JP2001018246A - Porous composite and its preparation - Google Patents

Porous composite and its preparation

Info

Publication number
JP2001018246A
JP2001018246A JP11196650A JP19665099A JP2001018246A JP 2001018246 A JP2001018246 A JP 2001018246A JP 11196650 A JP11196650 A JP 11196650A JP 19665099 A JP19665099 A JP 19665099A JP 2001018246 A JP2001018246 A JP 2001018246A
Authority
JP
Japan
Prior art keywords
porous
porous composite
strip
pores
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11196650A
Other languages
Japanese (ja)
Inventor
Taku Hashida
卓 橋田
Masaaki Suzuki
正明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11196650A priority Critical patent/JP2001018246A/en
Publication of JP2001018246A publication Critical patent/JP2001018246A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a porous composite wherein a molded body of powder or granule hardly contains air and a method for preparing it. SOLUTION: Air in a highly heat insulating gas atmosphere is replaced with a highly heat insulating gas by using an aerogel under the highly heat insulating gas atmosphere. In addition, a mixing process of this with a urethane raw material and a foaming process are performed under the highly heat insulating gas atmosphere to obtain a porous composite which hardly contains highly heat insulating air. As the result, heat insulating performance is improved and ratios of oxygen and nitrogen in the gas in the porous composite are at most 1%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、断熱材、遮音材等
に用いられる多孔性複合体とその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous composite used as a heat insulating material, a sound insulating material and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、断熱性の多孔性粒体あるいは粉体
を発泡樹脂原料と混合発泡して成形することで、不定形
で扱い難かったものを簡便に利用できるようにすること
が提案されている。例えば、冷蔵庫の断熱材等に用いら
れているウレタンフォームを粉砕して粒体にした後、再
成形して使うことが提案されている。また、エアロゲル
と呼ばれるシリカ系材料を主流とした高断熱性のドライ
ゲル粒体の製造方法が例えば米国特許で開示されてい
る。またドライゲル粒体をウレタン原料と混合発泡する
ことで、高断熱性の成形体を製造することが提案されて
いる(特開平7−316328)。
2. Description of the Related Art Conventionally, it has been proposed to mix and foam heat-insulating porous granules or powders with a foamed resin raw material so as to easily use amorphous and difficult-to-handle materials. ing. For example, it has been proposed that urethane foam used for a heat insulating material of a refrigerator is pulverized into granules, and then reshaped and used. Further, a method for producing dry gel particles having high heat insulation and mainly using a silica-based material called aerogel is disclosed in, for example, a US patent. Further, it has been proposed to produce a highly heat-insulating molded body by mixing and foaming a dry gel particle with a urethane raw material (Japanese Patent Laid-Open No. Hei 7-316328).

【0003】[0003]

【発明が解決しようとする課題】粒体あるいは粉体を成
形して、発泡樹脂原料と混合発泡して成形する場合、粒
体あるいは粉体中の細孔に空気が入っているために、成
形された多孔性複合体中にも空気が残る。この空気が高
い熱伝導率を持つために、多孔性複合体の断熱性が十分
に低下しないという課題があった。
When a granule or powder is molded and mixed and foamed with a foamed resin raw material and molded, air is contained in the pores in the granule or powder. Air also remains in the porous composite. Since this air has a high thermal conductivity, there is a problem that the heat insulation of the porous composite does not sufficiently decrease.

【0004】本発明は、このような従来の多孔性複合体
の製造方法の課題を考慮し、粉体あるいは粒体の成形体
中に空気がほとんどないような多孔性複合体とその製造
方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems of the conventional method for producing a porous composite, and has developed a porous composite and a method for producing the same in which there is almost no air in a powder or granule compact. The purpose is to provide.

【0005】[0005]

【課題を解決するための手段】本発明の多孔性複合体
は、上記課題を解決するために、保有する孔径が1mm以
下で密度が0.02g/cm3以上0.3g/cm3以下の多孔性細片
と、前記多孔性細片を結合するための多孔性バインダー
からなる複合体であって、前記複合体の体積中で前記多
孔性細片の体積が2割以上を占め、前記複合体の孔中に
気体として存在する酸素及び窒素の分圧の合計が0.05気
圧以下、前記孔中の全圧が0.1気圧以上である構成を有
する。
Means for Solving the Problems In order to solve the above problems, the porous composite of the present invention has a porous structure having a pore diameter of 1 mm or less and a density of 0.02 g / cm 3 or more and 0.3 g / cm 3 or less. A composite comprising a strip and a porous binder for bonding the porous strip, wherein the volume of the porous strip occupies 20% or more of the volume of the composite, The composition is such that the total partial pressure of oxygen and nitrogen present as gas in the hole is 0.05 atm or less, and the total pressure in the hole is 0.1 atm or more.

【0006】この場合、前記多孔性細片が連通孔を有す
る乾燥ゲル細片であることが好ましい。
In this case, it is preferable that the porous strip is a dry gel strip having a communication hole.

【0007】また、前記多孔性バインダーが、樹脂発泡
体であり前記樹脂発泡体の有する孔が独立気泡から構成
されることが好ましい。
It is preferable that the porous binder is a resin foam, and the pores of the resin foam are composed of closed cells.

【0008】また、前記連通孔を有する乾燥ゲル細片
が、有機系乾燥ゲル細片で、かつ、前記樹脂発泡体がポ
リウレタンであることが好ましい。
It is preferable that the dried gel strip having the communicating hole is an organic dry gel strip and the resin foam is polyurethane.

【0009】さらに、前記多孔性複合体の孔中に分子量
44以上の気体が少なくとも1種以上存在し、前記の少な
くとも一種以上の気体の分圧の合計が、前記多孔性複合
体の孔中に気体として存在する窒素と酸素の分圧の合計
の10倍以上であることが好ましい。
Further, the molecular weight in the pores of the porous composite is
44 or more gases are present in at least one kind, and the total partial pressure of the at least one kind of gas is 10 times the total partial pressure of nitrogen and oxygen present as gas in the pores of the porous composite. It is preferable that it is above.

【0010】本発明の多孔性複合体の製造方法は、多孔
性細片の孔中を、分子量が44以上の物質で満たし、分子
量が44以上の気体の雰囲気下で前記多孔性細片と樹脂発
泡体原料とを混合した後に、発泡成形することで構成さ
れる。
The method for producing a porous composite according to the present invention is characterized in that the pores of the porous strip are filled with a substance having a molecular weight of 44 or more, and the porous strip and the resin are filled in a gas atmosphere having a molecular weight of 44 or more. After mixing with a foam raw material, it is formed by foam molding.

【0011】この場合、前記多孔性細片の孔中を満たす
物質が二酸化炭素、ペンタン、ヘキサンのうちの一種あ
るいはその混合体であることが好ましい。
In this case, the substance filling the pores of the porous strip is preferably one of carbon dioxide, pentane and hexane or a mixture thereof.

【0012】[0012]

【発明の実施の形態】以下に本発明の実施の形態を図面
を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】本発明の多孔性複合体の例を図1に示し
た。これは、多孔性複合体2が、容器1内で成形された
場合の断面図であり、多孔性複合体2は、多孔性バイン
ダーで形成される孔3と、内部に細孔を有する多孔性細
片4から構成されている。太い実線で示された多孔性バ
インダーは孔3を形成し、その孔3のつながりが、多孔
性細片4を支えることで成形され、多孔性複合体2が形
成されている。ただし、図1にも見られるように部分的
に、多孔性細片4がかたまってある領域や、多孔性バイ
ンダーが形成する孔3が連続して存在する領域がある場
合もある。
FIG. 1 shows an example of the porous composite of the present invention. This is a cross-sectional view when the porous composite 2 is molded in the container 1. The porous composite 2 has a pore 3 formed of a porous binder and a porous composite having pores therein. It is composed of strips 4. The porous binder shown by the thick solid line forms the holes 3, and the connection of the holes 3 is formed by supporting the porous strips 4, thereby forming the porous composite 2. However, as shown in FIG. 1, there may be a region where the porous strips 4 are partially gathered and a region where the pores 3 formed by the porous binder are continuously present.

【0014】本発明の多孔性複合体の構成上の第一の特
徴は、通常製造時に空気を多量に含む多孔性細片が体積
として2割以上占めるにもかかわらず、前記複合体の孔
3、つまり多孔性バインダーの孔3、多孔性細片4中の
孔あるいはそれらの隙間から形成される孔中に、酸素、
窒素が併せて0.05気圧以下しか含まれず、しかも前記孔
中の全圧が0.1気圧以上あることである。熱伝導率の高
い酸素、窒素等の空気成分が少ないことで多孔性複合体
全体の熱伝導率を低下させることができる。また、多孔
性細片の有する孔の径は、1mm以下と気体の対流が無視
できる程度に小さく、密度も0.02g/cm3以上0.3g/cm3
下と低く固体熱伝導が小さくなるため、多孔性細片自体
の熱伝導率は小さくなっている。このことも多孔性複合
体の熱伝導率を低下させることに寄与している。
The first characteristic of the structure of the porous composite of the present invention is that, although the porous strip containing a large amount of air occupies more than 20% by volume during the usual production, the pores 3 That is, in the pores 3 of the porous binder, the pores in the porous strip 4 or the pores formed from the gaps between them, oxygen,
Nitrogen is contained in a total of only 0.05 atm or less, and the total pressure in the pores is 0.1 atm or more. Since there are few air components such as oxygen and nitrogen having high thermal conductivity, the thermal conductivity of the entire porous composite can be reduced. In addition, the diameter of the pores of the porous strip is 1 mm or less and convection of gas is small enough to be ignored, and the density is 0.02 g / cm 3 or more and 0.3 g / cm 3 or less. The thermal conductivity of the porous strip itself is low. This also contributes to lowering the thermal conductivity of the porous composite.

【0015】ここで多孔性細片は、上記の細孔径と密度
を持つ小片であるが、その形は、平たな片、粒体、粉体
であるものを含み、大きさは1cm程度以下のものをい
う。取り扱いの点からは、数mmから数μm程度のものが
好ましい。
Here, the porous strip is a small strip having the above-mentioned pore diameter and density, and its shape includes a flat strip, a granule, and a powder, and the size is about 1 cm or less. Means From the viewpoint of handling, those having a size of several mm to several μm are preferable.

【0016】また、この多孔性細片は、乾燥ゲルからな
る多孔性細片であることが好ましい。これは、乾燥ゲル
の細孔経が数十nm以下と小さく高い断熱性が得られるか
らである。乾燥ゲルとしては、湿潤ゲルを超臨界乾燥に
よって得られるエアロゲル、凍結乾燥によって得られる
クリオゲル、気液界面を持ったまま乾燥させて得られる
キセロゲル等がある。また、このようなゲル材料として
は、シリカ系ゲル、フェノール系ゲル、メラミン系ゲ
ル、イソシアネート系ゲル、ウレタン系ゲル等が知られ
ており、これらを用いて構成される。また、その他にポ
リビニルアルコール系ゲル、ポリアクリル酸ゲル系ゲル
等もある。
The porous strip is preferably a porous strip made of a dried gel. This is because the dried gel has a small pore diameter of several tens of nm or less, and high heat insulation can be obtained. Examples of the dry gel include an aerogel obtained by supercritical drying of a wet gel, a cryogel obtained by freeze-drying, and a xerogel obtained by drying while maintaining a gas-liquid interface. Further, as such a gel material, a silica gel, a phenol gel, a melamine gel, an isocyanate gel, a urethane gel, and the like are known, and are configured using these. In addition, there are a polyvinyl alcohol-based gel and a polyacrylic acid gel-based gel.

【0017】一方、多孔性バインダーとしては、上記の
数十nmの細孔を有する各種乾燥ゲルや、通常数mmから数
十μm程度の孔を有する樹脂発泡体があるが、強度を確
保する観点からは、樹脂発泡体が好ましい。樹脂発泡体
として特に、はウレタン、イソシアヌレートの他、ポリ
エチレン、ポリプロピレン、エチレンビニルアセテート
等のポリオレフィン系樹脂発泡体が好ましい。その他の
樹脂発泡体として、ポリカーボネート、ポリスルホン、
ポリ(フェニレンオキシド)、ポリメチルメタクリレー
ト、ポリイミド、ポリアミド、ポリメタクリルアミド、
エポキシ、シリコン、フェノール、メラミン-ホルムア
ルデヒド、ポリ塩化ビニル等の樹脂発泡体がある。前記
樹脂発泡体は、独立気泡を形成することが好ましく、そ
の際には、多孔性細片に僅かに空気が含まれ、仮に多孔
性細片が連通孔を有する場合でも、多孔性細片が前記独
立気泡内に閉じこめられているために、隣接する気泡内
への前記空気の拡散が抑えられ、熱伝導率低下が抑制さ
れる。また、外部からの空気の浸入も抑制することがで
きる。
On the other hand, examples of the porous binder include the above-mentioned various dry gels having pores of several tens of nm and resin foams having pores of usually several mm to several tens of μm. For this reason, a resin foam is preferred. Particularly, as the resin foam, in addition to urethane and isocyanurate, a polyolefin resin foam such as polyethylene, polypropylene, and ethylene vinyl acetate is preferable. As other resin foams, polycarbonate, polysulfone,
Poly (phenylene oxide), polymethyl methacrylate, polyimide, polyamide, polymethacrylamide,
There are resin foams such as epoxy, silicone, phenol, melamine-formaldehyde, and polyvinyl chloride. The resin foam preferably forms closed cells, in which case the porous strip contains a small amount of air, and even if the porous strip has communication holes, the porous strip is Since the cells are confined in the closed cells, diffusion of the air into adjacent cells is suppressed, and a decrease in thermal conductivity is suppressed. Further, intrusion of air from the outside can be suppressed.

【0018】また、本発明の多孔性複合体では、特に、
フェノール系ゲル、メラミン系ゲル、イソシアネート系
ゲル、ウレタン系ゲル等の有機系乾燥ゲルを多孔性細片
とし、ウレタン樹脂発泡体、イソシアヌレート樹脂発泡
体を多孔性バインダーとして構成することが好ましい。
これは、有機系ゲルが有する水酸基、アミノ基等と、樹
脂発泡体であるポリウレタン、イソシアヌレートの原料
であるイソシアネートとが結合することで多孔性複合体
の強度が高くなるためである。もちろん、イソシアネー
ト反応性官能基を有しないゲルを修飾することによっ
て、イソシアネート反応性とすることも可能である。
In the porous composite of the present invention,
It is preferable that an organic dry gel such as a phenol-based gel, a melamine-based gel, an isocyanate-based gel, or a urethane-based gel is used as a porous strip, and a urethane resin foam or an isocyanurate resin foam is used as a porous binder.
This is because the strength of the porous composite is increased by bonding a hydroxyl group, an amino group, and the like of the organic gel with a resin foam, such as polyurethane and isocyanurate, a raw material of isocyanurate. Of course, it is also possible to make isocyanate-reactive by modifying a gel having no isocyanate-reactive functional group.

【0019】さらに、多孔性複合体中の孔が、分子量4
4以上の1種以上の気体で満たされ、この気体の分圧の
合計が、同じ孔中の窒素、酸素成分の分圧の合計の10
倍以上であることが好ましい。孔を満たす気体が、分子
量44以上であることにより、その熱伝導率は二酸化炭
素程度よりも小さく、空気成分の約6割以下になる。し
かも、その量が、酸素、窒素等空気成分の10倍以上で
空気成分の割合が小さいため、熱伝導率は格段に小さく
なる。上記の分子量44以上の気体は、二酸化炭素、ク
リプトン、キセノンの他、室温での蒸気圧が比較的高い
ブタン、ペンタン、ヘキサン等の炭化水素がある。ブタ
ン、ペンタン、ヘキサンに関してはそれらの異性体もも
ちろん含むが、中でも、熱伝導率が低く沸点も比較的低
いシクロペンタン、シクロヘキサンが好ましい。その他
の、エーテル、アルコール、エステル等の有機物も沸点
が100℃程度以下のものであれば、勿論用いることは可
能である。
Further, the pores in the porous composite have a molecular weight of 4
It is filled with four or more gases, and the sum of the partial pressures of this gas is 10 times the sum of the partial pressures of the nitrogen and oxygen components in the same hole.
It is preferably at least two times. Since the gas filling the pores has a molecular weight of 44 or more, its thermal conductivity is smaller than that of carbon dioxide and is about 60% or less of the air component. Moreover, since the amount of the air component is 10 times or more that of the air component such as oxygen and nitrogen and the proportion of the air component is small, the thermal conductivity is significantly reduced. The gas having a molecular weight of 44 or more includes hydrocarbons such as butane, pentane, and hexane having a relatively high vapor pressure at room temperature, in addition to carbon dioxide, krypton, and xenon. As for butane, pentane and hexane, their isomers are of course included, but among them, cyclopentane and cyclohexane having a low thermal conductivity and a relatively low boiling point are preferred. Of course, other organic substances such as ethers, alcohols and esters can also be used as long as they have a boiling point of about 100 ° C. or lower.

【0020】次に、本発明の多孔性複合体の製造方法を
説明する。
Next, a method for producing the porous composite of the present invention will be described.

【0021】本発明の製造方法の特徴は、まず、通常そ
の細孔が空気で満たされている多孔性細片中の細孔を、
分子量44以上の物質で置換した後に、分子量44以上
の気体雰囲気下で多孔性複合体と発泡樹脂原料を混合し
て発泡成形することである。こうすることで、多孔性複
合体中では、熱伝導率の高い空気は除かれて、分子量が
44以上で熱伝導率が二酸化炭素程度よりも低い気体で
満たされるために、熱伝導率の低い多孔性複合体が得ら
れる。
The manufacturing method of the present invention is characterized in that, first, pores in a porous strip whose pores are usually filled with air are:
After replacing with a substance having a molecular weight of 44 or more, the porous composite and the foamed resin material are mixed and foamed in a gas atmosphere having a molecular weight of 44 or more. By doing so, in the porous composite, air having a high thermal conductivity is excluded, and the porous material is filled with a gas having a molecular weight of 44 or more and a thermal conductivity lower than that of carbon dioxide. A porous composite is obtained.

【0022】ここで用いられる、分子量44以上の気体
としては、既に述べたように二酸化炭素、クリプトン、
キセノン、室温での蒸気圧が比較的高いブタン、ペンタ
ン、ヘキサン等の炭化水素の他、沸点80℃程度以下で常
温で0.1気圧以上の飽和蒸気圧を持つエーテル、アルコ
ール、エステル等の有機物も用いることができるが、熱
伝導率が低いこと、常温で液体のものの場合飽和蒸気圧
が高いこと、毒性が低いことを考慮すると、クリプト
ン、キセノン、二酸化炭素、ペンタン、ヘキサンが好ま
しい。ペンタン、ヘキサンの異性体の中では、熱伝導率
の低いシクロペンタン、シクロヘキサンが特に好まし
い。
The gas having a molecular weight of 44 or more used herein includes carbon dioxide, krypton,
Xenon, hydrocarbons such as butane, pentane, and hexane, which have relatively high vapor pressures at room temperature, as well as organic substances such as ethers, alcohols, and esters having a boiling point of about 80 ° C or less and a saturated vapor pressure of 0.1 atm or more at room temperature are used. However, krypton, xenon, carbon dioxide, pentane, and hexane are preferred in consideration of low thermal conductivity, high saturation vapor pressure in the case of a liquid at room temperature, and low toxicity. Among the isomers of pentane and hexane, cyclopentane and cyclohexane having low thermal conductivity are particularly preferable.

【0023】上記の製造方法で、多孔性細片の細孔中を
分子量44の物質で置換する場合、前記物質が常温で気
体の場合、上記気体雰囲気下に一定時間置くことで置換
を行うことができるが、二酸化炭素等の場合、高圧をか
けて液化させてこれを含浸することも可能である。ま
た、上記物質が常温で液体の場合には、昇温させて蒸気
圧を1気圧近くにした雰囲気で気体として置換すること
もできる。液体で多孔性細片の細孔を満たした場合に
は、これを発泡剤として用いることが可能である。
In the above manufacturing method, when the pores of the porous strip are replaced with a substance having a molecular weight of 44, when the substance is a gas at room temperature, the replacement is performed by placing the substance in the gas atmosphere for a certain period of time. However, in the case of carbon dioxide or the like, it is also possible to liquefy by applying high pressure and impregnate it. When the substance is liquid at normal temperature, the substance can be replaced as a gas in an atmosphere in which the vapor pressure is increased to near 1 atm by raising the temperature. When the pores of the porous strip are filled with a liquid, it can be used as a foaming agent.

【0024】発泡成形の方法は、上記の気体雰囲気で行
うこと以外は、従来の方法が適用できる(例えば、「各
種高分子の発泡成形技術」1993年(株)技術情報協会発
行に詳しい)。発泡剤としては、二酸化炭素やペンタン
等の炭化水素が好的に用いられる。ウレタン発泡剤の場
合、イソシアネートと反応して二酸化炭素を発生する化
学発泡剤としての水やカルボン酸も用いられる。
As the foam molding method, a conventional method can be applied except that it is performed in the above-mentioned gaseous atmosphere (for example, "Detailed techniques of foam molding of various polymers" published by Technical Information Association, 1993). Hydrocarbons such as carbon dioxide and pentane are preferably used as the foaming agent. In the case of a urethane blowing agent, water or a carboxylic acid is also used as a chemical blowing agent that generates carbon dioxide by reacting with isocyanate.

【0025】[0025]

【実施例】以下に本発明の実施例を説明する。ここで示
す実施例では、多孔性バインダーとして独立気泡を持つ
ウレタン樹脂発泡体を用いた。その原料として、ウレタ
ン触媒は、カオライザーNO1(花王(株)製)、整泡剤
は、TY-19(花王(株)製)、ポリオールは、芳香族ア
ミン系ポリエーテルポリオールで水酸基価500mg kOH/
g、イソシアネートはアミン当量170のポリイソシアネー
トを使用した。
Embodiments of the present invention will be described below. In the examples shown here, a urethane resin foam having closed cells was used as the porous binder. As raw materials, the urethane catalyst is Kaolyzer NO1 (manufactured by Kao Corporation), the foam stabilizer is TY-19 (manufactured by Kao Corporation), and the polyol is an aromatic amine polyether polyol with a hydroxyl value of 500 mg kOH /
g, isocyanate used was a polyisocyanate having an amine equivalent of 170.

【0026】(実施例1)本実施例では、多孔性細片と
して、密度0.030g/cm3の孔径約200μmの連続気泡を有す
るポリウレタン樹脂発泡体成形体を粉砕して2〜5mm径に
した粒体を用いた。また、多孔性バインダーとして、上
記の独立気泡を有するポリウレタン樹脂発泡体を用い
た。
(Example 1) In this example, a polyurethane resin foam molded article having a density of 0.030 g / cm 3 and open cells having a pore diameter of about 200 μm was crushed to a diameter of 2 to 5 mm as a porous strip. Granules were used. Further, as the porous binder, a polyurethane resin foam having the above-mentioned closed cells was used.

【0027】まず上記粒体100gを二酸化炭素の圧力で
搬送して、二酸化炭素置換された鉄製の容器に投入し
た。さらにシクロペンタン10gを前記粒体に吸収させ
た。次に、この容器に、ポリオール100g、整泡剤3g、ウ
レタン触媒2g、水1g、シクロペンタン7gの混合物を投
入して撹拌した後、ポリイソシアネート160gを加え撹拌
した。このことにより発泡が始まり、容器の形に成形し
て多孔性複合体が製造された。前記粒体の体積は、多孔
性複合体全体の約30%であった。また、多孔性複合体中
の気体の酸素、窒素の割合は1%以下であった。
First, 100 g of the above-mentioned granules were conveyed under the pressure of carbon dioxide and charged into a carbon dioxide-substituted iron container. Further, 10 g of cyclopentane was absorbed into the granules. Next, a mixture of 100 g of a polyol, 3 g of a foam stabilizer, 2 g of a urethane catalyst, 1 g of water, and 7 g of cyclopentane was charged into this container and stirred, and then 160 g of polyisocyanate was added and stirred. This started foaming and was shaped into a container to produce a porous composite. The volume of the granules was about 30% of the entire porous composite. The ratio of oxygen and nitrogen in the gas in the porous composite was 1% or less.

【0028】比較のために、上記の多孔性細片である発
泡粒体を空気雰囲気に放置し、窒素の圧力で鉄製容器に
投入し、あと窒素雰囲気で実施例と同じように発泡成形
して多孔性複合体を得た。こうして得られた、多孔性複
合体の熱伝導率を、平行平板法により測定したところ、
実施例の熱伝導率に比較して約2割高かった。この多孔
性複合体中の気体の酸素、窒素の割合は約20%であっ
た。
For the sake of comparison, the above-mentioned expanded porous granules were left in an air atmosphere, charged into an iron container at a nitrogen pressure, and then foamed and formed in a nitrogen atmosphere in the same manner as in the example. A porous composite was obtained. The thermal conductivity of the porous composite thus obtained was measured by a parallel plate method.
It was about 20% higher than the thermal conductivity of the example. The ratio of oxygen and nitrogen in the gas in the porous composite was about 20%.

【0029】このように実施例で熱伝導率が低かったの
は、比較例では、連続気泡を有する多孔性細片に熱伝導
率の高い空気が浸入していたのに対し、実施例では、粒
体は、二酸化炭素やシクロペンタンで満たされ、空気が
含まれていなかったためである。
As described above, the thermal conductivity was low in the examples because the porous strip having open cells in the comparative example was infiltrated with air having high thermal conductivity, whereas the examples were low in the thermal conductivity. This is because the granules were filled with carbon dioxide and cyclopentane and did not contain air.

【0030】(実施例2)本実施例では、多孔性細片と
して、密度0.1g/cm3のシリカキセロゲルを用いた。粒径
は0.1〜1mmであった。また、SEM観察では、数十nmの連
続孔が観察された。シリカキセロゲルは、公知の方法
(たとえば『ジャーナル オブ ザ コリアンセラミック
ソサイエティー』33巻、12号P1394〜140
2、1996年)に従って製造し、粉砕することで得
た。また、多孔性バインダーとして、独立気泡を有する
ポリウレタン樹脂発泡体を用いた。
Example 2 In this example, a silica xerogel having a density of 0.1 g / cm 3 was used as a porous strip. The particle size was 0.1-1 mm. In SEM observation, continuous pores of several tens of nm were observed. Silica xerogel is prepared by a known method (for example, “Journal of the Korean Ceramic Society”, Vol. 33, No. 12, P. 1394-140).
2, 1996) and obtained by grinding. Further, a polyurethane resin foam having closed cells was used as the porous binder.

【0031】まず上記多孔性細片400gを二酸化炭素の
圧力で搬送して、二酸化炭素で置換された鉄製の容器に
投入した。後、実施例1と同様にして多孔性複合体を製
造した。ただし、シクロペンタンの量は0g、水の量は3
gとした。このとき、多孔性細片の体積は、多孔性複合
体の約35%であった。また、多孔性複合体中の気体の酸
素、窒素の割合は1%以下であった。
First, 400 g of the above-mentioned porous strip was conveyed under the pressure of carbon dioxide and charged into an iron container replaced with carbon dioxide. Thereafter, a porous composite was produced in the same manner as in Example 1. However, the amount of cyclopentane is 0 g and the amount of water is 3
g. At this time, the volume of the porous strip was about 35% of the porous composite. The ratio of oxygen and nitrogen in the gas in the porous composite was 1% or less.

【0032】比較のために、上記の多孔性細片を空気雰
囲気に放置し、窒素の圧力で鉄製容器に投入し、あと窒
素雰囲気で実施例と同じように発泡成形して多孔性複合
体を得た。こうして得られた、多孔性複合体の熱伝導率
を、平行平板法により測定したところ、実施例の熱伝導
率に比較して約1割高かった、この値は、多孔性細片を
含まない、ポリウレタン樹脂発泡体の熱伝導率よりも約
1割低い値であった。
For comparison, the porous strip was left in an air atmosphere, charged into an iron container at a nitrogen pressure, and then foamed and molded in a nitrogen atmosphere in the same manner as in the example to form a porous composite. Obtained. The thermal conductivity of the porous composite thus obtained was measured by the parallel plate method, and was about 10% higher than the thermal conductivity of the example.This value does not include the porous strip. , About the thermal conductivity of polyurethane foam
It was 10% lower.

【0033】これは、実施例では、多孔性細片と多孔性
バインダーは、ともに空気を含まず二酸化炭素で満たさ
れていることと、多孔性細片部の熱伝導率が多孔性バイ
ンダー部よりも低いことによる。
This is because, in the embodiment, the porous strip and the porous binder are both filled with carbon dioxide without containing air, and the thermal conductivity of the porous strip is higher than that of the porous binder. Is also low.

【0034】(実施例3)本実施例では、多孔性細片と
して、有機系乾燥ゲル細片であるレゾルシノール/ホル
ムアルデヒドエアロゲルの粒体を用いた。密度は0.1g/c
m3、粒径は0.1〜1mmであり、SEM観察では、数十nmの連
続孔が観察された。このエアロゲル粒体は、公知の方法
(たとえば米国特許5508341)に従って製造し、粉砕す
ることで得られた。また、多孔性バインダーとして、独
立気泡を有するポリウレタン樹脂発泡体を用いた。
Example 3 In this example, resorcinol / formaldehyde aerogel particles, which are organic dry gel particles, were used as the porous particles. Density is 0.1g / c
m 3 , the particle size was 0.1 to 1 mm, and continuous pores of several tens of nm were observed by SEM observation. The airgel granules were produced according to a known method (for example, US Pat. No. 5,508,341) and obtained by pulverization. Further, a polyurethane resin foam having closed cells was used as the porous binder.

【0035】まず上記多孔性細片400gを二酸化炭素の
圧力で搬送して、二酸化炭素で置換された鉄製の容器に
投入した。後、実施例2と同様にして多孔性複合体を製
造した。このとき、多孔性細片の体積は、多孔性複合体
の約35%であった。また、多孔性複合体中の気体の酸
素、窒素の割合は1%以下であった。
First, 400 g of the above-mentioned porous strip was conveyed under the pressure of carbon dioxide and placed in an iron container replaced with carbon dioxide. Thereafter, a porous composite was produced in the same manner as in Example 2. At this time, the volume of the porous strip was about 35% of the porous composite. The ratio of oxygen and nitrogen in the gas in the porous composite was 1% or less.

【0036】比較のために、上記の多孔性細片を空気雰
囲気に放置し、窒素の圧力で鉄製容器に投入し、あと窒
素雰囲気で実施例と同じように発泡成形して多孔性複合
体を得た。こうして得られた、多孔性複合体の熱伝導率
は、実施例に比較して約1割高かった、この値は、多孔
性細片を含まない、ポリウレタン樹脂発泡体の熱伝導率
よりも約2割低い値であった。
For comparison, the porous strip was left in an air atmosphere, charged into an iron container at a nitrogen pressure, and then foamed and molded in a nitrogen atmosphere in the same manner as in the example to form a porous composite. Obtained. The thermal conductivity of the porous composite thus obtained was about 10% higher than that of the example.This value was about 10% higher than the thermal conductivity of the polyurethane resin foam containing no porous strip. The value was 20% lower.

【0037】これは、本実施例では、多孔性細片と多孔
性バインダーは、ともに空気を含まず二酸化炭素で満た
されていることと、多孔性細片部の熱伝導率が多孔性バ
インダー部よりも低いことによる。
This is because, in this embodiment, the porous strip and the porous binder are both filled with carbon dioxide without containing air, and the thermal conductivity of the porous strip is different from that of the porous binder. By lower than.

【0038】また、実施例2と実施例3で得られら多孔性
複合体を1cm×1cm×5cmに切り出し、側面を重ねて上下
から少しずつ圧縮していったところ、先に実施例2の多
孔性複合体が変形した。このように、実施例3の強度が
強いのは、用いた多孔性細片が有機系乾燥ゲルの細片で
あり、この場合は多孔性バインダー原料のイソシアネー
トと前記ゲルの有する水酸基と反応して結合することで
多孔性バインダーとの結合力が増加したためと考えられ
る。
Further, the porous composite obtained in Examples 2 and 3 was cut into 1 cm × 1 cm × 5 cm, and the side surfaces were overlaid and compressed little by little from above and below. The porous composite deformed. Thus, the strength of Example 3 is high because the used porous strip is a strip of an organic dry gel. In this case, the porous strip reacts with the isocyanate of the porous binder raw material and the hydroxyl group of the gel. It is considered that the bonding increased the bonding force with the porous binder.

【0039】上記実施例では、多孔性細片として、新た
に製造したものを用いたが、使用済みの各種発泡体、乾
燥ゲル等を粉砕して、再成形して用いることももちろん
可能である。
In the above embodiment, a newly manufactured porous strip was used. However, it is of course possible to pulverize and reshape various used foams, dried gels and the like. .

【0040】[0040]

【発明の効果】以上説明したように、本発明の多孔性複
合体は、樹脂発泡体粒子やエアロゲル粒子などの高断熱
性の多孔性細片を成形されてなり、その中に含まれる空
気が非常に少ないことが特徴であり、空気が少ないため
に高い断熱性能が得られる効果がある。さらに、廃品に
なった樹脂発泡体やエアロゲルを粉砕し成形することで
高性能化できるため、リサイクル性を向上させる効果も
あるといえる。
As described above, the porous composite of the present invention is formed by forming highly heat-insulating porous strips such as resin foam particles and airgel particles. The feature is that the amount is very small, and there is an effect that high heat insulating performance can be obtained because there is little air. Further, since the performance can be improved by pulverizing and molding the waste resin foam or aerogel, it can be said that there is also an effect of improving the recyclability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態にかかる多孔性複合体が
容器中に成形されたときの断面の模式図である。
FIG. 1 is a schematic diagram of a cross section when a porous composite according to an embodiment of the present invention is molded in a container.

【符号の説明】[Explanation of symbols]

1 容器 2 多孔性複合体 3 多孔性バインダーの孔 4 多孔性細片 DESCRIPTION OF SYMBOLS 1 Container 2 Porous composite 3 Porous binder hole 4 Porous strip

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F074 AA78 BA32 BA39 DA12 DA32 DA59 4F212 AA42 AE02 AE06 AG20 AR02 AR15 UA05 UA06 UB01 UC01 UC06 UG02  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4F074 AA78 BA32 BA39 DA12 DA32 DA59 4F212 AA42 AE02 AE06 AG20 AR02 AR15 UA05 UA06 UB01 UC01 UC06 UG02

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 保有する孔径が1mm以下で密度が0.02g/c
m3以上0.3g/cm3以下の多孔性細片と、前記多孔性細片を
結合するための多孔性バインダーとを有する多孔性複合
体であって、 前記多孔性複合体の体積中で前記多孔性細片の体積が2
割以上を占め、前記多孔性複合体の孔中に気体として存
在する酸素及び窒素の分圧の合計が0.05気圧以下、前記
孔中の全圧が0.1気圧以上であることを特徴とする多孔
性複合体。
1. The possessed hole diameter is 1mm or less and the density is 0.02g / c.
and m 3 or more 0.3 g / cm 3 or less porous strip, a porous composite having a porous binder for binding the porous strip, said in volume of the porous composite Volume of porous strip is 2
Porosity, wherein the total partial pressure of oxygen and nitrogen present as gas in the pores of the porous composite is 0.05 atm or less, and the total pressure in the pores is 0.1 atm or more. Complex.
【請求項2】 前記多孔性細片が連通孔を有する乾燥ゲ
ル細片である請求項1に記載の多孔性複合体。
2. The porous composite according to claim 1, wherein the porous strip is a dried gel strip having communicating holes.
【請求項3】 前記多孔性バインダーが、樹脂発泡体で
あり前記樹脂発泡体の有する孔が独立気泡から構成され
る請求項1に記載の多孔性複合体。
3. The porous composite according to claim 1, wherein the porous binder is a resin foam, and the pores of the resin foam are composed of closed cells.
【請求項4】 前記連通孔を有する乾燥ゲル細片が、有
機系乾燥ゲル細片で、である請求項2に記載の多孔性複
合体。
4. The porous composite according to claim 2, wherein the dried gel flakes having the communication holes are organic dry gel flakes.
【請求項5】 前記樹脂発泡体がポリウレタンである請
求項3に記載の多孔性複合体。
5. The porous composite according to claim 3, wherein the resin foam is polyurethane.
【請求項6】 前記多孔性複合体の孔中に分子量44以
上の気体が少なくとも1種以上存在し、前記の少なくと
も一種以上の気体の分圧の合計が、前記多孔性複合体の
孔中に気体として存在する窒素と酸素の分圧の合計の1
0倍以上である多孔性複合体。
6. At least one kind of gas having a molecular weight of 44 or more is present in the pores of the porous composite, and the total partial pressure of the at least one kind of gas is equal to or less than 1 of the sum of the partial pressures of nitrogen and oxygen existing as gases
A porous composite that is at least 0 times.
【請求項7】 多孔性細片の孔中を、分子量が44以上
の物質で満たし、分子量が44以上の気体の雰囲気下で
前記多孔性細片と樹脂発泡体原料とを混合した後に、発
泡成形することを特徴とする多孔性複合体の製造方法。
7. Filling the pores of the porous strip with a substance having a molecular weight of 44 or more, and mixing the porous strip with a resin foam raw material in an atmosphere of a gas having a molecular weight of 44 or more. A method for producing a porous composite, which comprises molding.
【請求項8】 前記多孔性細片の孔中を満たす物質が二
酸化炭素、ペンタン、ヘキサンのうちの一種あるいはそ
の混合体である請求項7に記載の多孔性複合体の製造方
法。
8. The method according to claim 7, wherein the substance filling the pores of the porous strip is one of carbon dioxide, pentane, and hexane or a mixture thereof.
JP11196650A 1999-07-09 1999-07-09 Porous composite and its preparation Pending JP2001018246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11196650A JP2001018246A (en) 1999-07-09 1999-07-09 Porous composite and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11196650A JP2001018246A (en) 1999-07-09 1999-07-09 Porous composite and its preparation

Publications (1)

Publication Number Publication Date
JP2001018246A true JP2001018246A (en) 2001-01-23

Family

ID=16361316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11196650A Pending JP2001018246A (en) 1999-07-09 1999-07-09 Porous composite and its preparation

Country Status (1)

Country Link
JP (1) JP2001018246A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010258448A (en) * 2009-04-24 2010-11-11 Asml Netherlands Bv Lithographic apparatus having substrate support with open cell plastic foam part
JP2014518299A (en) * 2011-06-29 2014-07-28 ダウ グローバル テクノロジーズ エルエルシー Method for producing organic foam composites containing airgel particles
KR101560087B1 (en) * 2014-04-11 2015-10-13 서울시립대학교 산학협력단 Flooring Materials For Building And Manufacturing Method therof
KR20150117949A (en) * 2014-04-11 2015-10-21 서울시립대학교 산학협력단 Noise prevention materials
KR101618442B1 (en) * 2014-07-07 2016-05-04 서울시립대학교 산학협력단 Floor panel for building and manufacturing method thereof
KR101744806B1 (en) * 2014-12-10 2017-06-08 현대자동차 주식회사 Porous polymer resin layer and method for manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010258448A (en) * 2009-04-24 2010-11-11 Asml Netherlands Bv Lithographic apparatus having substrate support with open cell plastic foam part
US8400617B2 (en) 2009-04-24 2013-03-19 Asml Netherlands B.V. Lithographic apparatus having a substrate support with open cell plastic foam parts
JP2014518299A (en) * 2011-06-29 2014-07-28 ダウ グローバル テクノロジーズ エルエルシー Method for producing organic foam composites containing airgel particles
KR101560087B1 (en) * 2014-04-11 2015-10-13 서울시립대학교 산학협력단 Flooring Materials For Building And Manufacturing Method therof
KR20150117949A (en) * 2014-04-11 2015-10-21 서울시립대학교 산학협력단 Noise prevention materials
KR101637644B1 (en) * 2014-04-11 2016-07-07 서울시립대학교 산학협력단 Noise prevention materials
KR101618442B1 (en) * 2014-07-07 2016-05-04 서울시립대학교 산학협력단 Floor panel for building and manufacturing method thereof
KR101744806B1 (en) * 2014-12-10 2017-06-08 현대자동차 주식회사 Porous polymer resin layer and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US5084320A (en) Evacuated thermal insulation
US20060014908A1 (en) Foam material consisting predominantly of carbon having a high inner surface and method for the production thereof
CN103237838B (en) Comprise the melamine resin foam of nanoporous filler
US8529808B2 (en) Nanoporous polymer foams
US5965231A (en) Gas mixtures for thermal insulation
US5977197A (en) Compressed, extruded, evacuated open-cell polymer foams and evacuated insulation panels containing them
JPH08512349A (en) Microporous isocyanate-based polymer composition and method for producing the same
KR960703975A (en) Organic Aerogels
JP2014529715A (en) Vacuum insulation panel containing nanoporous polymer particles
JP2001018246A (en) Porous composite and its preparation
US20230387509A1 (en) Carbon Aerogel-Based Cathodes for Lithium-Air Batteries
CN1311958C (en) Method for mfg. vacuum heat-insulating material core
CN109689202A (en) For accumulating the blocky porous carbon materials and its production method of natural gas or methane
JPH06213561A (en) Insulating material and refrigerator using the same
JP2000291881A (en) Decompressed heat insulating body and manufacture thereof
JPH0753769A (en) Foamed thermal insulator and its production
CN109337039A (en) A kind of preparation method of micrograde polymer tiny balloon
EP0971976B1 (en) Polyisocyanate based aerogels
JP2001162640A (en) Method for manufacturing thermoplastic resin foamed molding
US20020103269A1 (en) Rigid polyurethane foam and process for producing the same
JP2548323B2 (en) Insulation
EP3831869B1 (en) Composite polystyrene foam molding with low thermal conductivity
JP2000171148A (en) Cold reserving device
JP2001263926A (en) Method for manufacturing organic porous material, and heat insulation panel and case
JPH10217413A (en) Vacuum heat insulating body, refrigerator, heat insulating panel, and manufacture of vacuum heat insulating panel