JPH06213561A - Insulating material and refrigerator using the same - Google Patents

Insulating material and refrigerator using the same

Info

Publication number
JPH06213561A
JPH06213561A JP5005492A JP549293A JPH06213561A JP H06213561 A JPH06213561 A JP H06213561A JP 5005492 A JP5005492 A JP 5005492A JP 549293 A JP549293 A JP 549293A JP H06213561 A JPH06213561 A JP H06213561A
Authority
JP
Japan
Prior art keywords
insulating material
heat insulating
cell
polyurethane foam
open
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5005492A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Kuroishi
一義 黒石
Reiji Naka
礼司 中
Kosuke Tanaka
孝介 田中
Katsumi Fukuda
克美 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5005492A priority Critical patent/JPH06213561A/en
Publication of JPH06213561A publication Critical patent/JPH06213561A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To largely reduce thermal conductivity under a specific degree of vacuum by using continuous bubble formed body for an insulating meterial for a refrigerator. CONSTITUTION:A core material is comprised of compressed hard polyurethane foam 4a including continuous bubbles formed from flat bubbles having a thickness of 0.04mm or less and the core material is covered with a container 5 comprising a film having gas barrier property so that the pressure of the interior thereof is reduced to seal the container, thereby constituting a vacuum insulating material 6. By forming the bubbles of the hard polyurethane foam into a flat shape in this manner, distance of gap between the bubble films becomes shorter and hence thermal conductivity under vacuum of 0.1-0.01Torr can be largely reduced, so that lightweight insulating material of high performance can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷蔵庫等の断熱材とし
て用いる高性能の断熱材及びそれを用いた冷蔵庫に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-performance heat insulating material used as a heat insulating material for refrigerators and the like, and a refrigerator using the same.

【0002】[0002]

【従来の技術】冷蔵庫等の断熱材として種々の構造の断
熱材が知られているが、その一つに真空断熱材がある。
この断熱材は、一般に、ガスバリヤー性の金属−プラス
チックラミネートフィルムから成る容器に、所定の形状
を保持させるために補強材としてコア材を充填し、その
内部を減圧して密封した構造のものが知られている。こ
のような真空断熱材の断熱性能は、上記コア材の種類に
よって大きく左右されるが、無機質微粉末やガラス繊
維、連続気泡発泡体などが優れた断熱性が得られコア材
として用いられる。中でも、連続気泡発泡体をコア材と
したものが軽量で生産性が良く、冷蔵庫等の断熱材とし
て優れており注目されている。この種の真空断熱材とし
て代表的なものに、例えば特公昭63−61589号公
報記載の発明が挙げられるが、コア材に連続気泡を有す
る硬質ポリウレタンフォームを用い、発泡体の気泡を微
細にすることで高性能の真空断熱材を得ることが提案さ
れている。
2. Description of the Related Art As a heat insulating material for a refrigerator or the like, a heat insulating material having various structures is known, and one of them is a vacuum heat insulating material.
This heat insulating material generally has a structure in which a container made of a metal-plastic laminated film having a gas barrier property is filled with a core material as a reinforcing material in order to maintain a predetermined shape, and the inside is decompressed and sealed. Are known. The heat insulating performance of such a vacuum heat insulating material is largely dependent on the type of the core material, but inorganic fine powder, glass fiber, open-cell foam or the like is used as the core material because of its excellent heat insulating property. Among them, those using an open-cell foam as a core material are lightweight, have good productivity, and are excellent as a heat insulating material for refrigerators, etc. A typical example of this type of vacuum heat insulating material is the invention described in Japanese Patent Publication No. 63-61589, in which a rigid polyurethane foam having open cells is used as a core material to make the cells of the foam fine. Therefore, it has been proposed to obtain a high-performance vacuum heat insulating material.

【0003】[0003]

【発明が解決しようとする課題】上記従来例の真空断熱
材においてコア材として使用されている連続気泡硬質ポ
リウレタンフォームの気泡径は、小さくても0.1mm
程度が限界である。基本的に、硬質ポリウレタンフォー
ムをコア材に用いた場合、気泡が微細で膜間の空隙距離
が短い程、減圧度が一定の場合熱伝導率がより小さくな
るが、通常発泡体の気泡形状は球形あるいは卵形の多面
体であるため、気泡径≒膜間の空隙距離となる。したが
って、従来例においては、膜間の空隙距離が最小でも約
0.1mmであり、得られる熱伝導率は、減圧度0.1
〜0.01Torrで0.006〜0.007kcal
/m・h・℃程度である。さらにこれ以上熱伝導率を低
減することは、より低い圧力が必要となり、そのために
は排気時間が長くなる等量産上問題が生じるため極めて
困難なことであった。さらに硬質ポリウレタンフォーム
の発泡剤としてCFC−11(フレオンの一つで塩素を
含む Chloro FluoroCabon)を使用しているため、近年
のフロン規制に対応できないという問題もあった。
The open cell rigid polyurethane foam used as the core material in the conventional vacuum heat insulating material has a cell diameter of at least 0.1 mm.
The degree is the limit. Basically, when rigid polyurethane foam is used as the core material, the smaller the cells are and the shorter the gap distance between the membranes, the smaller the thermal conductivity becomes when the degree of pressure reduction is constant. Since it is a spherical or oval polyhedron, the bubble diameter ≈ the gap distance between the membranes. Therefore, in the conventional example, the gap distance between the films is about 0.1 mm at the minimum, and the thermal conductivity obtained is 0.1
0.006 to 0.007 kcal at ~ 0.01 Torr
/ M · h · ° C. Furthermore, it is extremely difficult to further reduce the thermal conductivity because a lower pressure is required, which causes a problem in mass production such as a longer exhaust time. Further, since CFC-11 (Chloro FluoroCabon containing chlorine as one of Freon) is used as a foaming agent for the rigid polyurethane foam, there has been a problem that it cannot comply with recent freon regulations.

【0004】そこで、本発明の目的は上記課題を解決す
ることにあり、コア材に連続気泡発泡体を用いて、量産
可能な減圧度0.1〜0.01Torrで熱伝導率をさ
らに低減させた軽量で高性能、かつノンフロンの断熱材
を、さらにこの断熱材を用いた冷蔵庫を、それぞれ提供
することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned problems, and by using an open-cell foam as a core material, the thermal conductivity can be further reduced at a pressure reduction degree of 0.1 to 0.01 Torr which enables mass production. It is to provide a lightweight, high-performance, non-CFC insulation material and a refrigerator using this insulation material.

【0005】[0005]

【課題を解決するための手段】上記目的は、偏平状の気
泡を形成した連続気泡発泡体の気泡の厚みを0.04m
m以下、実用的に好ましくは0.01〜0.03mmと
して成る断熱材により、達成される。そして好ましくは
上記偏平状に成形した断熱材をコア材とし、これをガス
バリヤー性フィルムから成る容器で覆い、その内部を減
圧して密封して成る真空断熱材により、達成される。連
続気泡発泡体は、気泡径0.1〜1.0mm程度のもの
で良く、気泡の厚みが上記したように0.04mm以
下、好ましくは0.01〜0.03mmの偏平状に成形
されていることが重要である。
Means for Solving the Problems The above-mentioned object is to reduce the thickness of cells of an open-cell foam having flat cells to 0.04 m.
m or less, practically preferably 0.01 to 0.03 mm. Further, it is preferably achieved by a vacuum heat insulating material in which the flat heat insulating material is used as a core material, the core material is covered with a container made of a gas barrier film, and the inside is decompressed and sealed. The open cell foam may have a cell diameter of about 0.1 to 1.0 mm, and is formed into a flat shape having a cell thickness of 0.04 mm or less, preferably 0.01 to 0.03 mm as described above. Is important.

【0006】このような偏平状気泡はいかなる方法で成
形しても良いが、例えば、連続気泡発泡体を発泡直後の
反応硬化が完了する以前に、高圧プレス等で圧縮して気
泡が偏平状に押しつぶされた状態で硬化させた後、所定
の寸法にカットして使用するか、もしくは、発泡後発泡
体が完全に硬化してから、所定の寸法にカットし、その
後高圧プレス等で圧縮して気泡を偏平状に押しつぶして
成形しても良い。後者の場合、発泡体がある程度復元し
てしまうが、これをコア材とし、ガスバリヤー性フィル
ムから成る容器で覆い、内部を減圧して密封することに
より再び気泡が押しつぶされて偏平状になる。
Such flat cells may be formed by any method. For example, before the reaction curing of the open-cell foam is completed immediately after foaming, the cells are compressed by a high pressure press or the like to form flat cells. After curing in a crushed state, cut it to a specified size for use, or after foaming has completely cured the foam, cut it to a specified size and then compress it with a high pressure press etc. The cells may be flattened into a flat shape for molding. In the latter case, the foam is restored to some extent, but this is covered with a container made of a gas barrier film using this as a core material, and the inside is depressurized and sealed, whereby the bubbles are crushed again and become flat.

【0007】また、フロン規制に対応するため、上記連
続気泡発泡体としてはノンフロンで発泡したものが好ま
しく、特に、発泡剤の全てに水を使用し、水とイソシア
ネートとの反応で生じるCO2ガスにより発泡した水発
泡硬質ポリウレタンフォームを用いることが好ましい。
従来のCFC−11発泡では、発泡体を発泡直後に1/
2以下に圧縮して押しつぶすと気泡が破壊されやすく、
気泡を厚み0.04mm以下の偏平状に成形することは
困難であるが、発泡剤の全てに水を使用した場合、CF
C−11発泡に比べ発泡時の発熱温度が高い(150→
185℃)ため、発泡直後のフォームの気泡骨格がやわ
らかくなり、発泡体を圧縮して押しつぶしても気泡が破
壊されにくく、容易に気泡を厚み0.04mm以下の偏
平状に成形することができる。
Further, in order to comply with the CFC regulations, it is preferable that the above-mentioned open-cell foam is a CFC-free foam, and in particular, CO 2 gas produced by the reaction of water with an isocyanate using water as all the foaming agents. It is preferable to use a water-foamed rigid polyurethane foam foamed by.
In conventional CFC-11 foaming, 1 /
If you compress it to 2 or less and crush it, bubbles will be easily destroyed,
It is difficult to mold air bubbles into a flat shape with a thickness of 0.04 mm or less, but when water is used as all the foaming agents, CF
The heat generation temperature during foaming is higher than that of C-11 foaming (150 →
(185 ° C.), the foam skeleton of the foam immediately after foaming becomes soft, and even if the foam is compressed and crushed, the foam is less likely to be broken, and the foam can be easily formed into a flat shape with a thickness of 0.04 mm or less.

【0008】水発泡硬質ポリウレタンフォームの組成と
しては、連続気泡率が略100%のものが得られればど
のような組成のものでも良い。断熱材としては、偏平状
の気泡を形成した連続気泡発泡体を単体で使用すること
もできるが、上記のようにかかる連続気泡発泡体をコア
材とし、これをガスバリヤー性フィルムから成る容器で
覆い、その内部を減圧して密封して成る真空断熱材とし
た方が、より断熱特性に優れ好ましい。このような断熱
材の代表的な用途は冷蔵庫等の断熱材であるが、その
他、例えば保冷車、プレハブパネル等の建築用断熱材と
して広く適用できる。
The composition of the water-foamed rigid polyurethane foam may be any composition as long as it has an open cell ratio of about 100%. As the heat insulating material, it is possible to use the open-cell foam having flat-shaped cells alone, but as described above, such an open-cell foam is used as the core material, and this is a container made of a gas barrier film. It is preferable to use a vacuum heat insulating material which is covered and whose interior is decompressed and hermetically sealed, because it has more excellent heat insulating properties. A typical use of such a heat insulating material is as a heat insulating material for refrigerators and the like, but in addition to this, it can be widely applied as a heat insulating material for buildings such as cold storage cars and prefabricated panels.

【0009】[0009]

【作用】本発明は上記構成のように、偏平状の気泡を形
成した連続気泡発泡体を断熱材とするか、もしくはこれ
をコア材とする真空断熱材であるため、発泡体の膜間の
空隙距離が気泡径より数倍小さくなり、気泡の厚みを
0.04mm以下、好ましくは0.01〜0.03mm
とすることで、高性能の断熱材が得られる。特にかかる
気泡厚みの断熱材をコア材としとしてガスバリヤー性フ
ィルムから成る容器で被い、その内部を減圧して密封す
ることにより、減圧度0.1〜0.01Torrで熱伝
導率0.005kcal/m・h・℃以下の高性能の真
空断熱材が得られるものである。
As described above, according to the present invention, the open-cell foam having flat-shaped cells is used as the heat insulating material or the vacuum heat insulating material having the core as the core material. The void distance is several times smaller than the bubble diameter, and the bubble thickness is 0.04 mm or less, preferably 0.01 to 0.03 mm.
By doing so, a high-performance heat insulating material can be obtained. In particular, by covering a container made of a gas barrier film with a heat insulating material having such a bubble thickness as a core material and depressurizing the inside to seal it, a thermal conductivity of 0.005 kcal is obtained at a decompression degree of 0.1 to 0.01 Torr. It is possible to obtain a high-performance vacuum heat insulating material of / m · h · ° C or less.

【0010】[0010]

【実施例】以下、本発明の一実施例を図面にしたがって
説明する。 〈実施例1及び2〉図1は、本実施例のコア材である連
続気泡の硬質ポリウレタンフォームの製造工程を示した
ものである。硬質ポリウレタンフォーム4は、その原料
に、ポリオール成分としてトリレンジアミンにエチレン
オキシドとプロピレンオキシドを付加して得られるOH
価350mgKOH/gのポリオールと、トリエタノー
ルアミンにプロピレンオキシドを付加して得られるOH
価300mgKOH/gのポリオールを6:4に混合し
たものを100重量部、発泡剤として蒸留水を4部、整
泡剤としてシリコーン界面活性剤(日本ユニカー社製の
商品名「SZ−1923」)を3重量部、触媒として活
剤ケミカル社製の商品名「ミニコR−9000」を2重
量部と花王社製の商品名「カオーライザーNo1」を2
重量部、連通化剤としてステアリン酸カルシウムを2重
量部、及びイソシアネート成分として住友バイエルウレ
タン社製の商品名「C−MDI44V20」を147重
量部を使用して高圧発泡機で混合し、図1(1)及び図
1(2)に示すように型温60℃に調整したアルミ製の
上型2及び下型3で形成された空間内に注入して発泡充
填させたものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. <Examples 1 and 2> FIG. 1 shows a manufacturing process of an open-celled rigid polyurethane foam which is a core material of this example. The rigid polyurethane foam 4 is an OH obtained by adding ethylene oxide and propylene oxide to tolylenediamine as a polyol component to the raw material.
OH obtained by adding propylene oxide to triethanolamine with a polyol having a valency of 350 mgKOH / g
100 parts by weight of a mixture of a polyol having a valency of 300 mgKOH / g at 6: 4, 4 parts of distilled water as a foaming agent, and a silicone surfactant as a foam stabilizer (trade name "SZ-1923" manufactured by Nippon Unicar Co., Ltd.) 3 parts by weight, 2 parts by weight of a product name "Minico R-9000" manufactured by Activator Chemical Co. as a catalyst, and 2 parts of a product name "Kaorizer No. 1" manufactured by Kao Corporation.
1 part by weight, 1 part by weight of calcium stearate as a communicating agent, and 147 parts by weight of a product name "C-MDI44V20" manufactured by Sumitomo Bayer Urethane Co., Ltd. as an isocyanate component were mixed in a high-pressure foaming machine. ) And as shown in FIG. 1 (2), it is foamed and filled into the space formed by the upper mold 2 and the lower mold 3 made of aluminum whose mold temperature is adjusted to 60 ° C.

【0011】そして、その直後に、図1(3)に示すよ
うに高圧プレス1で上型2を徐々に押し込み、硬質ポリ
ウレタンフォーム4を約1/3及び約1/4の厚さに、
それぞれ圧縮して約10分間放置し硬化させ、偏平状に
成形した連続気泡発泡体4aを得た。さらに、脱型後常
温でエージングし、所定の寸法にカットして図2に示す
コア材である圧縮硬質ポリウレタンフォーム4aを得
た。このようにして得られた圧縮硬質ポリウレタンフォ
ーム4aは、図3に示すように気泡径Aに対し気泡の厚
みBが数倍小さい偏平状の気泡が形成され、かつ圧縮し
て気泡を押しつぶすことで容易に完全な連続気泡フォー
ムが得られるものである。得られた圧縮硬質ポリウレタ
ンフォーム4aの密度、連続気泡率、気泡径及び気泡の
厚みを表1に示す。
Immediately after that, as shown in FIG. 1 (3), the upper mold 2 is gradually pushed in by the high-pressure press 1 so that the hard polyurethane foam 4 has a thickness of about 1/3 and 1/4.
Each was compressed and left to cure for about 10 minutes to obtain a flat-shaped open-cell foam 4a. Further, after demolding, aging was carried out at room temperature, and the product was cut into a predetermined size to obtain a compressed rigid polyurethane foam 4a as a core material shown in FIG. In the thus obtained compressed rigid polyurethane foam 4a, as shown in FIG. 3, flat-shaped cells having a cell thickness A several times smaller than the cell diameter A are formed and compressed to crush the cells. It is easy to obtain a completely open cell foam. Table 1 shows the density, open cell ratio, cell diameter and cell thickness of the obtained compressed rigid polyurethane foam 4a.

【0012】その後、得られた圧縮硬質ポリウレタンフ
ォーム4aを110℃で約2時間加熱乾燥させて、ポリ
エチレンテレフタレートフィルムとアルミ箔とハイアク
リロニトリルフィルムでラミネート構成されたガスバリ
ヤー性フィルムから成る容器5で覆い、その内部を0.
1Torrまで減圧して密封し、図4に示す真空断熱材
6を得た。容器5の構成は、この例のように必ずしもア
ルミ箔の両面を樹脂フィルムでサンドイッチ状にラミネ
ートする必要はなく、一方の面をラミネートしても良
い。また、アルミ箔に限らずその他の金属箔、もしくは
金属箔の代わりに樹脂フィルム上に金属を蒸着したもの
でも良い。なお、上記容器5で覆うことなく、この圧縮
硬質ポリウレタンフォーム4aを、断熱特性を要する機
器の壁内、例えば冷蔵庫の外箱、内箱で形成された壁内
に直接収納して使用しても良い。
Thereafter, the obtained compressed rigid polyurethane foam 4a is heated and dried at 110 ° C. for about 2 hours and covered with a container 5 made of a gas barrier film laminated with a polyethylene terephthalate film, an aluminum foil and a high acrylonitrile film. , The inside is 0.
The pressure was reduced to 1 Torr and sealed to obtain a vacuum heat insulating material 6 shown in FIG. As for the constitution of the container 5, it is not always necessary to laminate both sides of the aluminum foil with a resin film in a sandwich shape as in this example, and one side may be laminated. Further, the metal foil is not limited to the aluminum foil, and other metal foil or metal foil deposited on a resin film instead of the metal foil may be used. Even if the compressed rigid polyurethane foam 4a is used without being covered with the container 5, the compressed rigid polyurethane foam 4a may be directly stored in a wall of a device requiring heat insulating properties, for example, a wall formed by an outer box or an inner box of a refrigerator. good.

【0013】〈実施例3〉硬質ポリウレタンフォーム4
の原料として、実施例1と同じものを使用し、図1
(1)および(2)の工程にしたがい同様の方法で上型
2及び下型3で形成された空間内に注入して発泡充填さ
せ、そのまま約10分間放置し硬化させた。あるいは所
定のボックス内にフリー発泡し硬化させても良い。その
後、図1(3)を経ずに、図1(4)に示すように脱型
し、この硬質ポリウレタンフォーム4を常温でエージン
グし、そして、所定の寸法にカットした後、図1(5)
に示すように高圧プレス1で圧縮して約1/3の厚さに
押しつぶし、実施例1と同様に図2に示すコア材である
圧縮硬質ポリウレタンフォーム4aを得た。
<Example 3> Rigid polyurethane foam 4
The same raw material as in Example 1 was used as shown in FIG.
In the same manner as in steps (1) and (2), the mixture was injected into the space formed by the upper mold 2 and the lower mold 3 for foam filling, and allowed to stand for about 10 minutes to cure. Alternatively, it may be free-foamed and cured in a predetermined box. Then, without going through FIG. 1 (3), the mold is removed as shown in FIG. 1 (4), the rigid polyurethane foam 4 is aged at room temperature, and then cut into a predetermined size. )
As shown in (1), it was compressed with a high-pressure press 1 and crushed to a thickness of about 1/3 to obtain a compressed rigid polyurethane foam 4a as a core material shown in FIG.

【0014】このようにして得られた圧縮硬質ポリウレ
タンフォーム4aは、実施例1と同様の偏平状気泡が形
成され、かつ完全な連続気泡フォームが得られた。得ら
れた圧縮硬質ポリウレタンフォーム4aの密度、連続気
泡率、気泡径及び気泡の厚みを表1に示す。なお、この
場合、押しつぶした硬質ポリウレタンフォームはある程
度復元してしまうが、表1に示した物質値は復元する前
のものである。
The compressed rigid polyurethane foam 4a thus obtained had the flattened cells similar to those in Example 1 and was a completely open cell foam. Table 1 shows the density, open cell ratio, cell diameter and cell thickness of the obtained compressed rigid polyurethane foam 4a. In this case, although the crushed rigid polyurethane foam is restored to some extent, the substance values shown in Table 1 are those before restoration.

【0015】その後、このようにして得られた圧縮硬質
ポリウレタンフォーム4aを実施例1と同様の方法でガ
スバリヤー性フィルムから成る容器5で覆い、その内部
を0.1Torrまで減圧して密封し、図4に示す真空
断熱材6を得た。この時、コア材である圧縮硬質ポリウ
レタンフォーム4aは、再び押しつぶされて偏平状気泡
が形成された。
Thereafter, the compressed rigid polyurethane foam 4a thus obtained was covered with a container 5 made of a gas barrier film in the same manner as in Example 1, and the inside thereof was depressurized to 0.1 Torr and sealed, The vacuum heat insulating material 6 shown in FIG. 4 was obtained. At this time, the compressed rigid polyurethane foam 4a, which is the core material, was crushed again to form flat cells.

【0016】実施例1及び2で得られた真空断熱材6の
熱伝導率を、英弘精器(株)製の熱伝導率測定装置(商
品名「HC−071形」)を用いて、平均温度24℃で
測定した結果を表1に示した。なお、比較例1及び2と
して、実施例2の高圧プレス1で押しつぶす前及び約1
/2押しつぶした後の硬質ポリウレタンフォーム4を、
比較例3として、発泡剤にフロン(CFC−11)を用
いた従来の硬質ポリウレタンフォームをそれぞれコア材
に使用した真空断熱材についても同時に測定し、表1に
示した。
The thermal conductivity of the vacuum heat insulating material 6 obtained in Examples 1 and 2 was averaged by using a thermal conductivity measuring device (trade name "HC-071 type") manufactured by Eiko Seiki Co., Ltd. The results measured at a temperature of 24 ° C. are shown in Table 1. As Comparative Examples 1 and 2, before crushing with the high pressure press 1 of Example 2 and about 1
/ 2, crush the rigid polyurethane foam 4
As Comparative Example 3, a vacuum heat insulating material in which a conventional rigid polyurethane foam using freon (CFC-11) as a foaming agent was used as a core material was also measured at the same time and is shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】表1から明らかのように、実施例1〜3に
より得られた圧縮硬質ポリウレタンフォーム4aは、い
ずれも平均気泡径が0.2mmに対し気泡の厚みが0.
01〜0.04mmと、非常に薄い偏平状気泡が形成さ
れており、気泡膜間の空隙距離が極めて短いことが判
る。そして、この偏平状気泡を形成した連続気泡発泡
体、すなわち圧縮硬質ポリウレタンフォーム4aを真空
断熱材6のコア材として用いることにより、真空断熱材
6の熱伝導率は、量産が容易な減圧度0.1Torrで
0.004kcal/m・h・℃以下と、気泡の厚みが
大きく気泡膜間の空隙距離が長い比較例1〜3に比べ大
幅に低減され、極めて優れた断熱性能を得ることができ
た。また、圧縮硬質ポリウレタンフォーム4aは、発泡
剤の全てに水を使用したノンフロンの水発泡硬質ポリウ
レタンフォームであるため、フロン規制上全く問題ない
ものである。
As is apparent from Table 1, in the compressed rigid polyurethane foams 4a obtained in Examples 1 to 3, the average cell diameter was 0.2 mm and the cell thickness was 0.
It was found that very thin flat bubbles with a thickness of 01 to 0.04 mm were formed, and the void distance between the bubble films was extremely short. Then, by using the open-cell foam formed with the flat-shaped cells, that is, the compressed rigid polyurethane foam 4a as the core material of the vacuum heat insulating material 6, the heat conductivity of the vacuum heat insulating material 6 can be reduced to a degree of decompression of 0 at which mass production is easy. 0.004 kcal / m · h · ° C or less at 1 Torr, which is significantly reduced as compared with Comparative Examples 1 to 3 in which the thickness of the bubble is large and the gap distance between the bubble membranes is long, and extremely excellent heat insulation performance can be obtained. It was Further, since the compressed rigid polyurethane foam 4a is a non-CFC water-foamed rigid polyurethane foam in which water is used as all the foaming agents, there is no problem in terms of CFC regulation.

【0019】[0019]

【発明の効果】以上説明したように、本発明により所期
の目的を達成することができた。すなわち、気泡の厚み
が0.04mm以下、好ましくは0.01〜0.03m
mの偏平状の気泡を有する連続気泡発泡体で断熱材を構
成することにより、軽量で高性能、かつノンフロンの優
れた断熱材が実現でき、さらにこれをコア材として真空
断熱材を構成すれば、量産可能な減圧度0.1〜0.0
1Torrで熱伝導率を大幅に低減し得る優れた真空断
熱材が実現できる。
As described above, according to the present invention, the intended purpose can be achieved. That is, the thickness of the bubbles is 0.04 mm or less, preferably 0.01 to 0.03 m.
By constructing an insulating material with an open-cell foam having flattened cells of m, it is possible to realize a lightweight, high-performance and excellent non-CFC insulating material. Further, if this is used as a core material for a vacuum insulating material, Decompression degree of 0.1 to 0.0 for mass production
An excellent vacuum heat insulating material that can significantly reduce the thermal conductivity at 1 Torr can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における硬質ポリウレタンフ
ォームの製造工程説明図。
FIG. 1 is an explanatory view of a manufacturing process of a rigid polyurethane foam according to an embodiment of the present invention.

【図2】同じく硬質ポリウレタンフォームの外観斜視
図。
FIG. 2 is an external perspective view of the same rigid polyurethane foam.

【図3】同じく硬質ポリウレタンフォームの気泡形状説
明図。
FIG. 3 is an explanatory view of cell shape of the rigid polyurethane foam.

【図4】同じく真空断熱材の断面図。FIG. 4 is a sectional view of the vacuum heat insulating material.

【符号の説明】[Explanation of symbols]

1…高圧プレス、 2…上型、
3…下型、 4…硬質ポ
リウレタンフォーム、4a…圧縮硬質ポリウレタンフォ
ーム、 5…容器、6…真空断熱材。
1 ... High pressure press, 2 ... Upper mold,
3 ... Lower mold, 4 ... Rigid polyurethane foam, 4a ... Compressed rigid polyurethane foam, 5 ... Container, 6 ... Vacuum heat insulating material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福田 克美 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所リビング機器事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsumi Fukuda 800 Tomita, Ohira-cho, Shimotsuga-gun, Tochigi Prefecture Living Equipment Division, Hitachi, Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】気泡径0.1〜1.0mmで、気泡の厚み
を0.04mm以下とした偏平状の気泡を有する連続気
泡発泡体から成る断熱材。
1. A heat insulating material comprising an open-cell foam having a flat cell having a cell diameter of 0.1 to 1.0 mm and a cell thickness of 0.04 mm or less.
【請求項2】気泡径0.1〜1.0mmで、気泡の厚み
を0.04mm以下とした偏平状の気泡を有する連続気
泡発泡体を、ガスバリヤー性フィルムから成る容器で覆
い、その内部を減圧、密封して成る真空断熱材。
2. An open cell foam having a flat cell having a cell diameter of 0.1 to 1.0 mm and a cell thickness of 0.04 mm or less is covered with a container made of a gas barrier film, and the inside thereof is covered. A vacuum heat insulating material made by decompressing and sealing.
【請求項3】上記連続気泡発泡体が発泡後に圧縮して気
泡を偏平状に押しつぶして成形された成形体で構成され
て成る請求項1記載の断熱材。
3. The heat insulating material according to claim 1, wherein the open-cell foam comprises a molded body which is compressed after foaming to crush the cells into a flat shape.
【請求項4】上記連続気泡発泡体が発泡後に圧縮して気
泡を偏平状に押しつぶして成形された成形体で構成され
て成る請求項2記載の真空断熱材。
4. The vacuum heat insulating material according to claim 2, wherein the open-cell foam comprises a molded body which is compressed after foaming to crush the cells into a flat shape.
【請求項5】上記連続気泡発泡体が発泡剤の全てに水を
使用して発泡した水発泡硬質ポリウレタンフォームで構
成されて成る請求項1もしくは3記載の断熱材。
5. The heat insulating material according to claim 1, wherein the open-cell foam comprises a water-foamed rigid polyurethane foam obtained by using water as a foaming agent.
【請求項6】上記連続気泡発泡体が発泡剤の全てに水を
使用して発泡した水発泡硬質ポリウレタンフォームで構
成されて成る請求項2もしくは4記載の真空断熱材。
6. The vacuum heat insulating material according to claim 2 or 4, wherein the open-cell foam comprises a water-foamed rigid polyurethane foam obtained by using water as a foaming agent.
【請求項7】上記請求項1乃至6何れか記載の断熱材も
しくは真空断熱材を断熱材として具備して成る冷蔵庫。
7. A refrigerator comprising the heat insulating material or vacuum heat insulating material according to claim 1 as a heat insulating material.
JP5005492A 1993-01-18 1993-01-18 Insulating material and refrigerator using the same Pending JPH06213561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5005492A JPH06213561A (en) 1993-01-18 1993-01-18 Insulating material and refrigerator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5005492A JPH06213561A (en) 1993-01-18 1993-01-18 Insulating material and refrigerator using the same

Publications (1)

Publication Number Publication Date
JPH06213561A true JPH06213561A (en) 1994-08-02

Family

ID=11612742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5005492A Pending JPH06213561A (en) 1993-01-18 1993-01-18 Insulating material and refrigerator using the same

Country Status (1)

Country Link
JP (1) JPH06213561A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997027986A1 (en) * 1996-02-02 1997-08-07 The Dow Chemical Company Compressed polymer foams and panels containing them
US5844014A (en) * 1997-03-31 1998-12-01 The Dow Chemical Company Compressed, extruded, evacuated open-cell polymer foams and evacuated insulation panels containing them
US5869544A (en) * 1997-03-17 1999-02-09 The Dow Chemical Company Extruded, open-cell microcellular alkenyl aromatic polymer forms, process for making, and articles made therefrom
JP2001001352A (en) * 1999-04-23 2001-01-09 Lg Electronics Inc Production of vacuum insulating material core
US6235806B1 (en) 1998-06-26 2001-05-22 Nisshinbo Industries, Inc. Open-celled rigid polyurethane foam and method for producing the same
JP2008540955A (en) * 2005-05-09 2008-11-20 ビーエーエスエフ ソシエタス・ヨーロピア Manufacturing method of vacuum insulation panel
US7947347B2 (en) 2004-07-20 2011-05-24 Kurashiki Bosek Kabushiki Kaisha Vacuum heat insulator
WO2013011773A1 (en) * 2011-07-19 2013-01-24 東洋ゴム工業株式会社 Polyurethane foam panel and method for producing same
JP2013040322A (en) * 2011-07-19 2013-02-28 Toyo Tire & Rubber Co Ltd Rigid polyurethane foam panel and method of manufacturing the same
JP5310929B1 (en) * 2012-06-20 2013-10-09 パナソニック株式会社 Thermal insulation wall, thermal insulation box and manufacturing method thereof
JP5310928B1 (en) * 2012-06-20 2013-10-09 パナソニック株式会社 Insulating wall, insulating casing and method for manufacturing the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997027986A1 (en) * 1996-02-02 1997-08-07 The Dow Chemical Company Compressed polymer foams and panels containing them
US5977197A (en) * 1996-02-02 1999-11-02 The Dow Chemical Company Compressed, extruded, evacuated open-cell polymer foams and evacuated insulation panels containing them
US5869544A (en) * 1997-03-17 1999-02-09 The Dow Chemical Company Extruded, open-cell microcellular alkenyl aromatic polymer forms, process for making, and articles made therefrom
US5844014A (en) * 1997-03-31 1998-12-01 The Dow Chemical Company Compressed, extruded, evacuated open-cell polymer foams and evacuated insulation panels containing them
US6235806B1 (en) 1998-06-26 2001-05-22 Nisshinbo Industries, Inc. Open-celled rigid polyurethane foam and method for producing the same
JP2001001352A (en) * 1999-04-23 2001-01-09 Lg Electronics Inc Production of vacuum insulating material core
US7947347B2 (en) 2004-07-20 2011-05-24 Kurashiki Bosek Kabushiki Kaisha Vacuum heat insulator
JP2008540955A (en) * 2005-05-09 2008-11-20 ビーエーエスエフ ソシエタス・ヨーロピア Manufacturing method of vacuum insulation panel
WO2013011773A1 (en) * 2011-07-19 2013-01-24 東洋ゴム工業株式会社 Polyurethane foam panel and method for producing same
JP2013040322A (en) * 2011-07-19 2013-02-28 Toyo Tire & Rubber Co Ltd Rigid polyurethane foam panel and method of manufacturing the same
JP5310929B1 (en) * 2012-06-20 2013-10-09 パナソニック株式会社 Thermal insulation wall, thermal insulation box and manufacturing method thereof
JP5310928B1 (en) * 2012-06-20 2013-10-09 パナソニック株式会社 Insulating wall, insulating casing and method for manufacturing the same
WO2013190845A1 (en) * 2012-06-20 2013-12-27 パナソニック株式会社 Insulating wall, insulating box, and manufacturing method therefor
WO2013190846A1 (en) * 2012-06-20 2013-12-27 パナソニック株式会社 Insulating wall, insulating casing, and method for manufacturing same
US10030805B2 (en) 2012-06-20 2018-07-24 Panasonic Intellectual Property Management Co., Ltd. Heat-insulating wall, and heat-insulating housing and method for producing the same
US10456962B2 (en) 2012-06-20 2019-10-29 Panasonic Intellectual Property Management Co., Ltd. Heat-insulating wall, and heat-insulating housing and method for producing the same
US10781963B2 (en) 2012-06-20 2020-09-22 Panasonic Intellectual Property Management Co., Ltd. Heat-insulating wall, and heat-insulating housing and method for producing the same

Similar Documents

Publication Publication Date Title
JP3322852B2 (en) Open cell rigid polyurethane foam molding and method for producing the same
WO2001048430A1 (en) Method of deforming vacuum heat insulation material, method of fixing vacuum heat insulation material, refrigeration, cold storage vessel, and heat insulation box body
JPH0859879A (en) Production of open-cell rigid polyurethane foam useful as heat insulating material
JPH06213561A (en) Insulating material and refrigerator using the same
CN1311958C (en) Method for mfg. vacuum heat-insulating material core
US6322869B1 (en) Combined polystyrene and polyurethane vacuum insulating panel and the use thereof for producing insulating elements
US5439945A (en) Foams produced under reduced pressure and method of preparing such foams
PL181643B1 (en) Thermally insulating element
JPH07148752A (en) Heat insulating box body
JPS6361588B2 (en)
JPH08303940A (en) Insulating box and refrigerator using the box
JP2001181365A (en) Method for manufacturing open-cell rigid polyurethane foam for vacuum heat insulating panel-filler material
JPS62251593A (en) Manufacture of heat insulator
JPH1086255A (en) Vacuum heat insulation material
JP2001018246A (en) Porous composite and its preparation
JPH02120598A (en) Insulating body
JPH10238691A (en) Vacuum heat insulation panel, manufacture thereof, and refrigerator using vacuum heat insulation panel
JP2548323B2 (en) Insulation
JPS62147275A (en) Manufacture of heat insulator
JP2001181364A (en) Method for manufacturing open-cell rigid polyurethane foam molded body
JPH04143586A (en) Adiabatic body
JPS6257432A (en) Production of polyethylene open-cell foam
JP3241782B2 (en) Insulation method
JPH0272294A (en) Heat insulating structure
JPH07293785A (en) Manufacture of heat insulating element and heat insulating wall

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090903

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120903

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120903