resin (resine).

표 1. 에어로젤의 혼합정도에 따른 열전도도 변화 (대기압 상태)Table 1. Changes in thermal conductivity according to mixing degree of airgel (atmospheric pressure)

혼합비율  Mixing ratio 0 vol% 0 vol% 10 vol% 10 vol% 20 vol% 20 vol% 30 vol% 30 vol% 열전도도(mW/m˚K)  Thermal Conductivity (mW / m˚K) 29.2 29.2 25.7 25.7 22.9 22.9 20.7 20.7

실험예 2 Experimental Example 2

도 3은 본 발명의 다른 실시예에 따른 단면도이고 도 4는 도 3을 입체로 나타낸 사시도이다. 에어로젤의 열전도도는 진공상태에서 4.0 mW/m˚K로서 단열성능이 급격히 향상되므로, 단열성능을 극대화하기 위하여 알루미늄 진공실린더(30) 속 에 입자 또는 천 형태의 에어로젤(33)을 충전시키고, 도 3 및 4와 같이 폴리우레탄 폼(20) 안에 알루미늄 진공실린더(30)를 포함하는 단열재를 생성한다. Figure 3 is a cross-sectional view according to another embodiment of the present invention and Figure 4 is a perspective view showing three in three dimensions. The thermal conductivity of the airgel is 4.0 mW / m ˚K in a vacuum state, so that the thermal insulation performance is sharply improved, in order to maximize the thermal insulation performance to fill the airgel 33 in the form of particles or cloth in the aluminum vacuum cylinder 30, Insulation material including aluminum vacuum cylinder 30 in the polyurethane foam 20, such as 3 and 4.

알루미늄 진공실린더는 두께 1mm의 금속 박판(32)으로 직경 30mm로 생성되며, 제 1 단열벽과 제 2 단열벽인 폴리우레탄 폼의 중심부에 30mm 간격으로 배치되며 체적비율에 따라 임의로 조정할 수 있다. 에어로젤의 체적비가 높을수록 단열성능은 우수한 것으로 나타났으나, 폴리우레탄 폼과의 결합력이 저하되어 LNG운반선의 극저온 고압의 환경에서는 단열재를 이루는 에어로젤의 조성비가 부피 비율로 전체조성에 대하여 10vol% 내지 30vol%가 바람직한 것으로 나타났다.The aluminum vacuum cylinder is made of a thin metal plate 32 having a thickness of 1 mm and has a diameter of 30 mm. The aluminum vacuum cylinder is disposed at 30 mm intervals in the center of the polyurethane foam which is the first heat insulating wall and the second heat insulating wall, and can be arbitrarily adjusted according to the volume ratio. The higher the volume ratio of the airgel, the better the insulation performance was, but the bonding strength with the polyurethane foam was lowered, so that the composition ratio of the airgel constituting the insulation material was 10 vol% to 30 vol in terms of volume in the cryogenic environment of the LNG carrier. % Was found to be preferred.

한편 체적비로 약 30vol%의 알루미늄 진공실린더를 포함한 단열재는 종래의 폴리우레탄 폼 단열재에 비해 약 3배 단열성능이 우수한 것으로 나타났다.
On the other hand, the insulating material containing aluminum vacuum cylinder of about 30 vol% by volume ratio was found to be about 3 times better thermal insulation performance than the conventional polyurethane foam insulation.

본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.
The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.

상기와 같이 단열성능이 우수한 신소재 단열재를 LNG운반선 단열탱크에 적용함으로써, 운항시 적재 LNG의 증발 손실을 감소시켜 운항 경제성을 향상시키며, 단열층의 두께를 감소시켜 화물 적재량을 증대시키는 효과가 있는 유용한 발명으로 산업상 그 이용이 크게 기대되는 발명이다.


















By applying a new material insulation material having excellent heat insulation performance to the LNG carrier insulation tank as described above, it is useful to reduce the evaporation loss of the loaded LNG during operation to improve the operating economy, and to reduce the thickness of the insulation layer to increase the cargo loading capacity As such, the invention is expected to be greatly utilized in the industry.


















Claims (6)

LNG 운반선의 단열탱크에 사용되는 단열재에 있어서,Insulation material used in the insulation tank of LNG carrier, 폴리우레탄 폼과 에어로젤을 혼합조성 후 고형화시켜 에어로젤과 폴리우레탄폼의 복합체를 형성하되, 단열재를 이루는 에어로젤의 조성비는 전체조성에 대하여 10~19vol%이고 나머지는 폴리우레탄 폼으로 혼합조성된 것을 특징으로 하는 LNG 운반선 단열탱크의 단열재.After mixing and solidifying the polyurethane foam and airgel to form a composite of the airgel and polyurethane foam, the composition ratio of the airgel constituting the heat insulating material is 10 ~ 19vol% with respect to the total composition and the rest is mixed with polyurethane foam Insulation of LNG carrier insulation tank. 삭제delete LNG 운반선의 단열탱크에 사용되는 단열재에 있어서, Insulation material used in the insulation tank of LNG carrier, 폴리우레탄 폼의 내부에 에어로젤이 충전된 알루미늄 박판의 진공실린더를 일정한 간격으로 배열한 후 고형화시켜 에어로젤과 폴리우레탄 폼의 복합체를 형성하는 것을 특징으로 하는 LNG 운반선 단열탱크의 단열재.Insulating material of the LNG carrier insulation tank, characterized in that the vacuum cylinder of the aluminum sheet filled with aerogel inside the polyurethane foam at regular intervals and then solidified to form a composite of the airgel and polyurethane foam. 제 3 항에 있어서, The method of claim 3, wherein 알루미늄 진공실린더의 박판의 두께는 0.1~2mm인 것을 사용하는 것을 특징으로 하는 LNG 운반선 단열탱크의 단열재.Insulation material of the LNG carrier insulation tank, characterized in that the thickness of the thin plate of the aluminum vacuum cylinder is used 0.1 ~ 2mm. 제 3 항에 있어서, The method of claim 3, wherein 에어로젤을 포함하는 알루미늄 진공실린더의 직경은 20~40mm인 것을 사용하는 것을 특징으로 하는 LNG 운반선 단열탱크의 단열재.Insulation material of the LNG carrier insulation tank, characterized in that the diameter of the aluminum vacuum cylinder containing the airgel is 20 to 40mm. 제 3 항에 있어서, The method of claim 3, wherein 에어로젤을 포함하는 알루미늄 진공실린더의 체적이 마감재를 이루는 전체 체적중에서 10vol% 내지 30vol%가 되도록 구성한 것을 특징으로 하는 LNG 운반선 단열탱크의 단열재.Insulation material of the LNG carrier insulation tank, characterized in that the volume of the aluminum vacuum cylinder containing the airgel is configured to be 10vol% to 30vol% of the total volume forming the finish.
KR1020030093534A 2003-12-19 2003-12-19 Heat insulator of insulated cargo tanks of LNG carrier KR100740767B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030093534A KR100740767B1 (en) 2003-12-19 2003-12-19 Heat insulator of insulated cargo tanks of LNG carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030093534A KR100740767B1 (en) 2003-12-19 2003-12-19 Heat insulator of insulated cargo tanks of LNG carrier

Publications (2)

Publication Number Publication Date
KR20050061915A KR20050061915A (en) 2005-06-23
KR100740767B1 true KR100740767B1 (en) 2007-07-19

Family

ID=37254190

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030093534A KR100740767B1 (en) 2003-12-19 2003-12-19 Heat insulator of insulated cargo tanks of LNG carrier

Country Status (1)

Country Link
KR (1) KR100740767B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101128537B1 (en) 2009-10-12 2012-03-23 김영일 The back board for refrigerator using the aerogel
KR101247764B1 (en) * 2010-11-12 2013-03-25 삼성중공업 주식회사 Insulation structure of Cargo hold in LNG carrier
KR20220158311A (en) 2021-05-24 2022-12-01 (주) 디유티코리아 Composite insulation for LNG carrier cargo using glass fiber chop and its manufacturing method
KR20220158310A (en) 2021-05-24 2022-12-01 (주) 디유티코리아 CompoPite inPulating material for cargo hold of LNG carrierP including a layer of compoPite material for replacing plywood and itP manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5137927A (en) 1990-12-05 1992-08-11 Basf Aktiengesellschaft Composite foams of low thermal conductivity
US5416376A (en) 1992-10-29 1995-05-16 The Regents Of The University Of California Aerogel-supported filament
US5691392A (en) 1997-02-05 1997-11-25 Ppg Industries, Inc. Stable particulate dispersions
US6121336A (en) 1994-06-28 2000-09-19 Basf Corporation Surfactants for incorporating silica aerogel in polyurethane foams
KR100479356B1 (en) 2001-08-11 2005-03-25 그린텍이십일 주식회사 Manufacturing method of Organic- Silica Hybrid Aeorgel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5137927A (en) 1990-12-05 1992-08-11 Basf Aktiengesellschaft Composite foams of low thermal conductivity
US5416376A (en) 1992-10-29 1995-05-16 The Regents Of The University Of California Aerogel-supported filament
US6121336A (en) 1994-06-28 2000-09-19 Basf Corporation Surfactants for incorporating silica aerogel in polyurethane foams
US5691392A (en) 1997-02-05 1997-11-25 Ppg Industries, Inc. Stable particulate dispersions
KR100479356B1 (en) 2001-08-11 2005-03-25 그린텍이십일 주식회사 Manufacturing method of Organic- Silica Hybrid Aeorgel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101128537B1 (en) 2009-10-12 2012-03-23 김영일 The back board for refrigerator using the aerogel
KR101247764B1 (en) * 2010-11-12 2013-03-25 삼성중공업 주식회사 Insulation structure of Cargo hold in LNG carrier
KR20220158311A (en) 2021-05-24 2022-12-01 (주) 디유티코리아 Composite insulation for LNG carrier cargo using glass fiber chop and its manufacturing method
KR20220158310A (en) 2021-05-24 2022-12-01 (주) 디유티코리아 CompoPite inPulating material for cargo hold of LNG carrierP including a layer of compoPite material for replacing plywood and itP manufacturing method

Also Published As

Publication number Publication date
KR20050061915A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
US5478867A (en) Microporous isocyanate-based polymer compositions and method of preparation
JP5312344B2 (en) Use of composites as barriers at cryogenic temperatures
RU2001125433A (en) Fine-porous, water-foamed rigid polyurethane foams
JP2011241988A (en) Heat insulation box and refrigerator
KR20000006467A (en) Open-celled rigid polyurethane foam and method for producing the same
KR20080008382A (en) Method for the production of vacuum insulation panels
CN111655442B (en) Method and system for preparing polyurethane/polyisocyanurate foam blocks for insulation panels of tanks
KR100740767B1 (en) Heat insulator of insulated cargo tanks of LNG carrier
KR100710981B1 (en) Heat Insulating Materials of Cargo Tank for Liquefied Natural Gas Carriers
KR102224864B1 (en) foaming composition and insulating material including foam article using the same, liquefied gas storage tank and ship
KR100710992B1 (en) Insulation system of insulated cargo tanks of LNG carrier with Aerogel
JP2653884B2 (en) Rigid polyurethane foam, method for producing the same, heat insulator, and refrigerator using the same
KR102252902B1 (en) foaming composition and insulating material including foam article using the same, liquefied gas storage tank and ship
JP2001133135A (en) Refrigerator
JPH06213561A (en) Insulating material and refrigerator using the same
KR20010051304A (en) Rigid Polyurethane Foam and Refrigerator using It
KR100750488B1 (en) Heat insulating structure with Aerogel of insulated cargo tanks of LNG carrier
EP3956375A1 (en) A molding based on a monolithic organic aerogel
CN106220825A (en) Refrigerator car polyurethane bulk bubble insulation material and preparation method thereof
US3669815A (en) Structural light-weight panel for cryogenic and elevated temperature applications
JP2022528319A (en) Polyurethane / polyisocyanurate foam block in the insulation body of the tank, and its preparation process
KR102224865B1 (en) foaming composition and insulating material including foam article using the same, liquefied gas storage tank and ship
KR102015093B1 (en) Cryogenic Insulation Panel And Method for Manufacturing the Same
KR20220054505A (en) A polyurethane foam for liquefied gas storage tank and manufacturing method thereof
JP2002174485A (en) Refrigerator

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20120710

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140711

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee