JP2001162640A - Method for manufacturing thermoplastic resin foamed molding - Google Patents

Method for manufacturing thermoplastic resin foamed molding

Info

Publication number
JP2001162640A
JP2001162640A JP35139499A JP35139499A JP2001162640A JP 2001162640 A JP2001162640 A JP 2001162640A JP 35139499 A JP35139499 A JP 35139499A JP 35139499 A JP35139499 A JP 35139499A JP 2001162640 A JP2001162640 A JP 2001162640A
Authority
JP
Japan
Prior art keywords
foamed
resin particles
thermoplastic resin
core layer
foamed resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35139499A
Other languages
Japanese (ja)
Inventor
Masaaki Yokoyama
正明 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Foam Plastic Corp
Original Assignee
Mitsubishi Chemical Foam Plastic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Foam Plastic Corp filed Critical Mitsubishi Chemical Foam Plastic Corp
Priority to JP35139499A priority Critical patent/JP2001162640A/en
Publication of JP2001162640A publication Critical patent/JP2001162640A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a thermoplastic resin foamed molding excellent in shape stability and high in the mutual fusion strength of foamed resin particles. SOLUTION: A thermoplastic resin foamed molding consists of a core layer 11 comprising a crystalline thermoplastic resin in a foamed state and a coating layer 12 substantially coating the core layer 11 in a non-foamed state and the coating layer contains an ethylenic polymer having a melting point lower than that of the thermoplastic resin or not substantially showing a melting point. A method for manufacturing this foamed molded object consists of a process for preparing foamed resin particles with an L/D ratio of the long diameter L and short diameter D of each of the particle of 0.5-3 and a process introducing the foamed resin particles into a mold 211 to heat and mold them by hot air 5 to obtain a foamed molding 3 wherein the foamed resin particles comprising the termoplastic resin are mutually fused. As the hot air, dry air with steam pressure of 5-50 kPa is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,断熱材,緩衝材,包装容器,吸
音材,浮揚材等に用いられる熱可塑性樹脂発泡成形体の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thermoplastic resin foam used for a heat insulating material, a cushioning material, a packaging container, a sound absorbing material, a floating material, and the like.

【0002】[0002]

【従来技術】断熱材,緩衝材,包装容器,吸音材,浮揚
材には,ポリスチレン,ポリエチレン,ポリプロピレン
等の熱可塑性樹脂からなる発泡成形体が用いられてい
る。かかる発泡成形体は,独立気泡構造を有し,軽量で
断熱性や緩衝性が良好である。これらの発泡樹脂粒子は
この断熱性ゆえに,加熱成形時に均一に加熱されにく
く,加熱媒体として熱容量の大きい加圧水蒸気を用いて
発泡成形体を製造している点が共通している。発泡成形
体は,発泡樹脂粒子を金型に入れ加熱し,粒子表面を融
着させることにより成形されたものである。従来,樹脂
粒子同士を融着させるためには,上記加圧水蒸気の蒸気
圧は,ポリスチレンでは0.1MPa以下,ポリエチレ
ンでは0.2MPa以下,ポリプロピレンで0.5MP
a以下の加圧水蒸気(スチームゲージ圧)が用いられて
いた。
2. Description of the Related Art A foamed molded article made of a thermoplastic resin such as polystyrene, polyethylene, or polypropylene is used for a heat insulating material, a cushioning material, a packaging container, a sound absorbing material, and a floating material. Such a foamed molded article has a closed cell structure, is lightweight, and has good heat insulating properties and cushioning properties. Due to this heat insulating property, these foamed resin particles are difficult to be uniformly heated at the time of heat molding, and the common point is that foamed molded articles are produced using pressurized steam having a large heat capacity as a heating medium. The foam molded article is formed by placing foamed resin particles in a mold, heating and fusing the particle surfaces. Conventionally, in order to fuse resin particles to each other, the vapor pressure of the pressurized steam is 0.1 MPa or less for polystyrene, 0.2 MPa or less for polyethylene, and 0.5 MPa for polypropylene.
a or less pressurized steam (steam gauge pressure) was used.

【0003】[0003]

【解決しようとする課題】しかしながら,上記従来の加
圧水蒸気加熱による融着法では,加熱融着時に,発泡樹
脂粒子の空隙又は粒子の中に水分が気体状態で浸入す
る。そのため,この状態で冷却すると水分が気体から液
体の状態に凝縮し,発泡樹脂粒子が体積収縮を起こす。
このため,発泡樹脂粒子の空隙又は粒子の中が減圧状態
になり,かかる粒子によって形成される発泡成形体が収
縮,変形する。その結果,形状安定性が悪く,型通りの
成形体が得られにくいという問題がある。また,発泡成
形体においては,発泡樹脂粒子が充分に融着して,機械
的強度が高いことも要求される。
However, in the above-mentioned conventional fusion method using pressurized steam heating, moisture infiltrates into the voids or particles of the foamed resin particles in a gaseous state at the time of heat fusion. Therefore, when cooling is performed in this state, water condenses from a gas to a liquid state, and the foamed resin particles undergo volume contraction.
As a result, the pressure in the voids or inside the particles of the foamed resin particles is reduced, and the foamed molded article formed by such particles contracts and deforms. As a result, there is a problem that the shape stability is poor, and it is difficult to obtain a molded article according to the mold. Further, in the foam molded article, it is required that the foamed resin particles are sufficiently fused and have high mechanical strength.

【0004】本発明はかかる従来の問題点に鑑み,形状
安定性に優れ,且つ発泡樹脂粒子同士の融着強度が高
い,熱可塑性樹脂発泡成形体の製造方法を提供しようと
するものである。
The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a method for producing a foamed thermoplastic resin article having excellent shape stability and high fusion strength between foamed resin particles.

【0005】[0005]

【課題の解決手段】本発明は,結晶性の熱可塑性樹脂か
らなる発泡状態の芯層と,該芯層を被覆する実質的に非
発泡状態の被覆層とからなるとともに,該被覆層は,上
記熱可塑性樹脂より融点が低いかまたは実質的に融点を
示さないエチレン系重合体を含有し,且つ粒子の長径L
と短径DとのL/D比が0.5〜3である発泡樹脂粒子
を準備する工程と,該発泡樹脂粒子を成形型内に入れ
て,熱風により加熱成形することにより上記発泡樹脂粒
子を互いに融着させた熱可塑性樹脂発泡成形体を得る工
程とからなり,且つ上記熱風は水蒸気圧が5kPaを超
え50kPa以下の乾燥ガスを用いることを特徴とする
熱可塑性樹脂発泡成形体の製造方法である。
The present invention comprises a foamed core layer made of a crystalline thermoplastic resin, and a substantially non-foamed coating layer covering the core layer. It contains an ethylene polymer having a melting point lower than or substantially not showing a melting point than that of the thermoplastic resin, and has a major axis L of the particles.
Preparing foamed resin particles having an L / D ratio of 0.5 to 3 with respect to the diameter of the foamed resin, placing the foamed resin particles in a mold, and heat-molding with hot air to form the foamed resin particles. Obtaining a thermoplastic resin foam molded article obtained by fusing together with each other, and using a dry gas having a steam pressure of more than 5 kPa and 50 kPa or less as the hot air. It is.

【0006】次に,本発明の作用及び効果を説明する。
本発明においては,発泡樹脂粒子を成形型内に入れ,上
記特定の水蒸気圧を有する乾燥ガスからなる熱風を用い
て所望形状に加熱成形している。そのため,乾燥ガス中
の水蒸気量が少なく,加熱成形時に,発泡樹脂粒子の空
隙又は粒子の中には,殆ど水蒸気が浸入しない。それ
故,発泡樹脂粒子相互が強く融着し,発泡樹脂粒子同士
の融着強度が高くなる。また,従来の欠点であった加圧
水蒸気の凝縮による成形体の含水もなくなり,それに伴
う成形体の体積収縮も起こらない。よって,本発明の発
泡樹脂成形体は形状安定性に優れている。
Next, the operation and effect of the present invention will be described.
In the present invention, the foamed resin particles are placed in a mold, and are heated and formed into a desired shape using hot air made of a dry gas having the above-mentioned specific steam pressure. Therefore, the amount of water vapor in the dry gas is small, and almost no water vapor penetrates into the voids or particles of the foamed resin particles during heat molding. Therefore, the foamed resin particles are strongly fused to each other, and the fusion strength between the foamed resin particles is increased. Further, the conventional compact has no water content due to the condensation of pressurized steam, and the volume shrinkage of the compact does not occur. Therefore, the foamed resin molded article of the present invention has excellent shape stability.

【0007】また,寸法及び収縮変形を矯正するための
高温養生処理も不要である。しかも,含水もないので,
成形後の乾燥処理をしなくてもよく,得られた発泡成形
体は断熱性に優れ,サビ発生のおそれもない。また,上
記乾燥ガスによる加熱成形では,従来の発泡樹脂粒子の
加熱成形時に用いられていた,例えば上記のごとく,
0.1〜0.5MPaという高圧蒸気圧に耐える重量の
ある金型は不要となり,熱エネルギーの消費量も少な
い。
Further, a high-temperature curing treatment for correcting size and shrinkage deformation is not required. And because there is no water content,
It is not necessary to perform a drying treatment after molding, and the obtained foamed molded article has excellent heat insulating properties and does not cause rust. In addition, in the above-described heat molding using a dry gas, the heat molding used in the conventional heat molding of foamed resin particles, for example, as described above,
A heavy mold that can withstand a high vapor pressure of 0.1 to 0.5 MPa becomes unnecessary, and the heat energy consumption is small.

【0008】また,熱可塑性樹脂からなる表皮と上記発
泡樹脂粒子とを型内で一体成形を行ない,表皮付きの発
泡成形体を製造する場合には,水蒸気の水分による影響
が殆ど無くなるため,熱可塑性樹脂からなる表皮と発泡
樹脂粒子とが強固に融着する。従って,得られた発泡成
形体は融着強度が高く,機械的強度に優れている。ま
た,表皮として熱可塑性樹脂からなる織布又は不織布状
を使用した場合には,蒸気アイロン掛け時に発生する表
皮表面の毛倒れが無くなり,色合い,手触り等の外観も
良好で,乾燥の後工程も不要となり,工業的に有利であ
る。上記表皮としては,フィルム状,シート状,真空成
形品,インジェクション成形品などを用い,これらを発
泡樹脂粒子と一体成形することもできる。
In the case where a skin made of a thermoplastic resin and the foamed resin particles are integrally molded in a mold to produce a foamed molded body having a skin, the influence of water vapor is almost eliminated. The skin made of the plastic resin and the foamed resin particles are firmly fused. Therefore, the obtained foamed molded article has high fusion strength and excellent mechanical strength. In addition, when a woven or non-woven fabric made of thermoplastic resin is used as the skin, the hair on the surface of the skin which occurs during steam ironing does not fall off, and the appearance such as color and touch is good. This is unnecessary and is industrially advantageous. As the skin, a film, a sheet, a vacuum molded product, an injection molded product, or the like may be used, and these may be integrally formed with the foamed resin particles.

【0009】また,発泡樹脂粒子は,結晶性の熱可塑性
樹脂からなる発泡状態の芯層と,エチレン重合体を含有
する実質的にフィルム状の被覆層とから構成されてい
る。そのため,型内に充填された発泡樹脂粒子間の空隙
に,熱容量の小さい熱風を通過させることにより,被覆
層よりも融点が高い芯層の軟化を抑えながら,被覆層が
融着するのに必要な温度まで発泡樹脂粒子を加熱でき,
その後,芯層が保有する圧縮反力を有効に活用して発泡
樹脂粒子を融着させて,その融着強度が高い発泡成形体
を製造することができる。
The foamed resin particles are composed of a foamed core layer made of a crystalline thermoplastic resin and a substantially film-like coating layer containing an ethylene polymer. Therefore, by passing hot air with a small heat capacity through the gaps between the foamed resin particles filled in the mold, it is necessary to suppress the softening of the core layer, which has a higher melting point than the coating layer, and to fuse the coating layer. Can heat foamed resin particles up to
Thereafter, the foamed resin particles are fused by effectively utilizing the compression reaction force possessed by the core layer, and a foamed molded article having a high fusion strength can be manufactured.

【0010】次に,本発明の詳細について説明する。 (発泡樹脂粒子の準備)本発明における発泡樹脂粒子
は,発泡状態の芯層と実質的に非発泡状態の被覆層とか
ら構成される複合構造を有する。発泡状態の芯層は,例
えば,独立気泡構造又は連続気泡構造を有する。この場
合,独立気泡構造を有することが好ましい。その理由
は,独立気泡構造は,加熱成形時の芯層の圧縮反力が高
く,低密度でも圧縮強度が高いからである。芯層の独立
気泡率は50%以上が好ましく,更には70%以上であ
ることが好ましい。これにより,加熱成形時の芯層の圧
縮反力が更に高くなり,また低密度でも圧縮強度が高い
発泡成形体を得ることができる。被覆層は,非発泡状態
である。被覆層は,厚さ1〜150μmのフィルム状の
熱可塑性樹脂層であることが好ましい。
Next, the details of the present invention will be described. (Preparation of Expanded Resin Particles) The expanded resin particles of the present invention have a composite structure composed of a foamed core layer and a substantially non-foamed covering layer. The foamed core layer has, for example, a closed cell structure or an open cell structure. In this case, it is preferable to have a closed cell structure. The reason is that the closed cell structure has a high compressive reaction force of the core layer at the time of heat molding and a high compressive strength even at a low density. The closed cell rate of the core layer is preferably 50% or more, and more preferably 70% or more. Thereby, the compression reaction force of the core layer at the time of heat molding is further increased, and a foam molded article having high compression strength even at a low density can be obtained. The coating layer is in a non-foamed state. The coating layer is preferably a film-like thermoplastic resin layer having a thickness of 1 to 150 μm.

【0011】芯層は,結晶性の熱可塑性樹脂にて構成さ
れる。かかる結晶性の熱可塑性樹脂としては,例えば,
ポリプロピレン系樹脂,ポリブテン系樹脂,ポリメチル
ペンテン系樹脂,ポリエステル系樹脂,ポリアミド系樹
脂,フッ素系樹脂,結晶性のスチレン系樹脂などが挙げ
られる。この中でも,プロピレン単独重合体,プロピレ
ンとプロピレン以外のα−オレフィンとのランダム共重
合体やブロック共重合体が好ましい。これにより,安価
でリサイクル性に優れ,軽量で断熱性及び緩衝性に優れ
た発泡成形体を得ることができる。
The core layer is made of a crystalline thermoplastic resin. Such crystalline thermoplastic resins include, for example,
Examples include polypropylene resin, polybutene resin, polymethylpentene resin, polyester resin, polyamide resin, fluorine resin, and crystalline styrene resin. Among these, a propylene homopolymer, a random copolymer of propylene and an α-olefin other than propylene, and a block copolymer are preferable. As a result, it is possible to obtain a foamed molded article that is inexpensive, has excellent recyclability, is lightweight, and has excellent heat insulating properties and cushioning properties.

【0012】被覆層は,実質的に非発泡状態である。
「実質的に非発泡状態」とは,例えば厚さ1〜150μ
mと薄く,気泡構造のないフィルム状態を意味する。ま
た,そのフィルム状態は穴が開いていても良く,例えば
網目状態のものであっても良い。また,被覆層は,上記
発泡樹脂粒子に用いる上記熱可塑性樹脂よりも融点が低
いか,または,実質的に融点を示さないエチレン系重合
体を含有する。かかる低融点のエチレン系重合体として
は,高圧法低密度ポリエチレン,直鎖状低密度ポリエチ
レン,直鎖状超低密度ポリエチレンの他,酢酸ビニル,
不飽和カルボン酸エステル,不飽和カルボン酸,ビニル
アルコール等とエチレンとの共重合体が挙げられる。
The coating layer is substantially in a non-foamed state.
The “substantially non-foamed state” refers to, for example, a thickness of 1 to 150 μm.
m means a thin film state without a bubble structure. The film may be perforated, for example, in a mesh state. Further, the coating layer contains an ethylene-based polymer having a lower melting point than the thermoplastic resin used for the expanded resin particles or having substantially no melting point. Such low-melting ethylene polymers include high-pressure low-density polyethylene, linear low-density polyethylene, linear ultra-low-density polyethylene, vinyl acetate,
Copolymers of ethylene with unsaturated carboxylic acid esters, unsaturated carboxylic acids, vinyl alcohol, and the like can be given.

【0013】上記の「実質的に融点がない」とは,例え
ば,示差走査熱量計にて昇温した際に融解ピークが現れ
ない結晶性のない樹脂を意味する。かかる実質的に融点
がないエチレン系重合体としては,例えば,エチレン・
プロピレンゴム,エチレン・プロピレン・ジエンゴム,
エチレン・アクリルゴム,塩素化ポリエチレンゴム,ク
ロロスルホン化ポリエチレンゴム等のゴム・エラストマ
ーが挙げられる。これらのエチレン系重合体は,単独使
用の他,2種以上の組成物として使用することができ
る。
The above-mentioned "substantially no melting point" means, for example, a resin having no crystallinity that does not show a melting peak when heated by a differential scanning calorimeter. Examples of such an ethylene polymer having substantially no melting point include, for example, ethylene.
Propylene rubber, ethylene propylene diene rubber,
Rubber / elastomer such as ethylene / acryl rubber, chlorinated polyethylene rubber, chlorosulfonated polyethylene rubber, and the like. These ethylene polymers can be used alone or in combination of two or more.

【0014】上記のエチレン系重合体の中では,高圧法
低密度ポリエチレン,直鎖状低密度ポリエチレン,直鎖
状超低密度ポリエチレンが好ましい。中でもメタロセン
触媒を使用して重合された直鎖状低密度ポリエチレン,
直鎖状超低密度ポリエチレンが最も好ましい。
Among the above ethylene polymers, high-pressure low-density polyethylene, linear low-density polyethylene, and linear ultra-low-density polyethylene are preferred. Among them, linear low-density polyethylene polymerized using a metallocene catalyst,
Linear ultra low density polyethylene is most preferred.

【0015】被覆層を構成する上記のエチレン系重合体
の融点は実質的にないか,又は融点があったとしても1
25℃以下であることが好ましい。その理由は,発泡樹
脂粒子を成形する際の加熱温度をより低温に設定するこ
とができるからである。
The above-mentioned ethylene polymer constituting the coating layer has substantially no melting point, or even if it has a
The temperature is preferably 25 ° C. or lower. The reason is that the heating temperature for molding the foamed resin particles can be set to a lower temperature.

【0016】更に,被覆層としては,芯層を構成する熱
可塑性樹脂に対し,15℃以上低い融点のエチレン系重
合体を選択して使用するのが好ましい。エチレン系重合
体と熱可塑性樹脂の上記の融点差は,好ましくは20℃
〜100℃の範囲である。上記の融点差が15℃未満の
場合,芯層の熱可塑性樹脂を発泡させる条件下において
は,エチレン系重合体から成る被覆層が発泡する虞があ
る。
Further, as the coating layer, it is preferable to select and use an ethylene polymer having a melting point lower by 15 ° C. or more than the thermoplastic resin constituting the core layer. The difference between the melting points of the ethylene polymer and the thermoplastic resin is preferably 20 ° C.
-100 ° C. If the above melting point difference is less than 15 ° C., the coating layer made of the ethylene polymer may foam under the conditions for foaming the thermoplastic resin of the core layer.

【0017】また,上記の被覆層は,上記エチレン系重
合体と,芯層と同種の結晶性熱可塑性樹脂との混合物で
あることが好ましい。これにより,被覆層と芯層との接
着性が向上する。被覆層中に混合する熱可塑性樹脂の配
合割合は,エチレン系重合体100重量部に対し,1〜
100重量部の範囲から選択されることが好ましい。熱
可塑性樹脂の配合割合が1重量部未満の場合には,芯層
と被覆層との接着性向上の効果が低くなるおそれがあ
る。また,100重量部を超える場合には,被覆層の海
島形態が変化し,熱可塑性樹脂が連続した海の相を構成
することとなり,成形時の加熱温度があまり低くならな
い。更に,上記の熱可塑性樹脂の混合割合は,エチレン
系重合体100重量部に対し,1〜50重量部の範囲で
あることが望ましい。これにより,芯層と被覆層との接
着性が向上し,また成形時の加熱温度を低くすることが
できる。
Further, the coating layer is preferably a mixture of the ethylene polymer and a crystalline thermoplastic resin of the same type as the core layer. Thereby, the adhesion between the coating layer and the core layer is improved. The mixing ratio of the thermoplastic resin mixed in the coating layer is 1 to 100 parts by weight of the ethylene polymer.
Preferably, it is selected from the range of 100 parts by weight. When the blending ratio of the thermoplastic resin is less than 1 part by weight, the effect of improving the adhesion between the core layer and the coating layer may be reduced. On the other hand, if it exceeds 100 parts by weight, the sea-island morphology of the coating layer changes, and the thermoplastic resin forms a continuous sea phase, so that the heating temperature during molding does not become too low. Further, the mixing ratio of the thermoplastic resin is preferably in the range of 1 to 50 parts by weight based on 100 parts by weight of the ethylene polymer. Thereby, the adhesiveness between the core layer and the coating layer is improved, and the heating temperature during molding can be reduced.

【0018】上記発泡樹脂粒子において,被覆層の厚さ
は1〜150μmであることが好ましい。被覆層の厚さ
が1μm未満の場合には,成形の際,加熱温度を十分に
低下させる効果が少ない。一方,被覆層の厚さが150
μmを超える場合には,成形の際,加熱温度は下げるこ
とが出来るものの,被覆層における実質的に非発泡性部
分の割合が大きく,成形体の機械的強度が発泡倍率の割
には低くなる傾向にある。更には被覆層の厚みは10〜
100μmであることが好ましい。これにより,成形の
際に加熱温度を下げることができ,かつ発泡成形体の機
械的強度を高めることができる。
In the above foamed resin particles, the thickness of the coating layer is preferably 1 to 150 μm. When the thickness of the coating layer is less than 1 μm, the effect of sufficiently lowering the heating temperature during molding is small. On the other hand, when the thickness of the coating layer is 150
If it exceeds μm, the heating temperature can be lowered during molding, but the ratio of the substantially non-foamable portion in the coating layer is large, and the mechanical strength of the molded product is low compared to the expansion ratio. There is a tendency. Furthermore, the thickness of the coating layer is 10
It is preferably 100 μm. This makes it possible to lower the heating temperature during molding and increase the mechanical strength of the foam molded article.

【0019】図1に示すごとく,本発明の発泡樹脂粒子
1の長径Lと短径DとのL/D比は0.5〜3である。
0.5未満の場合には,被覆層12の表面積が少なくな
り,融着不良をもたらす。また,3を超える場合には,
粒子形状が細長となり,充填効率が悪化し,成形不良や
形状安定性の低下をもたらす。L/D比は,1.5〜3
と比較的大きい場合には空隙の多い成形体を得やすくな
るが,成形性の点からは0.8〜2であることが好まし
い。
As shown in FIG. 1, the L / D ratio between the major axis L and the minor axis D of the foamed resin particles 1 of the present invention is 0.5 to 3.
If it is less than 0.5, the surface area of the coating layer 12 becomes small, resulting in poor fusion. If it exceeds 3,
The particle shape becomes slender, the filling efficiency deteriorates, and molding failure and shape stability decrease. L / D ratio is 1.5-3
When it is relatively large, it is easy to obtain a molded body having many voids, but it is preferably 0.8 to 2 from the viewpoint of moldability.

【0020】また,上記発泡樹脂粒子1は,例えば,図
1に示すごとく,結晶性の熱可塑性樹脂から成る芯層1
1と,熱可塑性樹脂より融点が低いか,または,実質的
に融点を示さないエチレン系重合体を含有する被覆層1
2にて構成される複合体粒子である。そして,一般的に
は,上記芯層11は,両端部分が被覆層12から露出し
ている。なお,発泡樹脂粒子1は,上記複合体粒子の状
態の未発泡状態のものに,揮発性発泡剤を含浸させた
後,加熱発泡して得られる。
As shown in FIG. 1, for example, the foamed resin particles 1 are made of a core layer 1 made of a crystalline thermoplastic resin.
1 and a coating layer 1 containing an ethylene polymer having a melting point lower than that of a thermoplastic resin or substantially not showing a melting point.
2 are composite particles. Generally, both ends of the core layer 11 are exposed from the coating layer 12. The foamed resin particles 1 are obtained by impregnating a non-foamed state of the composite particles with a volatile foaming agent, followed by heating and foaming.

【0021】上記の揮発性発泡剤としては,プロパン,
ブタン,ペンタン,ヘプタン,シクロペンタン,シクロ
ヘキサン等の低級脂肪族炭化水素類,ジクロロジフロロ
メタン,トリクロロモノフロロメタン等のハロゲン化炭
化水素,窒素,空気,炭酸ガス等の無機ガス等が挙げら
れ,これらは,単独または2種類以上組台わせて使用さ
れる。
The volatile foaming agents include propane,
Lower aliphatic hydrocarbons such as butane, pentane, heptane, cyclopentane, and cyclohexane; halogenated hydrocarbons such as dichlorodifluoromethane and trichloromonofluoromethane; and inorganic gases such as nitrogen, air, and carbon dioxide. These are used alone or in combination of two or more.

【0022】発泡樹脂粒子の原料となる上記の複合体粒
子の具体的製造方法としては,次の各方法が使用され
る。例えば,特公昭41−16125号公報,同43−
23858号公報,同44−29522号公報,特開昭
60−185816号公報などに記載の鞘芯型の複合ダ
イが使用される。この場合,2基の押出し機が使用さ
れ,一方の押出し機で芯層を構成する熱可塑性樹脂を溶
融混練し,他方の押出し機で被覆層を構成するエチレン
系重合体組成物を溶融混練した後,ダイで熱可塑性樹脂
を芯層とし,エチレン系重合体組成物を被覆層として鞘
芯型の,長い柱状の,複合体を吐出させる。
As a specific method for producing the above-mentioned composite particles used as a raw material of the expanded resin particles, the following methods are used. For example, Japanese Patent Publication Nos. 41-16125 and 43-125
A sheath-core type composite die described in JP-A-23858, JP-A-44-29522 and JP-A-60-185816 is used. In this case, two extruders were used. One extruder melt-kneaded the thermoplastic resin constituting the core layer, and the other extruder melt-kneaded the ethylene polymer composition constituting the coating layer. After that, a sheath-core, long columnar composite is discharged using a die as a core layer of a thermoplastic resin and a coating layer of an ethylene-based polymer composition.

【0023】次いで,この様にして得られた複合体をカ
ットして0.l〜10mgの複合体粒子とする。複合体
粒子の重量が0.1mg未満の場合は,成形加工の加熱
温度を効果的に低下させる被覆層比率が高くなるため,
得られる発泡成形体の機械的強度が低下する。一方,複
合体粒子の重量が10mgを超える場合は,成形時の金
型への充填性が悪化し易い。
Next, the composite thus obtained was cut into 0.1%. 1 to 10 mg of composite particles. If the weight of the composite particles is less than 0.1 mg, the ratio of the coating layer that effectively lowers the heating temperature of the molding process increases, so that
The mechanical strength of the obtained foam molded article is reduced. On the other hand, when the weight of the composite particles exceeds 10 mg, the filling property into the mold at the time of molding tends to deteriorate.

【0024】上記の鞘芯型の複合体粒子に揮発性発泡剤
を含浸した後,加熱により発泡させて,上記発泡樹脂粒
子とする。かかる加熱発泡方法としては,具体的には,
例えば,特公昭49−2183号公報,同56−134
4号公報,西ドイツ特開第1285722号公報,同第
2107683号公報などに記載の方法を使用し得る。
The above-mentioned sheath-core type composite particles are impregnated with a volatile foaming agent and then foamed by heating to obtain the foamed resin particles. As such a heating foaming method, specifically,
For example, JP-B-49-2183, 56-134
4, West German Unexamined Patent Publication Nos. 1285722 and 2107683 can be used.

【0025】この場合,密閉容器内に揮発性発泡剤と共
に鞘芯型の複合体粒子を入れ,芯層の結晶性樹脂の軟化
温度以上に加熱する共に,複合体粒子に揮発性発泡剤を
含浸させる。その後,密閉容器内の内容物を密閉容器よ
り低圧の雰囲気に放出した後,乾燥処理することによ
り,発泡樹脂粒子を得る。
In this case, the sheath-core type composite particles are put together with the volatile foaming agent in a closed container, heated to a temperature higher than the softening temperature of the crystalline resin of the core layer, and the composite particles are impregnated with the volatile foaming agent. Let it. Thereafter, the contents in the closed container are discharged into a low-pressure atmosphere from the closed container, and then subjected to a drying treatment to obtain foamed resin particles.

【0026】複合体粒子の発泡時の加熱温度は,通常,
芯層の熱可塑性樹脂の軟化温度以上とされるが,被覆層
のエチレン系重合体の融点(組成物の場合は主成分の融
点)より高い温度にするのが好ましい。また,本発明で
は,密閉容器中で複合体粒子同士が相互に融者しない様
にするため,攪拌装置を付備することが好ましい。
The heating temperature during foaming of the composite particles is usually
The temperature is set to be equal to or higher than the softening temperature of the thermoplastic resin of the core layer, and is preferably set to a temperature higher than the melting point of the ethylene polymer of the coating layer (in the case of a composition, the melting point of the main component). In the present invention, it is preferable to provide a stirrer in order to prevent the composite particles from fusing with each other in the closed vessel.

【0027】複合体粒子の加熱発泡時には,複合体粒子
の分散媒として,水,アルコール類などを使用すること
が好ましい。さらに,複合体粒子が分散媒に均一に分散
する様に,酸化アルミニウム,第三リン酸カルシウム,
ピロリン酸マグネシウム,酸化亜鉛などの難水溶性の無
機物質,ポリビニルピロリドン,ポリビニルアルコー
ル,メチルセルロース等の水溶性保護コロイド,ドデシ
ルベンゼンスルホン酸ナトリウム,α−オレフィンスル
ホン酸ナトリウム等の陰イオン性界面活性剤を単独また
は2種類以上混合して使用するのが好ましい。
At the time of heating and foaming the composite particles, it is preferable to use water, alcohol, or the like as a dispersion medium for the composite particles. In addition, aluminum oxide, tribasic calcium phosphate,
Insoluble inorganic substances such as magnesium pyrophosphate and zinc oxide; water-soluble protective colloids such as polyvinylpyrrolidone, polyvinyl alcohol and methylcellulose; and anionic surfactants such as sodium dodecylbenzenesulfonate and sodium α-olefin sulfonate. It is preferable to use a single compound or a mixture of two or more compounds.

【0028】複合体粒子は,低圧雰囲気に放出すること
が好ましい。これにより,複合体粒子の熱可塑性樹脂が
発泡して,発泡状態の芯層とこれを被覆する被覆層とか
らなる発泡樹脂粒子を得ることができる。低圧の雰囲気
に複合体粒子を放出する際,当該放出を容易にするた
め,上記と同様な無機ガス又は揮発性発泡剤を外部より
密閉容器に導入して密閉容器内の圧力を一定に保持する
ことが好ましい。
Preferably, the composite particles are released into a low pressure atmosphere. As a result, the thermoplastic resin of the composite particles foams, and foamed resin particles comprising a foamed core layer and a coating layer covering the core layer can be obtained. When the composite particles are released into a low-pressure atmosphere, the same inorganic gas or volatile foaming agent as described above is introduced into the closed container from outside to keep the pressure inside the closed container constant to facilitate the release. Is preferred.

【0029】発泡樹脂粒子は,その粒子のカット断面の
状態から,芯層の熱可塑性樹脂が独立気泡構造の発泡状
態を呈し,一方,被覆層のエチレン系重合体が実質的に
非発泡のフィルム状態となっている(図1参照)。
In the foamed resin particles, the thermoplastic resin of the core layer exhibits a foamed state of a closed cell structure from the state of the cut cross section of the particles, while the ethylene polymer of the coating layer has a substantially non-foamed film. State (see FIG. 1).

【0030】(発泡樹脂粒子の加熱成形)発泡樹脂粒子
は,熱風にて加熱成形する。ここで,熱風は,電熱ヒー
ター,蒸気ヒーターなどの加熱手段により空気を加熱し
て得られる。また,ブロアー,圧縮空気を利用して供給
すると,発泡樹脂粒子を効率よく加熱することができ
る。また,熱風を回収,循環する方式を利用することに
より熱エネルギーのロスを少なくすることができる。
(Heat molding of foamed resin particles) The foamed resin particles are molded by heating with hot air. Here, the hot air is obtained by heating the air by a heating means such as an electric heater or a steam heater. In addition, when supplied using a blower and compressed air, the foamed resin particles can be efficiently heated. Further, by using a method of collecting and circulating hot air, loss of heat energy can be reduced.

【0031】熱風は水蒸気圧が5kPaを超え,50k
Pa以下の乾燥ガスを用いる。これにより,加熱成形時
に発泡樹脂粒子の空隙又は粒子の中に水蒸気が浸入する
ことを防止でき,発泡成形体の形状安定性を充分に確保
できる。
Hot air has a water vapor pressure exceeding 5 kPa and a pressure of 50 kPa.
A dry gas of Pa or less is used. Thereby, it is possible to prevent water vapor from infiltrating into voids or particles of the foamed resin particles at the time of heat molding, and it is possible to sufficiently secure the shape stability of the foamed molded article.

【0032】上記5kPa以下では,静電気が発生し易
くなり,発泡成形体の帯電量が大きくなるおそれがあ
る。一方50kPaを超えると,熱風である乾燥ガス中
の湿度が高くなり,本発明の目的を達成できない。ま
た,上記水蒸気圧の乾燥ガスにおける湿度は,例えば水
蒸気圧が5kPaの場合100℃では湿度5%,120
℃では湿度3%,また10kPaの場合100℃では湿
度10%,120℃では湿度5%,また50kPaの場
合100℃では湿度50%,120℃では湿度25%で
ある。なお,発泡成形体を製造する場合に用いる熱風の
温度は,通常芯層がポリプロピレン系樹脂の場合90〜
140℃である。また,上記熱風の乾燥ガスとしては,
例えば上記範囲の水蒸気圧を有する空気を用いる。
When the pressure is 5 kPa or less, static electricity is easily generated, and the charge amount of the foamed molded article may be increased. On the other hand, if it exceeds 50 kPa, the humidity in the dry gas, which is hot air, increases, and the object of the present invention cannot be achieved. The humidity in the dry gas at the above steam pressure is, for example, 5% humidity and 120% at 100 ° C. when the steam pressure is 5 kPa.
The humidity is 3% at 100 ° C., 10% at 100 ° C. at 10 kPa, 5% at 120 ° C., 50% at 100 ° C. at 50 kPa, and 25% at 120 ° C. The temperature of the hot air used for producing the foamed molded product is usually 90 to 90 when the core layer is made of a polypropylene resin.
140 ° C. In addition, as the dry gas of the hot air,
For example, air having a water vapor pressure in the above range is used.

【0033】また,請求項3に示すごとく,加熱成形時
における温度は芯層となる上記結晶性の熱可塑性樹脂の
融点よりも低い温度とすることが好ましい。この温度を
超える場合には,芯層樹脂が軟化,溶融して発泡成形体
の収縮,変形が大きくなるおそれがある。なお,好まし
くは,上記芯層樹脂の融点の10℃以下の温度が望まし
い。さらに,また,被覆層が融点を有する場合は,被覆
層の融点以上で加熱する。
Further, as described in claim 3, the temperature at the time of heat molding is preferably lower than the melting point of the crystalline thermoplastic resin to be the core layer. If the temperature is higher than this, the core layer resin may be softened and melted, and the shrinkage and deformation of the foamed molded article may be increased. Preferably, the melting point of the core layer resin is 10 ° C. or less. Further, when the coating layer has a melting point, heating is performed at a temperature equal to or higher than the melting point of the coating layer.

【0034】発泡樹脂粒子を加熱成形して発泡成形体を
得る際には,発泡樹脂粒子の圧縮状態は,成形体に要求
される物性により適宜設定するが,圧縮を小さくすれ
ば,発泡樹脂粒子同士の接触面積が少ない空隙のある発
泡成形体が得られる。また,加熱と圧縮とは,いずれを
先に行っても良い。また,圧縮は加熱中であっても良
い。
When a foamed resin particle is obtained by heating and molding a foamed resin particle, the state of compression of the foamed resin particle is appropriately set according to the physical properties required for the molded body. A foamed molded article having a void with a small contact area therebetween is obtained. Either heating or compression may be performed first. The compression may be during heating.

【0035】次に,請求項2に示すごとく,上記加熱成
形は,発泡樹脂粒子の嵩容積を50〜99%に圧縮し
て,見かけ密度を高くした状態で行うことが好ましい。
これにより,加熱成形時において,発泡樹脂粒子の間の
間隙量や発泡成形体の密度を調整することができ,所望
する物性の発泡成形体を得ることができる。
Next, as described in the second aspect, it is preferable that the heat molding is performed in a state where the bulk density of the foamed resin particles is compressed to 50 to 99% to increase the apparent density.
Thereby, at the time of heat molding, the gap amount between the foamed resin particles and the density of the foamed molded article can be adjusted, and the foamed molded article having desired physical properties can be obtained.

【0036】上記の発泡樹脂粒子の嵩容積を50%より
も小さい状態に圧縮する場合は,殆ど空隙のない状態の
発泡成形体が得られることになり,発泡成形体の密度を
ただ単に大きくするだけで意味がない。99%よりも高
い場合には,発泡樹脂粒子同士の接触面積がより小さく
なり,融着強度の弱い発泡成形体になる。
If the bulk volume of the foamed resin particles is reduced to less than 50%, a foamed article having almost no voids is obtained, and the density of the foamed article is simply increased. Just makes no sense. When it is higher than 99%, the contact area between the foamed resin particles becomes smaller, and the foamed molded article has low fusion strength.

【0037】発泡樹脂粒子を加熱成形して,発泡成形体
を製造する具体的方法としては,例えば,図2に示すご
とく,まず通気性の下型211内に発泡樹脂粒子1を充
填する(a)。その後,下型211内に充填された発泡
樹脂粒子1間の間隙に熱風5を通過させながら,発泡樹
脂粒子1の表面温度を,発泡樹脂粒子を構成する被覆層
が融着するに必要な温度まで加熱する(b)。その後,
上型212により発泡樹脂粒子1の嵩容積を50〜95
%に圧縮して発泡成形体3を得る(c)。
As a specific method for producing a foamed molded article by heat-molding the foamed resin particles, for example, as shown in FIG. 2, first, the foamed resin particles 1 are filled in a gas-permeable lower mold 211 (a ). Thereafter, while the hot air 5 is passed through the gap between the foamed resin particles 1 filled in the lower mold 211, the surface temperature of the foamed resin particles 1 is adjusted to the temperature required for the coating layer constituting the foamed resin particles to fuse. (B). afterwards,
The bulk volume of the foamed resin particles 1 is reduced to 50 to 95 by the upper mold 212.
% To obtain a foam molded article 3 (c).

【0038】また,図3に示すごとく,まず密閉性の金
型22の中に発泡樹脂粒子1の嵩容積を50〜95%に
圧縮し保持した状態で発泡樹脂粒子を入れる(a)。そ
して,その中に熱風加圧ガス51を圧入して,発泡樹脂
粒子1間の間隙に熱風加圧ガス51を通過させて,発泡
樹脂粒子1の表面温度を,発泡樹脂粒子を構成する被覆
層が融着するに必要な温度まで加熱する(b)。次い
で,熱風加圧ガス51を排出して発泡樹脂粒子1の圧縮
状態を回復することにより発泡成形体3を得る(c)。
As shown in FIG. 3, first, the foamed resin particles are put into a hermetically sealed mold 22 while the bulk volume of the foamed resin particles 1 is compressed to 50 to 95% and held (a). Then, the hot air pressurized gas 51 is press-fitted therein, and the hot air pressurized gas 51 is passed through the gap between the foamed resin particles 1 so that the surface temperature of the foamed resin particles 1 is reduced. Is heated to a temperature required for fusing (b). Next, the compressed gas 51 is discharged to recover the compressed state of the foamed resin particles 1 to obtain the foamed molded article 3 (c).

【0039】本発明においては,発泡樹脂粒子の性状や
発泡成形体の形状,密度等を考慮して成形条件を選択す
るが,揮発性発泡剤または無機ガスで予め処理して,2
次発泡力を高めた発泡樹脂粒子を使用すれば,より密度
の小さい発泡成形体が得られ易くなる。また,通気性の
ある凸凹一対の型に代えて,通気性のあるベルトを用い
ることで板状発泡成形体の製造も可能である。
In the present invention, the molding conditions are selected in consideration of the properties of the expanded resin particles and the shape and density of the expanded molded article.
The use of expanded resin particles having an increased foaming power makes it easier to obtain a foamed molded article having a lower density. In addition, it is also possible to produce a plate-like foamed molded article by using a gas permeable belt instead of a pair of air permeable irregularities.

【0040】上記製造方法により得られる熱可塑性樹脂
発泡成形体としては,結晶性の熱可塑性樹脂からなる発
泡状態の芯層と,該芯層を被覆する被覆層とから構成さ
れている発泡樹脂粒子を加熱成形してなる熱可塑性樹脂
発泡成形体であって,上記被覆層は,上記熱可塑性樹脂
より融点が低いか,または実質的に融点を示さないエチ
レン系重合体を含有し,且つ非発泡状態であることを特
徴とする熱可塑性樹脂発泡成形体である。
The foamed thermoplastic resin article obtained by the above-mentioned production method includes foamed resin particles comprising a foamed core layer made of a crystalline thermoplastic resin and a coating layer covering the core layer. Wherein the coating layer contains an ethylene polymer having a melting point lower than that of the thermoplastic resin or substantially no melting point, and is not foamed. It is a thermoplastic resin foam molded article characterized by being in a state.

【0041】本発明により得られた熱可塑性樹脂発泡成
形体は,例えば,断熱材,緩衝材,包装容器,吸音材,
浮揚材,工業部材等に用いられる。また,熱可塑性樹脂
発泡成形体は,熱可塑性樹脂からなる織布,不織布,フ
ィルム,シート,真空成形品,インジェクション成形品
との一体成形品等にも用いられる。
The thermoplastic resin foam molded article obtained by the present invention may be, for example, a heat insulating material, a cushioning material, a packaging container, a sound absorbing material,
Used for flotation materials, industrial components, etc. Further, the thermoplastic resin foam molded article is also used for a woven fabric, a nonwoven fabric, a film, a sheet, a vacuum molded product, an integrally molded product with an injection molded product, and the like made of a thermoplastic resin.

【0042】[0042]

【発明の実施の形態】本発明の実施形態例について,実
施例1〜4を,比較例1〜4と比較しつつ説明する。 実施例1 内径40mmの単軸押出し機を使用してエチレン含量
1.5重量%のエチレン・プロピレンランダム共重合体
(融点153℃)を混練し,内径25mmの単軸押出し
機を使用して密度0.895のメタロセン触媒で重合さ
れた直鎖状低密度ポリエチレン(融点91℃)を混練し
た。次いで,直径1.5mmのダイオリフィースを有す
るダイから,エチレン・プロピレンランダム共重合体を
芯層とし,直鎖状低密度ポリエチレンを被覆層としてス
トランドを押し出した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described in comparison with Examples 1 to 4 and Comparative Examples 1 to 4. Example 1 An ethylene / propylene random copolymer having an ethylene content of 1.5% by weight (melting point: 153 ° C.) was kneaded using a single-screw extruder having an inner diameter of 40 mm, and the density was adjusted using a single-screw extruder having an inner diameter of 25 mm. Linear low density polyethylene (melting point 91 ° C.) polymerized with a 0.895 metallocene catalyst was kneaded. Next, a strand was extruded from a die having a die orifice having a diameter of 1.5 mm, using the ethylene / propylene random copolymer as a core layer and a linear low-density polyethylene as a coating layer.

【0043】さらに,このストランドを,水槽を通して
冷却した後,1.2mgに切断した。この複合体粒子の
断面を位相差顕微鏡により観察したところ,厚さ30μ
mの直鎖状低密度ポリエチレンがエチレン・プロピレン
ランダム共重合体を被覆していた。
Further, this strand was cooled through a water bath and cut into 1.2 mg. Observation of the cross section of this composite particle with a phase contrast microscope revealed a thickness of 30 μm.
m linear low density polyethylene covered the ethylene / propylene random copolymer.

【0044】次に,密閉容器内に上記の複合体粒子10
0重量部,水250重量部,粒径0.3〜0.5μmの
第三リン酸カルシウム1.0重量部およびドデシルベン
ゼンスルホン酸ナトリウム0.007重量部を仕込み,
次いで,攪拌下にてブタン20重量部を密閉容器内へ供
給した。内容物を充填率62%で充填した後,一時間か
けて145℃まで昇温して同温度で30分間保持した。
Next, the composite particles 10 are placed in a closed container.
0 parts by weight, 250 parts by weight of water, 1.0 part by weight of tribasic calcium phosphate having a particle size of 0.3 to 0.5 μm and 0.007 part by weight of sodium dodecylbenzenesulfonate.
Next, 20 parts by weight of butane was supplied into the closed vessel under stirring. After filling the contents at a filling rate of 62%, the temperature was raised to 145 ° C. over one hour and maintained at the same temperature for 30 minutes.

【0045】その後,密閉容器の底部にある放出孔の弁
を開くと共に外部より密閉容器内の気相部へ窒素ガスを
導入し,客器内の圧力を保持しつつ内容物を大気圧下ヘ
放出して発泡樹脂粒子を得た。こうして得られた発泡樹
脂粒子は,平均嵩密度17kg/m,平均気泡径12
0μmであり,発泡樹脂粒子同士のブロッキングもなか
った。
Thereafter, the valve of the discharge hole at the bottom of the closed container is opened, and nitrogen gas is introduced from the outside into the gas phase in the closed container, and the contents are brought to atmospheric pressure while maintaining the pressure in the container. Discharged to obtain foamed resin particles. The foamed resin particles thus obtained had an average bulk density of 17 kg / m 3 and an average cell diameter of 12
0 μm, and there was no blocking between the foamed resin particles.

【0046】この発泡樹脂粒子の断面を位相差顕微鏡に
て観察したところ,芯層のエチレン・プロピレンランダ
ム共重合体は,独立気泡の発泡状態にあり,一方,直鎖
状低密度ポリエチレンは,実質的に非発泡のフィルム状
態で,エチレン・プロピレンランダム共重合体の発泡状
態の芯層を被覆していた。図1に示すごとく,発泡樹脂
粒子の長径Lと短径DとのL/Dの比は,0.9であ
る。
When the cross section of the expanded resin particles was observed with a phase contrast microscope, the ethylene / propylene random copolymer in the core layer was in a closed-cell expanded state, while the linear low-density polyethylene was substantially expanded. In a non-foamed film state, the foamed core layer of the ethylene / propylene random copolymer was covered. As shown in FIG. 1, the L / D ratio of the major axis L and the minor axis D of the expanded resin particles is 0.9.

【0047】この発泡樹脂粒子を40℃の乾燥室にて完
全に乾燥し,通気性のある凸凹一対の型内に,この発泡
樹脂粒子を充填した後,型内に水蒸気圧が8kPaで1
20℃(湿度4%)の熱風を供給した。これにより,発
泡樹脂粒子間の間隙に熱風を通過させて,発泡樹脂粒子
の表面温度を120℃に加熱した。次いで,型内容積を
60%に減容した状態で,発泡樹脂粒子を融着させた。
その後,空気にて冷却し,型内より発泡成形体を取出し
た。発泡成形体は,密度が28kg/mであり,大き
さは縦200mm,幅300mm,厚み40mmであ
り,含水もなく,収縮変形のない型通りの形状であっ
た。
The foamed resin particles are completely dried in a drying chamber at 40 ° C., and are filled in a pair of air-permeable concave and convex molds.
Hot air of 20 ° C. (4% humidity) was supplied. Thereby, hot air was passed through the gap between the foamed resin particles, and the surface temperature of the foamed resin particles was heated to 120 ° C. Next, the foamed resin particles were fused while the inner volume of the mold was reduced to 60%.
Then, it cooled with air and took out the foaming molded object from the inside of a type | mold. The foamed molded article had a density of 28 kg / m 3 , a size of 200 mm in length, 300 mm in width, and 40 mm in thickness, had no water content, and had a shape similar to a mold without shrinkage deformation.

【0048】上記の発泡成形体から,長さ200mm,
巾30mm,厚さ12.5mmの試験片20片を作製
し,直径50mmの円筒の円周に巻き,90°の角度ま
で曲げたところ,試験片の80%以上が割れなかった。
From the above foam molded article, a length of 200 mm,
Twenty test pieces having a width of 30 mm and a thickness of 12.5 mm were prepared, wound around a cylinder having a diameter of 50 mm, and bent to a 90 ° angle. As a result, 80% or more of the test pieces did not crack.

【0049】実施例2〜4,比較例1〜4 実施例2〜4,比較例1〜4においては,表1に示すご
とく,芯層の樹脂及び状態,被覆層の樹脂及び状態,平
均嵩密度,L/D比,加熱媒体,加熱成形温度,圧縮率
を変えて,発泡成形体を製造した。その他は,実施例1
と同様に製造した。
Examples 2 to 4 and Comparative Examples 1 to 4 In Examples 2 to 4 and Comparative Examples 1 to 4, as shown in Table 1, the resin and condition of the core layer, the resin and condition of the coating layer, and the average bulk A foam molded article was manufactured by changing the density, the L / D ratio, the heating medium, the heating temperature, and the compression ratio. Others are described in Example 1.
It was manufactured in the same manner as described above.

【0050】上記実施例1〜4及び比較例1〜4の物性
について,以下の方法により測定した。 <融点>示差走査熱量計(DSC)により測定した。先
ず,3〜5mgの樹脂をその結品が融解する温度まで昇
温後,10℃/分の速度で室温まで冷却した。次いで,
l0℃/分の速度で加熱昇温し,得られる吸熱曲線のピ
ーク温度をもって融点とした。
The physical properties of Examples 1 to 4 and Comparative Examples 1 to 4 were measured by the following methods. <Melting point> Measured by a differential scanning calorimeter (DSC). First, 3-5 mg of the resin was heated to a temperature at which the product melted, and then cooled to room temperature at a rate of 10 ° C./min. Then,
The temperature was raised by heating at a rate of 10 ° C./min, and the peak temperature of the obtained endothermic curve was defined as the melting point.

【0051】<成形体嵩密度>発泡成形体の単位体積当
たりの重量(kg/m3)をいう。 <圧縮率>圧縮率(%)は,(発泡成形体の嵩密度−発
泡樹脂粒子の嵩密度)×100(%)/発泡成形体の嵩
密度で表す。 <空隙率>内径150mm,容積5リットルの目盛り付
メスシリンダー内に水3リットルを入れ,寸法100×
100×40mm(体積0.4リットル)の成形体試験
片を水没させて,このときの水面の示す容積V(リット
ル)を測定し,式(1)により空隙率をもとめた。
<Bulk Density of Molded Article> This refers to the weight per unit volume (kg / m 3 ) of the foam molded article. <Compression ratio> The compression ratio (%) is represented by (the bulk density of the foamed molded article−the bulk density of the foamed resin particles) × 100 (%) / the bulk density of the foamed molded article. <Porosity> 3 liters of water was placed in a graduated measuring cylinder having an inner diameter of 150 mm and a volume of 5 liters, and the dimensions were 100 ×
A molded body test piece of 100 × 40 mm (volume 0.4 liter) was submerged, and the volume V (liter) indicated by the water surface at this time was measured, and the porosity was determined by equation (1).

【0052】 {1−(V−3)/0.4}×100%.....式(1){1- (V-3) /0.4} × 100%. . . . . Equation (1)

【0053】<含水率>成形後,30分から1時間以内
に成形体重量Aを測定し,同成形体を80℃のオーブン
内で12時間放置し,室温23℃,湿度55%の部屋で
12時間放置した後の成形体重量Bを測定し,式(2)
により含水率をもとめた。
<Water content> After molding, the molded body weight A was measured within 30 minutes to 1 hour, and the molded body was allowed to stand in an oven at 80 ° C. for 12 hours. The weight B of the compact after being left for a time is measured, and the equation (2)
Was used to determine the moisture content.

【0054】 {(A−B)/B}×100%.....式(2){(AB) / B} × 100%. . . . . Equation (2)

【0055】<成形時の収縮変形>型内より取出した発
泡成形体を温度20℃に放置し,30分後の外観を目視
にて判定した。 無:型通りの形状を保持している。 有:ソリ,へこみなどの収縮変形があり,型通りの形状
でない。
<Shrinkage Deformation During Molding> The foamed molded product taken out of the mold was left at a temperature of 20 ° C., and the appearance after 30 minutes was visually judged. None: The shape is kept as it is. Existence: There is shrinkage deformation such as warpage and dent, and the shape is not the same as the type.

【0056】<融着試験>長さ200mm,巾30m
m,厚さ12.5mmの試験片を作製し,試験片を直径
50mmの円筒の円周に沿って90度まで曲げて,次の
基準で判定した。 ○:試験片総数の80%以上が割れない。 ×:試験片総数の20%を超えるものが割れる。 以上の結果を表1に示した。
<Fusing test> Length 200 mm, width 30 m
A test piece having a thickness of 12.5 mm and a thickness of 12.5 mm was prepared, and the test piece was bent up to 90 degrees along the circumference of a cylinder having a diameter of 50 mm, and evaluated according to the following criteria. :: 80% or more of the total number of test pieces does not crack. ×: Cracks exceeding 20% of the total number of test pieces were broken. Table 1 shows the above results.

【0057】[0057]

【表1】 [Table 1]

【0058】同表より,本発明の実施例1〜4について
は,発泡樹脂粒子の空隙又は粒子の中に含水はなく,成
形時の収縮変形もなく,かつ融着強度も高かった。
As can be seen from the table, in Examples 1 to 4 of the present invention, there was no water content in the voids or particles of the foamed resin particles, there was no shrinkage deformation during molding, and the fusion strength was high.

【0059】[0059]

【発明の効果】本発明によれば,形状安定性に優れ,且
つ発泡樹脂粒子同士の融着強度が高い,熱可塑性樹脂発
泡成形体の製造方法を提供することができる。
According to the present invention, it is possible to provide a method for producing a foamed thermoplastic resin article having excellent shape stability and high fusion strength between foamed resin particles.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における,発泡樹脂粒子の斜視図。FIG. 1 is a perspective view of a foamed resin particle according to the present invention.

【図2】本発明における,上型及び下型を用いる加熱成
形方法を示す説明図。
FIG. 2 is an explanatory view showing a heat molding method using an upper mold and a lower mold in the present invention.

【図3】本発明における,熱風加圧ガスを用いる加熱成
形方法を示す説明図。
FIG. 3 is an explanatory view showing a heat molding method using hot air pressurized gas in the present invention.

【符号の説明】 1...発泡樹脂粒子, 11...芯層, 12...被覆層, 3...発泡成形体,[Explanation of Codes] . . 10. foamed resin particles, . . Core layer, 12. . . 2. a coating layer; . . Foam molding,

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F074 AA25 BA37 CA35 CA38 CA46 CA52 CC03Z CC04Z CC05Z CC46 CD20 DA02 DA03 DA22 DA32 DA33 DA34 DA42 DA57 4F212 AA08 AA09 AB02 AE06 AG03 AG20 UA02 UB01 UF01 UG05 UG07  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4F074 AA25 BA37 CA35 CA38 CA46 CA52 CC03Z CC04Z CC05Z CC46 CD20 DA02 DA03 DA22 DA32 DA33 DA34 DA42 DA57 4F212 AA08 AA09 AB02 AE06 AG03 AG20 UA02 UB01 UF01 UG05 UG07 UG07

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 結晶性の熱可塑性樹脂からなる発泡状態
の芯層と,該芯層を被覆する実質的に非発泡状態の被覆
層とからなるとともに,該被覆層は,上記熱可塑性樹脂
より融点が低いかまたは実質的に融点を示さないエチレ
ン系重合体を含有し,且つ粒子の長径Lと短径DとのL
/D比が0.5〜3である発泡樹脂粒子を準備する工程
と,該発泡樹脂粒子を成形型内に入れて,熱風により加
熱成形することにより上記発泡樹脂粒子を互いに融着さ
せた熱可塑性樹脂発泡成形体を得る工程とからなり,且
つ上記熱風は水蒸気圧が5kPaを超え50kPa以下
の乾燥ガスを用いることを特徴とする熱可塑性樹脂発泡
成形体の製造方法。
1. A foamed core layer made of a crystalline thermoplastic resin, and a substantially non-foamed coating layer covering the core layer, wherein the coating layer is made of the thermoplastic resin. An L-based polymer containing an ethylene polymer having a low melting point or substantially no melting point, and having a major axis L and a minor axis D,
A step of preparing foamed resin particles having a / D ratio of 0.5 to 3, placing the foamed resin particles in a molding die, and heat-molding the foamed resin particles with hot air to heat the foamed resin particles to each other. A process for obtaining a foamed thermoplastic resin article, wherein the hot air uses a dry gas having a steam pressure of more than 5 kPa and 50 kPa or less.
【請求項2】 請求項1において,上記加熱成形は,該
発泡樹脂粒子の嵩容積を50〜99%に圧縮して,見か
け密度を高くした状態で行うことを特徴とする熱可塑性
樹脂発泡成形体の製造方法。
2. The thermoplastic resin foam molding according to claim 1, wherein the heat molding is performed in a state where the bulk density of the foamed resin particles is reduced to 50 to 99% to increase the apparent density. How to make the body.
【請求項3】 請求項1又は2において,上記加熱成形
は,芯層となる上記結晶性の熱可塑性樹脂の融点よりも
低い温度で行うことを特徴とする熱可塑性樹脂発泡成形
体の製造方法。
3. The method for producing a foamed thermoplastic resin article according to claim 1, wherein the thermoforming is performed at a temperature lower than a melting point of the crystalline thermoplastic resin serving as a core layer. .
JP35139499A 1999-12-10 1999-12-10 Method for manufacturing thermoplastic resin foamed molding Pending JP2001162640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35139499A JP2001162640A (en) 1999-12-10 1999-12-10 Method for manufacturing thermoplastic resin foamed molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35139499A JP2001162640A (en) 1999-12-10 1999-12-10 Method for manufacturing thermoplastic resin foamed molding

Publications (1)

Publication Number Publication Date
JP2001162640A true JP2001162640A (en) 2001-06-19

Family

ID=18416998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35139499A Pending JP2001162640A (en) 1999-12-10 1999-12-10 Method for manufacturing thermoplastic resin foamed molding

Country Status (1)

Country Link
JP (1) JP2001162640A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003039565A (en) * 2001-08-03 2003-02-13 Mitsubishi Kagaku Form Plastic Kk Foamed particle molded object
JP2006213877A (en) * 2005-02-07 2006-08-17 Kaneka Corp Polypropylene resin pre-expanded particle and expanded molding obtainable therefrom
JP2015120859A (en) * 2013-12-25 2015-07-02 株式会社ジェイエスピー Foam molding
WO2015146820A1 (en) * 2014-03-27 2015-10-01 株式会社ジェイエスピー Polyolefin resin foam particles, foam-particle moulded body, and composite stacked body including said moulded body
JP5927343B2 (en) * 2014-01-17 2016-06-01 株式会社ジェイエスピー Propylene-based resin expanded particles and expanded molded articles
CN107835832A (en) * 2015-07-15 2018-03-23 株式会社Jsp Propylene resin expanded particle and expanded particle formed body
WO2018105394A1 (en) * 2016-12-07 2018-06-14 三菱電機株式会社 Foamed heat-insulating material production method and foamed heat-insulating material

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003039565A (en) * 2001-08-03 2003-02-13 Mitsubishi Kagaku Form Plastic Kk Foamed particle molded object
JP2006213877A (en) * 2005-02-07 2006-08-17 Kaneka Corp Polypropylene resin pre-expanded particle and expanded molding obtainable therefrom
JP2015120859A (en) * 2013-12-25 2015-07-02 株式会社ジェイエスピー Foam molding
JP5927343B2 (en) * 2014-01-17 2016-06-01 株式会社ジェイエスピー Propylene-based resin expanded particles and expanded molded articles
US10385178B2 (en) 2014-01-17 2019-08-20 Jsp Corporation Propylene-based resin foam particle and foam particle molded body
WO2015146820A1 (en) * 2014-03-27 2015-10-01 株式会社ジェイエスピー Polyolefin resin foam particles, foam-particle moulded body, and composite stacked body including said moulded body
JP2015189837A (en) * 2014-03-27 2015-11-02 株式会社ジェイエスピー Polyolefin resin foam grain, foam grain molded body, and composite laminated body with the molded body
CN107835832A (en) * 2015-07-15 2018-03-23 株式会社Jsp Propylene resin expanded particle and expanded particle formed body
CN107835832B (en) * 2015-07-15 2019-05-14 株式会社Jsp Propylene resin expanded particle and expanded particle formed body
US10487188B2 (en) 2015-07-15 2019-11-26 Jsp Corporation Propylene resin foamed particle and foamed particle molded body
WO2018105394A1 (en) * 2016-12-07 2018-06-14 三菱電機株式会社 Foamed heat-insulating material production method and foamed heat-insulating material
CN110023386A (en) * 2016-12-07 2019-07-16 三菱电机株式会社 The manufacturing method and foamed thermal insulating of foamed thermal insulating

Similar Documents

Publication Publication Date Title
EP1707592B1 (en) Method of producing expanded polypropylene beads
JP3418081B2 (en) Expanded resin particles
JP2003039565A (en) Foamed particle molded object
JP2022127578A (en) Foamed particle and method for producing the same
JP4157206B2 (en) Polypropylene resin foamed particles and molded polypropylene resin foam particles
JP3732418B2 (en) Expandable styrene resin particles
JP2001162640A (en) Method for manufacturing thermoplastic resin foamed molding
EP0928806B1 (en) Expanded resin beads
JP2000000894A (en) Production of thermoplastic resin foam molding
JP3858517B2 (en) Polypropylene resin pre-expanded particles, and method for producing the pre-expanded particles and in-mold foam molding
JPH11209502A (en) Polypropylene-based resin preexpanded particle and production of polypropylene-based resin in-mold expansion molded product using the same
JP4503720B2 (en) Method for producing foamed article with skin
JP3950557B2 (en) Polypropylene-based resin pre-expanded particles and method for producing in-mold expanded molded articles therefrom
JPH03254930A (en) Internal die molding method for expandable particle of polypropylene-based resin
JPH03152136A (en) Polypropylene resin preliminarily foamed bead and preparation thereof
JP7225038B2 (en) Expanded polypropylene resin particles and expanded polypropylene resin particles
JPH0414058B2 (en)
KR20220135779A (en) Returnable box
US20040151879A1 (en) Polypropylene resin molding composite for automobile
JP4336440B2 (en) Polyolefin resin composite molded body
JP2018070735A (en) Foamed particle and method for producing foamed particle molding
JPH11172034A (en) Non-crosslinked, straight-chain, low-density polyethylene resin expanded particle and production thereof
CN115427487A (en) Polypropylene resin expanded beads and molded article of polypropylene resin expanded beads
WO2022091750A1 (en) Method for manufacturing laminate
JPS641499B2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040531

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040531