JPH10238691A - Vacuum heat insulation panel, manufacture thereof, and refrigerator using vacuum heat insulation panel - Google Patents

Vacuum heat insulation panel, manufacture thereof, and refrigerator using vacuum heat insulation panel

Info

Publication number
JPH10238691A
JPH10238691A JP9043132A JP4313297A JPH10238691A JP H10238691 A JPH10238691 A JP H10238691A JP 9043132 A JP9043132 A JP 9043132A JP 4313297 A JP4313297 A JP 4313297A JP H10238691 A JPH10238691 A JP H10238691A
Authority
JP
Japan
Prior art keywords
plate
filler
insulation panel
vacuum
polyurethane foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9043132A
Other languages
Japanese (ja)
Other versions
JP4273466B2 (en
Inventor
Yoshio Nishimoto
芳夫 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP04313297A priority Critical patent/JP4273466B2/en
Publication of JPH10238691A publication Critical patent/JPH10238691A/en
Application granted granted Critical
Publication of JP4273466B2 publication Critical patent/JP4273466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress heat transfer quantity and radiating heat transfer quantity by forming a core member, which holds a shape of a vacuum heat insulation panel, of porous material which is made of continuously foamed hard polyurethane foam containing plate filler. SOLUTION: After plate filler made of inorganic matter such as mica, which is excellent in radiating heat shielding effect, or metallic foil of aluminum and the like, which is provided with high density and excellent in a heat reflecting property, is mixed with hard polyurethane foam, the hard polyurethane foam is foamed and molded flowingly inside a thin plate metal die so as to be provided as a molded material, and then, the molded material is used for a core member 2 in a vacuum heat insulation panel 7. The plate filler is oriented in the surface direction of the core member 2. In this way, heat transmission through a substance is controlled in the surface direction orthogonal to the heat insulating direction, so that heat transmitting quantity in the heat insulating (thickness) direction can be suppressed while heat transfer quantity based on radiation can be also reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、冷蔵庫や
保冷車などの断熱を要する壁面の金属製薄板と樹脂成型
品で構成された間隙に断熱材として配設して用いる真空
断熱パネルに係り、さらに詳しくは、外殻をアルミ箔な
どの不透気性のフィルムなどで作られた容器または包装
材の内部にあって、主として内部を真空に保持していて
も大気圧による加圧に対して変形を来さず、形状を保持
する機能を有する芯材を備えた真空断熱パネル及びその
製造方法並びにこの真空断熱パネルを用いた冷蔵庫に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum heat insulating panel used as a heat insulating material disposed in a gap formed of a thin metal plate and a resin molded product on a wall of a refrigerator or a refrigerator car requiring heat insulation. More specifically, even if the outer shell is inside a container or packaging material made of an air-impermeable film such as aluminum foil, etc. The present invention relates to a vacuum heat insulating panel provided with a core material having a function of maintaining a shape without causing deformation, a method for manufacturing the same, and a refrigerator using the vacuum heat insulating panel.

【0002】[0002]

【従来の技術】従来、冷蔵庫や保冷車などに用いる断熱
体の壁面は、外郭を鉄板などの金属製薄板で覆い内面部
分を樹脂成形品で形成して、その間隙に硬質ポリウレタ
ンフォームを注入発泡して充填させたものが用いられて
きた。断熱材である硬質ウレタンフォームの発泡剤に
は、ハイドロクロロフルオロカーボン類である1,1−
ジクロロ−1−フルオロエタンが用いられてきたが、近
年オゾン層破壊の原因となる塩素を分子中に含まないハ
イドロフルオロカーボン類やハイドロカーボン類を用い
ることが提案されている。
2. Description of the Related Art Conventionally, the wall surface of a heat insulator used for refrigerators, cold storage vehicles and the like is covered with a thin metal plate such as an iron plate, and the inner surface is formed of a resin molded product. And then filled. The foaming agent for rigid urethane foam as a heat insulating material includes 1,1-hydrochlorofluorocarbons.
Dichloro-1-fluoroethane has been used, but in recent years, it has been proposed to use hydrofluorocarbons and hydrocarbons which do not contain chlorine which causes ozone layer destruction in the molecule.

【0003】例えば、特開平2−235982号公報で
は、1,1,2,2,3−ペンタフルオロプロパン(H
FC−245fa)や1,1,1,4,4,4−ヘキサ
フルオロブタン(HFC−356mffm)のようなハ
イドロフルオロカーボン類を、特開平3−152160
号公報ではシクロペンタンなどのハイドロカーボンを、
発泡剤に適用した硬質ポリウレタンフォームの製造方法
が開示されている。しかしながら、これらの硬質ポリウ
レタンフォームの断熱性は19〜20mw/mkであ
り、オゾン層破壊物質の仕様規制前に用いていたクロロ
フルオロカーボン類を用いた場合の16mw/mkの断
熱性に比較すれば明らかに劣る。
For example, Japanese Patent Application Laid-Open No. 2-235982 discloses that 1,1,2,2,3-pentafluoropropane (H
FC-245fa) and hydrofluorocarbons such as 1,1,1,4,4,4-hexafluorobutane (HFC-356mffm) are disclosed in JP-A-3-152160.
In the publication, hydrocarbons such as cyclopentane are
A method for producing a rigid polyurethane foam applied to a blowing agent is disclosed. However, the heat insulation properties of these rigid polyurethane foams are 19 to 20 mw / mk, which is apparent from comparison with the heat insulation properties of 16 mw / mk when chlorofluorocarbons used before the specification regulation of the ozone depleting substance are used. Inferior.

【0004】このため、各断熱材の性能を比較した図7
に示すように、従来の硬質ポリウレタンフォームによっ
て構成した真空断熱パネルの2倍以上の断熱性能が得ら
れる真空断熱パネルを応用する技術が提案されている。
例えば、特開昭60−243471号公報には、硬質ポ
リウレタンフォーム(以下、PUFという)の粉砕品を
合成樹脂袋に投入してボード状に真空パックしたものを
壁内に配設した断熱箱体が開示されており、特開昭60
−60483号公報では、側板のフランジ側にPUFが
流動する隙間を設けた真空断熱パネルの設置方法が開示
されている。このような真空断熱パネルの芯材は、大気
圧相当以上の強度を有し、熱伝導と輻射伝熱の量を抑制
することが必要になり、従って、芯材には伝熱量が小さ
い物質で作られた多孔質物質の板が用いられている。
[0004] For this reason, FIG.
As shown in (1), there has been proposed a technique of applying a vacuum heat insulating panel capable of obtaining heat insulating performance twice or more that of a conventional vacuum heat insulating panel formed of a rigid polyurethane foam.
For example, Japanese Patent Application Laid-Open No. 60-243471 discloses an insulated box body in which a crushed product of a rigid polyurethane foam (hereinafter, referred to as PUF) is put into a synthetic resin bag and vacuum-packed in a board shape and arranged in a wall. And Japanese Patent Application Laid-Open
Japanese Patent Application Laid-Open No. -60483 discloses a method of installing a vacuum heat insulating panel in which a gap through which PUF flows is provided on a flange side of a side plate. The core material of such a vacuum insulation panel has a strength equal to or higher than the atmospheric pressure, and it is necessary to suppress the amount of heat conduction and radiant heat transfer. Plates made of porous material are used.

【0005】[0005]

【発明が解決しようとする課題】上記の条件を満たすも
のとして、特開昭60−205164号公報では連通気
泡の硬質ポリウレタンフォームを、特開昭60−718
81号公報ではパーライト粉末を、特開平4ー2185
40号公報では熱可塑性のウレタン樹脂粉体を型内で焼
結させた板状成形品を、また、特開平7ー96580号
公報ではガラスの長繊維を無機微粉末にフィビリル化し
た樹脂繊維により固化保持したボードを、真空断熱パネ
ルのコア材として使用している。しかしながら、これら
の方法では、真空断熱パネルの芯材として必要な断熱機
構を一部にしか応用していないため、真空断熱パネルと
しての熱伝導率が不十分であった。
In order to satisfy the above conditions, Japanese Patent Application Laid-Open No. 60-205164 discloses a rigid polyurethane foam having open cells, and Japanese Patent Application Laid-Open No. 60-718.
No. 81, pearlite powder is disclosed in Japanese Patent Application Laid-Open No. 4-2185.
No. 40 discloses a plate-like molded product obtained by sintering a thermoplastic urethane resin powder in a mold, and JP-A-7-96580 discloses a resin fiber obtained by fibrillating long glass fibers into inorganic fine powder. The solidified board is used as the core material of the vacuum insulation panel. However, these methods only partially apply a heat insulating mechanism required as a core material of the vacuum heat insulating panel, and thus have insufficient heat conductivity as the vacuum heat insulating panel.

【0006】このため、断熱性能の向上を達成するため
に、輻射熱の遮蔽効果に優れる金属箔や金属蒸着フィル
ムを埋設する特開昭62−13979号公報や、ケイ酸
カルシウム等の微粉末を混合したPUFを用いる特開昭
63−135694号公報に開示された発明がある。
[0006] For this reason, in order to achieve an improvement in heat insulation performance, Japanese Patent Application Laid-Open No. 62-13979, in which a metal foil or a metal vapor-deposited film having an excellent radiation heat shielding effect is embedded, or a fine powder such as calcium silicate is mixed. There is an invention disclosed in Japanese Patent Application Laid-Open No. 63-135694 using the above PUF.

【0007】しかしながら、ケイ酸カルシウム等の粒状
物質を混合するには相当量が必要で、それら充填材の熱
伝導率が高いために、十分な断熱性を得るに至っていな
い。また、金属箔を配設した芯材であっても伝熱が面方
向に展開するのみで減衰することがないため、物質間の
伝熱に対する抑制を得た構造にはなっていない。しか
も、特開昭60−243471号公報で述べているPU
Fの粉砕物をそのままで用いれば、真空断熱パネルへの
挿入や包装用袋内を真空状態にした後の体積減少が大き
いなど、取り扱いに困難が伴う。
[0007] However, mixing a particulate substance such as calcium silicate requires a considerable amount, and the thermal conductivity of these fillers does not provide sufficient heat insulating properties. Further, even in the case of the core material provided with the metal foil, the heat transfer is developed only in the plane direction and does not attenuate, so that the structure does not have the effect of suppressing the heat transfer between the materials. In addition, PU described in Japanese Patent Application Laid-Open No. 60-243471.
If the pulverized product of F is used as it is, handling becomes difficult, for example, the volume is greatly reduced after being inserted into the vacuum insulation panel or the inside of the packaging bag is evacuated.

【0008】本発明は、上記のような課題を解決するた
めになされたもので、環境破壊をもたらすことなく製造
でき、真空状態のパネル形状を保持でき、熱伝達と輻射
伝熱の量を抑制でき、軽量で量産生に優れ、製造時の取
扱性に優れた、断熱性の大きい真空断熱パネル及びその
製造方法並びにこの真空断熱パネルを用いた冷蔵庫を得
ることを目的とする。
The present invention has been made to solve the above problems, and can be manufactured without causing environmental destruction, can maintain a vacuum-shaped panel shape, and suppress the amount of heat transfer and radiant heat transfer. It is an object of the present invention to obtain a vacuum insulating panel having high heat insulation, lightweight, excellent in mass production, excellent in handling at the time of manufacturing, high insulative property, and a refrigerator using the vacuum insulating panel.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

(1) 本発明にかかる真空断熱パネルは、芯材によっ
て形状を保持されてなる真空断熱パネルであって、芯材
を、板状充填材を含有する連通気泡の硬質ポリウレタン
フォームからなる多孔体で構成したものである。 (2) 上記(1)の真空断熱パネルにおいて、板状充
填材の面を芯材の面方向と平行に配向させた。
(1) A vacuum heat insulating panel according to the present invention is a vacuum heat insulating panel whose shape is maintained by a core material, wherein the core material is a porous body made of open-celled rigid polyurethane foam containing a plate-like filler. It is composed. (2) In the vacuum heat insulating panel of the above (1), the surface of the plate-like filler is oriented parallel to the surface direction of the core material.

【0010】(3) 上記(1),(2)記載の真空断
熱パネルにおいて、板状充填材に無機物または金属の少
なくとも一方を用いた。 (4) 上記(3)記載の真空断熱パネルにおいて、板
状充填材にフレーク状マイカを用いた。 (5) 上記(3)記載の真空断熱パネルにおいて、板
状充填材にプラスチックスフィルムを用いた。
(3) In the vacuum insulation panel according to the above (1) or (2), at least one of an inorganic substance and a metal is used as the plate-like filler. (4) In the vacuum heat insulating panel according to the above (3), flake mica is used as the plate-like filler. (5) In the vacuum insulation panel according to (3), a plastic film is used as the plate-like filler.

【0011】(6) 上記(3)記載の真空断熱パネル
において、板状充填材に金属薄膜を被覆したプラスチッ
クスフィルムを用いた。 (7) 上記(3)記載の真空断熱パネルにおいて、板
状充填材に金属箔を用いた。 (8) 上記(6),(7)記載の真空断熱パネルにお
いて、金属薄膜または金属箔にアルミニウムを用いた。
(6) In the vacuum insulation panel according to the above (3), a plastic film in which a plate-like filler is coated with a thin metal film is used. (7) In the vacuum insulation panel according to the above (3), a metal foil is used as the plate-like filler. (8) In the vacuum insulation panel according to (6) or (7), aluminum is used for the metal thin film or the metal foil.

【0012】(9) 上記(1),(2),(3),
(4),(5),(6),(7),(8)記載の真空断
熱パネルにおいて、板状充填材の表面に離型剤を塗布し
た。 (10) 上記(1),(2),(3),(4),
(5),(6),(7),(8),(9)記載の真空断
熱パネルにおいて、板状充填材の大きさを硬質ポリウレ
タンフォームのセルサイズよりも大きくした。 (11) 上記(1),(2)記載の真空断熱パネルに
おいて、芯材の表面層を削除した。
(9) The above (1), (2), (3),
In the vacuum heat insulating panels described in (4), (5), (6), (7) and (8), a release agent was applied to the surface of the plate-like filler. (10) The above (1), (2), (3), (4),
In the vacuum heat insulating panels described in (5), (6), (7), (8) and (9), the size of the plate-like filler is larger than the cell size of the rigid polyurethane foam. (11) In the vacuum heat insulating panel described in the above (1) and (2), the surface layer of the core material is deleted.

【0013】(12) 本発明による真空断熱パネル
は、板状充填材と硬質ポリウレタンフォームの原料液を
混合して板状成型型の端部から注入し、この端部から発
泡させて流れ方向にシェアをかけ、板状充填材の面を板
状成型品の面方向と平行に配向させるようにしたもので
ある。
(12) In the vacuum insulation panel according to the present invention, a plate-like filler and a raw material liquid for a rigid polyurethane foam are mixed and injected from an end of a plate-like mold, and foamed from the end to flow in the flow direction. The shear is applied so that the surface of the plate-shaped filler is oriented parallel to the surface direction of the plate-shaped molded product.

【0014】(13) 上記(12)記載の真空断熱パ
ネルの製造方法において、板状充填材に離型剤を塗布
し、板状充填材を硬質ポリウレタンフォームの原料液で
あるプレミックス液とイソシアネート液を混合する直前
に投入し、これらの混合原料を発泡に間に合うように板
状成型型の端部から注入し、この端部から発泡させてそ
の後の発泡により流れ方向にシェアをかけ、板状充填材
の面を板状成型品の面方向と平行に配向させるようにし
た。
(13) In the method for manufacturing a vacuum insulation panel according to the above (12), a release agent is applied to the plate-like filler, and the plate-like filler is mixed with a premix liquid as a raw material liquid of a rigid polyurethane foam and an isocyanate. Inject just before mixing the liquid, inject these mixed raw materials from the end of the plate-shaped mold in time for foaming, foam from this end, and apply shear in the flow direction by subsequent foaming, plate-shaped The surface of the filler was oriented parallel to the surface direction of the plate-shaped molded product.

【0015】(14) 上記(12),(13)記載の
真空断熱パネルの製造方法において、硬質ポリウレタン
フォームの発泡速度を大きくした。 (15) 上記(12),(13)記載の真空断熱パネ
ルの製造方法において、発泡液の流動距離Lに対する成
型品厚さTの比率L/Tを、10以上にした。
(14) In the method for producing a vacuum insulation panel according to the above (12) or (13), the foaming rate of the rigid polyurethane foam is increased. (15) In the method for manufacturing a vacuum insulation panel according to the above (12) or (13), the ratio L / T of the thickness T of the molded product to the flow distance L of the foaming liquid is set to 10 or more.

【0016】(16) 本発明にかかる冷蔵庫は、板状
充填材を含有する連続気泡の硬質ポリウレタンフォーム
を芯材とした真空断熱パネルを内箱と外箱の間に配設し
たものである。 (17) また、上記(16)の冷蔵庫において、真空
断熱パネルを内箱又は外箱に貼り付け、残った空間に硬
質ポリウレタンフォームを充填した。
(16) The refrigerator according to the present invention is provided with a vacuum insulation panel having a core made of open-celled rigid polyurethane foam containing a plate-like filler between the inner box and the outer box. (17) In the refrigerator of (16), the vacuum insulation panel was attached to the inner box or the outer box, and the remaining space was filled with a rigid polyurethane foam.

【0017】[0017]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1 断熱性能の向上には、構成する材料に熱伝導の低い物質
を用いること、材料間の接触面積を少なくするとともに
物質を伝わる伝熱を断熱方向と直角の面方向に制御して
断熱(厚さ)方向への伝熱量を抑制すること、さらに、
熱の反射能力の高い物質を混入させて輻射による伝熱量
の減少を両立させる断熱機構が必要になる。
Embodiment 1 In order to improve the heat insulation performance, a material having low heat conductivity is used as a constituent material, the contact area between the materials is reduced, and the heat transfer through the material is controlled in a plane direction perpendicular to the heat insulation direction. Suppressing heat transfer in the heat insulation (thickness) direction,
It is necessary to provide a heat insulating mechanism that mixes a substance having a high heat reflecting ability to reduce the amount of heat transfer by radiation.

【0018】本発明においては、硬質ポリウレタンフォ
ームに、輻射熱の遮蔽効果に優れるマイカなどの無機物
やアルミニウムなどの金属箔のごとく高密度で熱反射性
に優れた板状充填材を混合して、薄板状金型内を流動す
るように発泡成型させて得た成型品を、真空断熱パネル
の芯材として用いたものである。しかも、上記成型品の
独立気泡をなくするために、従来の連通気泡を有する硬
質ポリウレタンフォームを用いることに加えて、板状充
填材に離型剤を塗布して用いるものである。
In the present invention, a rigid polyurethane foam is mixed with a high-density and highly heat-reflective plate-like filler such as an inorganic material such as mica or a metal foil such as aluminum which is excellent in shielding effect of radiant heat. A molded product obtained by foam molding so as to flow in a mold is used as a core material of a vacuum heat insulating panel. Moreover, in order to eliminate closed cells in the molded article, in addition to using a conventional rigid polyurethane foam having open cells, a release agent is applied to a plate-like filler and used.

【0019】上記のように構成した板状充填材を混合し
た連通気泡の硬質ポリウレタンフォームを真空断熱パネ
ルの芯材として用いることによって断熱性能が向上する
が、その機構は以下のごとくであると考えられる。すな
わち、輻射熱の遮蔽効果に優れる板状充填材は、硬質ポ
リウレタンフォームの発泡液との混合状態を保持したま
まの状態で、硬質ポリウレタンフォームの発泡、膨脹に
伴って金型内を流動する。
The insulation performance is improved by using the rigid polyurethane foam of the open cell mixed with the plate-like filler constituted as described above as the core material of the vacuum insulation panel. The mechanism is considered to be as follows. Can be That is, the plate-like filler having an excellent radiation heat shielding effect flows in the mold as the rigid polyurethane foam expands and expands, while maintaining the state of mixing with the foaming liquid of the rigid polyurethane foam.

【0020】この際、金型面で受ける流動抵抗に基づく
流速差によって発生する剪断力を受けにくい流動方向、
つまり面方向に板状充填材を配向する。板状充填材の伝
熱係数が硬質ポリウレタンフォームのそれより大きいに
もかかわらず、この断熱方向と直角にある面方向に配向
することにより、断熱方向に連続して接触して配向せ
ず、しかも、非常に薄い物質であるから、厚さ方向への
熱伝達による断熱効果の顕著な悪化を来すこともない。
しかも、板状充填材はフレーク状の小片であるから、横
方向にも連続しておらず、伝熱量が減衰して拡がること
もない。
At this time, the flow direction which is less susceptible to shearing force generated by the flow velocity difference based on the flow resistance received on the mold surface,
That is, the plate-like filler is oriented in the plane direction. Even though the heat transfer coefficient of the plate-like filler is larger than that of the rigid polyurethane foam, by orienting in a plane direction perpendicular to this heat insulating direction, it is not continuously contacted and oriented in the heat insulating direction, and Since it is a very thin substance, heat transfer in the thickness direction does not significantly deteriorate the heat insulating effect.
Moreover, since the plate-like filler is a flake-like small piece, it is not continuous in the lateral direction, and the amount of heat transfer is not attenuated and spread.

【0021】従って、従来の連通気泡の硬質ポリウレタ
ンフォームのみを芯材に用いた場合と比較して、物質を
伝わる伝熱量の増加も無視できる程度であるうえ、輻射
伝熱量の低下がそれを上回ることにより、充填断熱体の
断熱性能が向上できるものと考えられる。さらに、硬質
ポリウレタンフォームに板状充填材を面方向に配設した
複合体であるから、これら芯材が真空下で受ける大気圧
を上回る圧縮強度は十分に確保でき、真空断熱パネル内
の芯材が包装材内を真空にしたときに受ける大気圧で変
形を来すこともない。
Therefore, as compared with the conventional case where only the rigid polyurethane foam having open cells is used as the core material, the increase in the amount of heat transferred through the substance is negligible, and the decrease in the amount of radiant heat is greater than that. It is thought that the heat insulation performance of the filled heat insulator can be improved by this. Furthermore, since it is a composite in which plate-shaped fillers are arranged in a plane direction on rigid polyurethane foam, these cores can sufficiently secure compressive strength exceeding the atmospheric pressure that they receive under vacuum, and the cores in the vacuum insulation panel can be secured. Does not deform due to the atmospheric pressure received when the interior of the packaging material is evacuated.

【0022】一方、芯材内部の真空状態を維持するため
に、残存する独立気泡が内部のガスを放出して系内の真
空度を低下させることに伴う断熱性能の劣化を防止する
ため、硬質ポリウレタンフォームを構成する100〜2
00μmの大きさの個々の泡、つまり、セルの境界に存
在する膜を破壊して連通化させることに配慮する必要が
ある。この対応策として、板状充填材をこのセルの大き
さ、つまりセルサイズよりも大きくして、しかも離型剤
を塗布することにより、硬質ポリウレタンフォームが樹
脂化時の収縮に伴う応力が面方向に配設した板状充填材
との剥離時に、貫通するセル膜を破壊しながら新たな空
隙を生み出すことにより達成する機能を付与させたもの
である。
On the other hand, in order to prevent the deterioration of the heat insulation performance due to the remaining closed cells releasing the gas inside and reducing the degree of vacuum in the system in order to maintain the vacuum state inside the core material, 100 to 2 constituting polyurethane foam
Care must be taken to break individual bubbles having a size of 00 μm, that is, membranes existing at cell boundaries to make them communicate. As a countermeasure, the size of the plate-shaped filler is made larger than the cell size, that is, the cell size, and by applying a release agent, the rigid polyurethane foam shrinks when it is resinified. A function to be achieved by creating new voids while destroying the cell membrane that penetrates when peeling off from the plate-like filler disposed in the above.

【0023】図1は、真空断熱パネルの製造工程の概略
を示す説明図である。図に示すように、まず、マイカの
粉砕またはアルミ箔の切断等から調製した板状充填材A
と、ポリオール液、触媒、連通化材、発泡剤等から調製
したプレミックス液Bと、イソシアネート液Cとを混合
し(ステップS−1)、これらを金型へ投入して、成型
を行う(ステップS−2)。次いで、成型品の表面層を
削除し(ステップS−3)、外周を切断する(ステップ
S−4)。
FIG. 1 is an explanatory view schematically showing a manufacturing process of a vacuum heat insulating panel. As shown in the figure, first, a plate-like filler A prepared by crushing mica or cutting aluminum foil, etc.
, A premix liquid B prepared from a polyol liquid, a catalyst, a communicating material, a foaming agent, and the like, and an isocyanate liquid C are mixed (step S-1), and these are charged into a mold and molded. Step S-2). Next, the surface layer of the molded product is deleted (Step S-3), and the outer periphery is cut (Step S-4).

【0024】そして、これを包装材に挿入し(ステップ
S−5)、真空パネル成形機によって、真空引き(ステ
ップS−6)及び端片溶着をし(ステップS−7)、取
り出す(ステップS−8)。上記のような真空断熱パネ
ルの製造工程を、さらに、(1)芯材の作成(ステップ
S−1〜ステップS−4)、(2)真空断熱パネルの作
成(ステップS−5〜ステップS−8)に分けて詳述す
る。
Then, this is inserted into a packaging material (step S-5), and evacuated (step S-6) and welded with end pieces (step S-7) by a vacuum panel forming machine, and taken out (step S-5). -8). The manufacturing process of the vacuum insulation panel as described above further includes (1) creation of a core material (step S-1 to step S-4), and (2) creation of a vacuum insulation panel (step S-5 to step S-). 8) will be described in detail.

【0025】(1)芯材の作成(ステップS−1〜ステ
ップS−4) 硬質ポリウレタンフォームと板状充填材であるマイカを
複合化させてボード状に発泡成形した芯材を例として、
まず、その芯材の作成方法を詳述する。 (a) 板状充填材Aの調整 板状の充填材は熱反射性に優れていることが必要で、無
機物や金属のような高密度の物質が好ましい。また、板
状片形成の容易性から反映される価格から鑑みれば、ア
ルミ箔やマイカを用いることが最も好ましい。また、低
密度物質であるプラスチックフィルムの、表面にアルミ
などの金属被膜を被覆して用いても、同様の効果を得る
ことができる。
(1) Preparation of Core Material (Step S-1 to Step S-4) A core material obtained by compounding a rigid polyurethane foam and a mica as a plate-like filler and foam-molding it into a board is taken as an example.
First, a method of forming the core will be described in detail. (A) Adjustment of Plate-like Filler A The plate-like filler needs to have excellent heat reflectivity, and is preferably a high-density substance such as an inorganic substance or a metal. Also, in view of the price reflected from the ease of forming the plate-like pieces, it is most preferable to use aluminum foil or mica. The same effect can be obtained by using a plastic film, which is a low-density substance, with the surface coated with a metal film such as aluminum.

【0026】ここでは、マイカをフレーク状にして用い
た場合について説明する。フレーク状マイカは、硬質ポ
リウレタンフォームのセルサイズが70μm〜200μ
mであるから、粉砕によって直径が0.1mm以上、好
ましくは、5mm〜0.1mm、さらに好ましくは、2
mm〜0.5mmの大きさに粉砕する。このときの粉砕
には、ウオータジェットによる高速水流を応用すれば、
層間の引き剥がしも同時に行われて、より薄いフレーク
状のマイカが得られる。これらの板状充填材に、パラフ
ィン系、シリコーン系などの離型剤の1%〜10%溶液
をスプレーしたり、投入、浸漬等の方法によって表面を
覆った後、温風乾燥によって溶剤を除去して塗布したも
のを用いる。
Here, a case where mica is used in the form of flakes will be described. Flake mica has a rigid polyurethane foam cell size of 70 μm to 200 μm.
m, a diameter of 0.1 mm or more, preferably 5 mm to 0.1 mm, more preferably 2 mm
Crush to a size of mm to 0.5 mm. For the crushing at this time, if a high-speed water flow by a water jet is applied,
Peeling between the layers is also performed at the same time to obtain thinner flake-like mica. A 1% to 10% solution of a paraffin-based or silicone-based release agent is sprayed on these plate-like fillers, the surface is covered by a method such as injection or immersion, and then the solvent is removed by hot-air drying. And apply it.

【0027】(b) 硬質ポリウレタンフォーム原料液
B,Cの調製と発泡成形(ステップS−1〜ステップS
−2) 硬質ポリウレタンフォーム原料液には、ポリオールを中
心に、触媒、整泡剤、破泡剤、発泡剤などが混合されて
いるプレミックス液、及びイソシアネートが主成分であ
るイソシアネート液の2液があり、各々の規定量を混合
することによって発泡が開始される。離型剤を塗布した
板状充填剤の任意の量を、これらを混合する直前に投入
する。
(B) Preparation and foam molding of rigid polyurethane foam raw material liquids B and C (step S-1 to step S-1)
-2) The rigid polyurethane foam raw material liquid includes a premix liquid containing a polyol, a catalyst, a foam stabilizer, a foaming agent, a foaming agent, and the like, and an isocyanate liquid containing isocyanate as a main component. The foaming is started by mixing the respective prescribed amounts. An arbitrary amount of the plate-like filler to which the release agent has been applied is charged immediately before mixing them.

【0028】これらの原料を、インペラー式のミキサー
を用いて混合し、数秒後に開始される発泡に間に合うよ
うに金型内に投入する。このときの金型温度は30℃〜
60℃が好ましく、40℃〜50℃が特に好ましい。用
いる金型の発泡液の流動距離Lに対する成型品厚さTの
好ましい比(L/T)は10以上であり、特に好ましく
は、20〜40である。また、流動距離Lは、1000
mm以下にすることが、均質な成型品を得るうえで好適
である。
These raw materials are mixed using an impeller-type mixer, and charged into a mold in time for foaming to be started after a few seconds. The mold temperature at this time is 30 ° C.
60 ° C is preferred, and 40 ° C to 50 ° C is particularly preferred. The preferred ratio (L / T) of the thickness T of the molded product to the flow distance L of the foaming liquid of the mold used is 10 or more, and particularly preferably 20 to 40. The flow distance L is 1000
mm or less is suitable for obtaining a homogeneous molded product.

【0029】具体的に、以下の実施例を行うのに用いた
金型の大きさは、幅(W):300mm、流動距離
(L):500mm、成型品厚さ(T):30mmであ
った。混合液は、金型を45度に傾けた端部にのみ液が
溜まるようにして原料を投入し、投入後直ちに金型を密
閉して静置し、5分以上の放置後にボード状の成型品を
確保した。
More specifically, the size of the mold used for carrying out the following examples was as follows: width (W): 300 mm, flow distance (L): 500 mm, and molded product thickness (T): 30 mm. Was. As for the mixed liquid, the raw material is charged so that the liquid only accumulates at the end portion where the mold is inclined at 45 degrees. Immediately after the charging, the mold is sealed and allowed to stand. Goods secured.

【0030】(c) 芯材の作製(ステップS−3〜ス
テップS−4) 得られた成型品を芯材にそのまま用いてもよいが、好ま
しくは、金型と接した表面部分にかかる剪断力が不足し
て板状充填剤の配向が不十分であるばかりか、独立気泡
も多く残存しており、これを切断する等して削除する。
削除する厚さは2mm以上が好ましく、5mm以上が特
に好ましい。また、所定の大きさを得るために外周を切
断する。
(C) Manufacture of core material (Step S-3 to Step S-4) The obtained molded product may be used as the core material as it is, but preferably, shearing applied to the surface portion in contact with the mold Not only is the force insufficient, the orientation of the plate-like filler is insufficient, but also many closed cells remain, which are removed by cutting or the like.
The thickness to be removed is preferably 2 mm or more, particularly preferably 5 mm or more. Also, the outer periphery is cut to obtain a predetermined size.

【0031】(2)真空断熱パネルの作成(ステップS
−5〜ステップS−8) 芯材は、多層シートの包装材内に格納し、次いで、真空
雰囲気下で挿入口を熱溶着することにより得られる。以
下に、真空断熱パネルの形成方法を述べる。芯材には、
所定の面大きさを得るために裁断して調整したものを用
いる。断熱性を中心とした各種評価に用いる試料は、こ
の芯材を予め3方向が熱シールされた包装材内に挿入し
た後、図2に示す装置に装填して所定の真空度の雰囲気
を確保し、この中で残った1方向を熱シールすることに
よって得た。真空度は、1×101 〜10-3Torrの
間の任意の値とした。
(2) Preparation of Vacuum Insulated Panel (Step S)
-5 to Step S-8) The core material is obtained by storing the core material in the packaging material of the multilayer sheet, and then thermally welding the insertion port under a vacuum atmosphere. Hereinafter, a method for forming the vacuum heat insulating panel will be described. For the core material,
A sheet cut and adjusted to obtain a predetermined surface size is used. The sample used for various evaluations, mainly for heat insulation, is inserted into a packaging material that has been heat-sealed in three directions in advance and then loaded into the apparatus shown in FIG. 2 to secure an atmosphere of a predetermined degree of vacuum. Then, the remaining one direction was obtained by heat sealing. The degree of vacuum was an arbitrary value between 1 × 10 1 and 10 -3 Torr.

【0032】すなわち、図2に示すように、包装材1内
に芯材2を挿入したものを上・下融着ヒータ3,3の間
に装着した後、真空パネル成形機4内を所定の真空度に
なるように真空調整用バルブ5によって調整する。その
後、シール用加圧装置6,6を用いて挿入口を固定し、
熱シールした後ヒータを切り、冷却後に真空を解放して
取り出せば、真空断熱パネル7が得られる。
That is, as shown in FIG. 2, after the core material 2 inserted into the packaging material 1 is mounted between the upper and lower fusing heaters 3, 3, the inside of the vacuum panel forming machine 4 is moved to a predetermined position. The degree of vacuum is adjusted by the vacuum adjustment valve 5. After that, the insertion opening is fixed using the sealing pressurizing devices 6 and 6,
After the heat sealing, the heater is turned off, and after cooling, the vacuum is released and taken out, whereby the vacuum insulation panel 7 is obtained.

【0033】ここで用いる包装材1は、シール面が熱溶
着の可能な熱可塑性樹脂、中間層が外気の侵入を完全に
遮断するためのアルミ箔などの金属箔、さらに最外層が
傷付きなどに耐性のあるナイロンやポリエステルなどの
樹脂を用いた多層シートである。芯材2は、厚さが20
mm、面が180×180mmのものを用いた。また、
芯材2と包装材1は100℃以上の温度で乾燥を行った
後に使用することとした。
The packaging material 1 used here is made of a thermoplastic resin having a sealing surface capable of being heat-sealed, a metal foil such as an aluminum foil for an intermediate layer for completely blocking the invasion of the outside air, and a scratch on the outermost layer. This is a multi-layer sheet using a resin such as nylon or polyester that is resistant to water. The core material 2 has a thickness of 20
mm and a surface of 180 × 180 mm were used. Also,
The core material 2 and the packaging material 1 were used after drying at a temperature of 100 ° C. or higher.

【0034】図3は、真空断熱パネルを用いて製品(こ
の場合は冷蔵庫)を組み立てる工程の概略を示す説明
図、図4、図5は組み立てた製品の使用状態を示す斜視
図とその要部イの縦断面図である。図に示すように、外
箱8に真空断熱パネル7を貼り付けた(ステップS−
1)後、内箱9を外箱8の嵌合部に挿入して(ステップ
S−2)合体させ、その他の部材も含めて箱体の組み立
てを終える(ステップS−3)。次に、外箱8と内箱9
の間に形成された空間部に硬質ポリウレタンフォームの
原料混合液を注入して発泡成型させることにより断熱層
10を形成する(ステップS−4)。その後、内部部品
と冷媒回路部品を用いて内部部品の配置や冷媒回路の製
品組立を行い(ステップS−5)、製品検査を完了すれ
ば(ステップS−6)、製品として完成する(ステップ
S−7)。
FIG. 3 is an explanatory view showing an outline of a process of assembling a product (in this case, a refrigerator) using a vacuum heat insulating panel. FIGS. 4 and 5 are perspective views showing the use state of the assembled product and the main parts thereof. It is a longitudinal cross-sectional view of a. As shown in the figure, the vacuum insulation panel 7 was attached to the outer box 8 (Step S-
1) After that, the inner box 9 is inserted into the fitting portion of the outer box 8 (Step S-2) to be combined, and assembly of the box including other members is completed (Step S-3). Next, the outer box 8 and the inner box 9
A heat-insulating layer 10 is formed by injecting a raw mixture of a rigid polyurethane foam into the space formed between them and foam-molding the mixture (step S-4). Thereafter, the internal components and the refrigerant circuit components are used to arrange the internal components and assemble the refrigerant circuit product (step S-5). If the product inspection is completed (step S-6), the product is completed (step S-6). -7).

【0035】上記のようにして得られ、かつ製品に組み
込まれた芯材の評価を、得られた真空断熱パネルを用い
て、断熱性能とその経時変化、および形状の経時変化に
ついて行った(以下に示す、実施例A〜G)。断熱性能
の評価は熱伝導率で行い、その測定には、栄弘精機
(株)社製の「オートラムダ」を用いた。また、断熱性
能の経時変化は、真空断熱パネルを50℃の雰囲気中に
任意の時間放置した後の熱伝導率を求め、その試料の作
成直後との変化によって評価した。形状の経時変化は、
特に収縮が判別し易い側部の変形について目視観察を行
った。
The core material obtained as described above and incorporated in the product was evaluated with respect to the heat insulating performance, its temporal change, and the temporal change of the shape by using the obtained vacuum heat insulating panel (hereinafter, referred to as a “temporal change”). Examples A to G). The heat insulation performance was evaluated based on the thermal conductivity, and “Auto Lambda” manufactured by Eiko Seiki Co., Ltd. was used for the measurement. Further, the change with time of the heat insulation performance was evaluated by determining the thermal conductivity after leaving the vacuum heat insulation panel in an atmosphere at 50 ° C. for an arbitrary time, and evaluating the change with the change immediately after the sample was prepared. The change over time of the shape
In particular, visual observations were made on the deformation of the side portion where shrinkage was easily determined.

【0036】実施例A 以下に、断熱性能の向上効果の確認について述べる。ま
ず、本発明の実施例1〜実施例3に試料として用いた芯
材の組成を、表1に示す。
Example A The confirmation of the effect of improving the heat insulating performance will be described below. First, the composition of the core material used as a sample in Examples 1 to 3 of the present invention is shown in Table 1.

【0037】[0037]

【表1】 [Table 1]

【0038】硬質ポリウレタンフォームは単体で発泡し
たときの密度が45kg/m3 、フレーク状マイカは平
均直径が1.0mmのものを用いた。硬質ポリウレタン
フォームの2液とフレーク状マイカをビーカにとった
後、ただちに高速攪拌機にて攪拌を行い、500L×3
00W×30T(mm)で45℃に調温した金型の短辺
側に投入した。このとき、金型を完全充填させる必要最
低量に対し、10%の過剰充填量を投入、金型を密封状
態にして7分間の静置後、ボード状成型品を得た。芯材
にはこのボード状成型品の表面層2.5mmを削除し
て、さらに180×180(mm)の大きさに切断した
板を用いた。
The rigid polyurethane foam used had a density of 45 kg / m 3 when foamed alone, and the flaky mica used had an average diameter of 1.0 mm. After taking the two liquids of the rigid polyurethane foam and the flake-like mica into a beaker, immediately stir with a high-speed stirrer to obtain 500 L × 3
The temperature was adjusted to 45 ° C. at 00 W × 30 T (mm), and the mold was charged into the short side. At this time, an excess filling amount of 10% with respect to the minimum necessary amount for completely filling the mold was charged, and the mold was hermetically sealed and allowed to stand for 7 minutes to obtain a board-shaped molded product. As the core material, a board obtained by removing the surface layer of 2.5 mm from the board-shaped molded product and further cutting the board into a size of 180 × 180 (mm) was used.

【0039】また、本発明の比較例として、従来の真空
断熱パネルとして特開昭60−243471号公報で代
表される連通気泡の硬質ポリウレタンフォーム(比較例
1)、及び特開昭62−13979号公報で示された輻
射熱の遮蔽効果に優れたアルミ箔を連通気泡の硬質ポリ
ウレタンフォームの薄板の間に配設したもの(比較例
2)を、各々芯材に用いた。比較例1である連通気泡の
硬質ポリウレタンフォームは、密度が45kg/m3
セルサイズが300μmのものを用いた。また、比較例
2として上記の硬質ポリウレタンフォームを中央部分で
切断したものに厚さが10μmのアルミ箔を挾み込んだ
ものを、同様の芯材として用いた。
As comparative examples of the present invention, open-cell rigid polyurethane foam (comparative example 1) represented by JP-A-60-243471 as a conventional vacuum insulation panel, and JP-A-62-13979. Each of aluminum foils having an excellent radiation heat shielding effect disclosed in the gazette and disposed between thin plates of open-celled rigid polyurethane foam (Comparative Example 2) was used as the core material. The open-celled rigid polyurethane foam of Comparative Example 1 had a density of 45 kg / m 3 ,
A cell having a cell size of 300 μm was used. As Comparative Example 2, a core obtained by cutting the above rigid polyurethane foam at the center and sandwiching an aluminum foil having a thickness of 10 μm was used as a similar core material.

【0040】試料とする真空断熱パネルは、上述した各
芯材の厚さを20mm、面大きさを180×180mm
の大きさに切断、これを150℃で1時間程度乾燥した
後に使用した。試料とする真空断熱パネルは、110℃
で30分乾燥した多層シートで作った包装材内に挿入
後、100 〜10-3Torrの任意の真空雰囲気中で熱
シールすることによって得た。
The vacuum insulation panel used as a sample has a thickness of 20 mm and a surface size of 180 × 180 mm for each of the above core materials.
It was used after being dried at 150 ° C. for about 1 hour. The vacuum insulation panel used as the sample is 110 ° C
And then heat-sealed in an arbitrary vacuum atmosphere of 10 0 to 10 -3 Torr.

【0041】実施例1〜実施例3の試料に加えて、連通
気泡の硬質ポリウレタンフォームの芯材を用いた比較例
1、アルミ箔を連通気泡の硬質ポリウレタンフォームの
間に挾んだ芯材を用いた比較例2を、各々、熱シールす
るときの真空度が101 〜10-3Torrの任意の真空
度で調整した真空断熱パネルの同様試料を作製、これら
試料の断熱性能の真空依存性に関する評価結果を図6に
示す。表2に、図6の結果より、真空度が10-2Tor
r相当のときの断熱性能と50℃の雰囲気中に最大30
日間放置後の経時変化、さらに変形の評価結果を示し
た。
Comparative Example 1 using a rigid polyurethane foam core having open cells in addition to the samples of Examples 1 to 3, a core material in which an aluminum foil was sandwiched between rigid polyurethane foams having open cells. In Comparative Example 2 used, similar samples of vacuum insulation panels were prepared in which the degree of vacuum at the time of heat sealing was adjusted to an arbitrary degree of vacuum of 10 1 to 10 −3 Torr, and the vacuum dependence of the heat insulating performance of these samples was prepared. FIG. 6 shows the results of the evaluation. Table 2 shows that the degree of vacuum was 10 −2 Torr from the results of FIG.
Heat insulation performance at r equivalent and up to 30 in 50 ° C atmosphere
Changes over time after standing for a day, and the results of evaluation of deformation were also shown.

【0042】[0042]

【表2】 [Table 2]

【0043】以上の結果から、硬質ポリウレタンフォー
ムの発泡、流動によってマイカを面方向に配向させた芯
材を用いた本発明である真空断熱パネルの断熱性能は、
従来の連通気泡の硬質ポリウレタンフォームに比べて、
約10ポイント以上の熱伝導率の低減、つまりの断熱性
の向上を達成できた。さらに、本発明品の経時変化につ
いても、熱伝導率及び変形のいずれとも、比較例1及び
比較例2として示した、フレーク状マイカを含まない従
来材である連通気泡の硬質ポリウレタンフォームを芯材
として用いた真空断熱パネルよりも安定した結果を示し
ていることが確認できた。
From the above results, the heat insulating performance of the vacuum heat insulating panel of the present invention using the core material in which mica is oriented in the plane direction by foaming and flowing of the rigid polyurethane foam is as follows:
Compared to conventional open-cell rigid polyurethane foam,
The thermal conductivity was reduced by about 10 points or more, that is, the heat insulation was improved. Further, as for the change with time of the product of the present invention, the core material is a rigid polyurethane foam having open cells, which is a conventional material not containing flaky mica, as shown in Comparative Examples 1 and 2 in both thermal conductivity and deformation. It was confirmed that the results showed more stable results than the vacuum heat insulating panel used as the sample.

【0044】実施例B 次に、本発明の材料組成であるフレーク状マイカの大き
さについて述べる。連続気泡の硬質ポリウレタンフォー
ムに充填するフレーク状のマイカの大きさが異なる材料
組成により、実施例Aと同様の成形方法で作製した芯材
及び評価方法を用いて、10-2Torrの真空雰囲気の
包装材料内に封入した真空断熱パネルに相当する試料と
しての断熱性能(初期値および50℃で10日間放置し
た後の経時変化後の値)を評価した。
Example B Next, the size of the flake mica which is the material composition of the present invention will be described. Using a core material prepared by the same molding method as in Example A and an evaluation method using a material composition having different sizes of flake-like mica to be filled in the open-celled rigid polyurethane foam, a vacuum atmosphere of 10 -2 Torr was used. The heat insulation performance (an initial value and a value after a change over time after being left at 50 ° C. for 10 days) as a sample corresponding to the vacuum heat insulation panel enclosed in the packaging material was evaluated.

【0045】用いたマイカフレークの平均直径は、表3
に示すごとく、連通気泡の硬質ポリウレタンフォームの
セルと同一の平均直径である0.1mmからその50倍
以上の7.0mmまで変化させた。これら平均直径の異
なるフレーク状マイカを含有した硬質ポリウレタンフォ
ームを混合、配向させた芯材にに関する断熱性能と10
日間の経時変化後の評価結果を表3に示す。
Table 3 shows the average diameter of the mica flakes used.
As shown in the figure, the average diameter was changed from 0.1 mm which is the same as the cell of the open-celled rigid polyurethane foam to 7.0 mm which is 50 times or more thereof. The heat insulation performance of the core material obtained by mixing and orienting the rigid polyurethane foams containing the flaky mica having different average diameters is 10%.
Table 3 shows the results of the evaluation after a change over time of days.

【0046】[0046]

【表3】 [Table 3]

【0047】以上の結果から、フレーク状マイカの平均
直径が0.2mm〜4.0mmの各実施例における熱伝
導率の差異はほとんどなく、50℃の雰囲気下で10日
間放置した経時変化後の熱伝導率にも大きな変化がみら
れず、実用にて支障をきたすこともない。しかし、比較
例3の、直径が0.05mmのフレーク状マイカを用い
た場合には熱伝導率の初期値が大きくなり、逆に、比較
例4で示した直径が7mm以上のフレーク状マイカを用
いた場合には、50℃の雰囲気下で10日間放置後した
経時変化後の熱伝導率に大きな変化がみられ、いずれの
場合にも実用に支障をきたす可能性が示唆された。
From the above results, there is almost no difference in the thermal conductivity between the examples in which the average diameter of the flaky mica is 0.2 mm to 4.0 mm, and after the change with time in the atmosphere at 50 ° C. for 10 days. There is no significant change in thermal conductivity, and there is no problem in practical use. However, when the flaky mica having a diameter of 0.05 mm of Comparative Example 3 was used, the initial value of the thermal conductivity became large, and conversely, the flaky mica having a diameter of 7 mm or more shown in Comparative Example 4 was used. When used, a large change was observed in the thermal conductivity after a lapse of time after being allowed to stand for 10 days in an atmosphere at 50 ° C., suggesting that any of these cases may hinder practical use.

【0048】実施例C 次に、アルミ箔を板状充填材として用いた場合について
述べる。連通気泡の硬質ポリウレタンフォームと平均直
径が1.0mmのアルミ箔との複合構造体となるよう
に、実施例Aと同様の成形方法で作製した芯材および評
価方法を用いて、10-2Torrの真空雰囲気の包装材
内に封入した真空断熱パネルに相当する試料としての断
熱性能(初期値および50℃で10日間放置した後の経
時変化後の値)を評価した。
Embodiment C Next, a case where aluminum foil is used as a plate-like filler will be described. Using a core material produced by the same molding method as in Example A and an evaluation method so as to obtain a composite structure of a rigid polyurethane foam having open cells and an aluminum foil having an average diameter of 1.0 mm, 10 −2 Torr. The heat insulation performance (initial value and the value after a lapse of 10 days of standing at 50 ° C.) of the sample corresponding to the vacuum heat insulating panel sealed in the packaging material in the vacuum atmosphere was evaluated.

【0049】表4に、上述した組成の芯材を用いた真空
断熱パネルを実施例6として示し、その効果を確認する
目的で、板状充填材にフレーク状マイカを用いた実施例
2、および連通気泡の硬質ポリウレタンフォームを芯材
を用いた比較例1、アルミ箔を連通気泡の硬質ポリウレ
タンフォームの間に挾んだ芯材を用いた比較例2につい
ても熱伝導率の初期値と50℃の雰囲気下で10日間放
置後の値を併記した。
Table 4 shows a vacuum insulation panel using the core material having the above-described composition as Example 6, and in order to confirm the effect, Example 2 using flake mica as the plate-like filler, and Comparative Example 1 using a rigid polyurethane foam having open cells as a core material and Comparative Example 2 using a core material sandwiching aluminum foil between rigid polyurethane foams having open cells also had an initial value of thermal conductivity and 50 ° C. The values after standing for 10 days in the atmosphere of are described.

【0050】[0050]

【表4】 [Table 4]

【0051】以上の結果、フレーク状マイカを用いた場
合よりもさらに断熱性能の向上が確認され、しかも、比
較例で示した連通気泡の硬質ポリウレタンフォームのよ
うに、事実上、断熱性能に支障を来すような経時劣化も
なく、有効であることが確認された。
As a result, it was confirmed that the heat insulation performance was further improved as compared with the case where flake mica was used, and that the heat insulation performance was substantially impaired as in the case of the open-celled rigid polyurethane foam shown in the comparative example. It was confirmed that the composition was effective without any deterioration with time.

【0052】実施例D 次に、硬質ポリウレタンフォームと、それを複合化した
板状充填材との離型剤が及ぼす断熱性能の劣化抑制の効
果について述べる。連通気泡の硬質ポリウレタンフォー
ムに表面に離型剤を塗布した平均直径が1.0mmのフ
レーク状マイカとの複合構造体となるよう、実施例Aと
同様の成形方法で作製した芯材および評価方法を用い
て、10-2Torrの真空雰囲気の包装材内に封入した
真空断熱パネルに相当する試料としての断熱性能(初期
値および50℃で10日間放置した後の経時変化後の
値)を評価した。
Example D Next, the effect of suppressing the deterioration of the heat insulating performance exerted by the release agent of the rigid polyurethane foam and the plate-like filler compounded with the rigid polyurethane foam will be described. A core material prepared by the same molding method as in Example A and an evaluation method so as to form a composite structure with a flaky mica having an average diameter of 1.0 mm obtained by applying a release agent to the surface of a rigid polyurethane foam having open cells and an evaluation method Was used to evaluate the heat insulation performance (initial value and value after a change over time after being left at 50 ° C. for 10 days) as a sample corresponding to a vacuum heat insulating panel sealed in a packaging material in a vacuum atmosphere of 10 −2 Torr. did.

【0053】表5に、上述した組成の芯材を用いた真空
断熱パネルを実施例6として示し、その効果を確認する
目的で、別の離型剤を用いた例を実施例2に示した。さ
らに、それら実施例の有効性を確認するために、離型剤
を塗布しないフレーク状マイカを用いた例を比較例5
に、充填剤を用いない連通気泡の硬質ポリウレタンフォ
ームのみを芯材に用いた比較例1についても、熱伝導率
の初期値と50℃の雰囲気下で10日間放置した後の値
を併記した。
Table 5 shows a vacuum heat insulating panel using the core material having the above-described composition as Example 6, and Example 2 using another mold release agent for the purpose of confirming the effect. . Furthermore, in order to confirm the effectiveness of these examples, an example using flaky mica to which no release agent was applied was compared with Comparative Example 5.
For Comparative Example 1 in which only open-celled rigid polyurethane foam without a filler was used for the core material, the initial value of the thermal conductivity and the value after standing for 10 days in an atmosphere at 50 ° C. are also shown.

【0054】[0054]

【表5】 [Table 5]

【0055】以上の結果、離型剤を板状充填材の表面に
塗布しなくても、断熱性能の初期値においては、比較例
5と比較例1との差異から、連通気泡の硬質ポリウレタ
ンフォームを芯材に用いることよりも遥かに優れた効果
が得られることが確認できた。しかし、経時変化後の数
値は実用に支障を来すと予測される程の悪化を示した。
これは、連通気泡の硬質ポリウレタンフォームを用いる
場合に、完全な連通化が比較例5では不十分であったこ
とから、残存する独立気泡内に二酸化炭素などの発泡ガ
スがセル外に放出され、これに伴う真空度の低下がもた
らす断熱性能の悪化現象であると考えられる。
As a result, even if the release agent was not applied to the surface of the plate-like filler, the difference between Comparative Example 5 and Comparative Example 1 in the initial value of the heat insulating performance was due to the difference between Comparative Example 5 and Comparative Example 1. It has been confirmed that a far superior effect can be obtained as compared with the case where is used as the core material. However, the numerical value after the change with time showed deterioration that was expected to hinder practical use.
This is because, when a rigid polyurethane foam having open cells is used, since complete openness was insufficient in Comparative Example 5, a foaming gas such as carbon dioxide was released out of the cells into the remaining closed cells, This is considered to be a deterioration phenomenon of heat insulation performance caused by a decrease in the degree of vacuum accompanying this.

【0056】これに対し、本発明による離型剤をフレー
ク状マイカの表面に塗布し、それによって発生する硬質
ポリウレタンフォームとの剥離が独立気泡の残存をなく
するという効果に関し、実施例6および実施例2と比較
例5との差異から経時劣化を抑制することが確認でき
た。
On the other hand, the release agent according to the present invention was applied to the surface of flake mica, and the resulting peeling off of the rigid polyurethane foam eliminates the residual closed cells. From the difference between Example 2 and Comparative Example 5, it was confirmed that deterioration with time was suppressed.

【0057】実施例E 次に、硬質ポリウレタンフォームに投入した板状充填材
を配向させることによる断熱性能の向上効果について述
べる。板状充填材の配向は、硬質ポリウレタンフォーム
の発泡速度を早くすることと、金型の厚さ(成型製品の
厚さ)に対する流動距離の比(以下、L/Tという)が
大きいことによって強くなる。
Example E Next, the effect of improving the heat insulating performance by orienting the plate-like filler charged in the rigid polyurethane foam will be described. The orientation of the plate-like filler is enhanced by increasing the foaming rate of the rigid polyurethane foam and by increasing the ratio of the flow distance to the thickness of the mold (thickness of the molded product) (hereinafter referred to as L / T). Become.

【0058】用いる連通気泡の硬質ポリウレタンフォー
ムの反応速度、およびL/Tを変えて作製した芯材を用
い、これを10-2Torrの真空雰囲気下で包装材内に
封入させた真空断熱パネルを試料として断熱性能を評価
した。なお、ここで用いた板状充填材は、平均直径が
1.0mmのフレーク状マイカを用い、これと連通気泡
の硬質ポリウレタンフォームとの複合構造体を得るた
め、実施例Aと同様の成形方法で作製した芯材および評
価方法を用いて、10-2Torrの真空雰囲気の包装材
内に封入した真空断熱パネルに相当する断熱性能(初期
値および50℃で10日間放置した後の経時変化後の
値)を評価した。
Using a core material prepared by changing the reaction rate of the open-celled rigid polyurethane foam used and the L / T, this was sealed in a packaging material under a vacuum atmosphere of 10 -2 Torr to form a vacuum insulation panel. The heat insulation performance was evaluated as a sample. The plate-like filler used here was flaky mica having an average diameter of 1.0 mm, and a molding method similar to that of Example A was used in order to obtain a composite structure with rigid polyurethane foam having open cells. Insulation performance equivalent to a vacuum insulation panel enclosed in a packaging material in a vacuum atmosphere of 10 -2 Torr using the core material prepared in the above and the evaluation method (initial value and after elapse of time after being left at 50 ° C. for 10 days) Was evaluated.

【0059】表6に、断熱性能の評価に用いる真空断熱
パネルの芯材を成型するときの流動速度の影響について
調べた結果を示す。硬質ポリウレタンフォームが泡立ち
初める発泡開始の時間(以下、CTという)から樹脂化
に至る時間(以下、GTという)までほぼ一定の速度で
発泡流動が進むことから、流動速度の指標となる、GT
−CT(秒)として示される反応速度を、用いる触媒の
量を変えて作製した芯材を実施例2および実施例7、実
施例8として組成とともに示した。
Table 6 shows the results of an examination on the influence of the flow rate when molding the core material of the vacuum heat insulating panel used for evaluating the heat insulating performance. Since the foaming flow proceeds at a substantially constant speed from the time at which foaming of the rigid polyurethane foam begins to foam (hereinafter, referred to as CT) to the time at which the rigid polyurethane foam starts to resinify (hereinafter, referred to as GT), GT which is an index of the flow speed
Core materials prepared by changing the reaction rate shown as -CT (second) and changing the amount of the catalyst used are shown together with the compositions as Example 2, Example 7, and Example 8.

【0060】[0060]

【表6】 [Table 6]

【0061】同様に、表6には、成形に用いた金型(3
00W×500L×30T)の長さ(流動距離)Lを変
えて、L/Tの異なる芯材を成形、これを用いて作製し
た真空断熱パネルの評価結果を、実施例2および実施例
7、実施例9、実施例10として示した。また、それら
の効果を確認する目的で、反応速度を遅くした硬質ポリ
ウレタンフォームから得た芯材を用いた例を比較例6、
L/Tの小さな金型から得られた芯材を用いた例を比較
例7として示し、熱伝導率の初期値と50℃の雰囲気下
で10日間放置後の値を、各々併記した。
Similarly, Table 6 shows the dies (3
(W × 500L × 30T), the length (flow distance) L was changed, and core materials having different L / Ts were formed. The evaluation results of the vacuum heat insulating panels manufactured using the core materials were shown in Examples 2 and 7, This is shown as Example 9 and Example 10. Further, for the purpose of confirming their effects, Comparative Example 6 using a core material obtained from a rigid polyurethane foam having a reduced reaction rate,
An example using a core material obtained from a mold having a small L / T is shown as Comparative Example 7, in which the initial value of the thermal conductivity and the value after standing for 10 days in an atmosphere of 50 ° C. are also shown.

【0062】以上のごとく、実施例2から実施例7さら
に実施例8へと反応速度を変化させた場合、断熱性能は
明らかに向上の傾向を有することが確認できた。逆に、
比較例6で示したように、反応速度が遅い場合には、急
激な断熱性能の低下をもたらすことも確認できた。これ
らの低下の要因については、流動に伴う壁面との速度比
から生まれる剪断力を最小限に止めようとすることによ
ってもたらされる板状充填材であるフレーク状マイカの
面方向への配向によるものと考えられる。
As described above, it was confirmed that when the reaction rate was changed from Example 2 to Example 7, and then to Example 8, the heat insulating performance clearly had a tendency to improve. vice versa,
As shown in Comparative Example 6, it was also confirmed that when the reaction rate was low, the heat insulation performance was sharply reduced. The cause of these reductions is due to the orientation of the flake-like mica, which is a plate-like filler, caused by trying to minimize the shearing force generated from the velocity ratio with the wall due to flow in the plane direction. Conceivable.

【0063】また、L/Tについても、実施例10から
実施例2、さらに実施例9へと大きくなると、断熱性能
が同様に向上する傾向を確認しており、逆に、L/Tが
非常に小さい比較例7では断熱性能の悪化傾向を示して
おり、上述した流動の剪断力による充填材の配向が要因
として大いに寄与しているものと考えられる。
Also, with respect to the L / T, it was confirmed that the heat insulation performance tended to be improved when the values of the L / T were increased from Example 10 to Example 2 and further to Example 9. On the contrary, the L / T was extremely low. In Comparative Example 7, which is smaller than the above, the heat insulating performance tends to deteriorate, and it is considered that the orientation of the filler due to the shearing force of the flow greatly contributes as a factor.

【0064】断熱性能の経時変化についても、適正な条
件下で得られた各実施例では1〜3ポイントの変化に止
まる結果が得られたが、比較例で示した剪断のかかりに
くい流動形態をとった場合には7〜9ポイントもの悪化
をもたらした。これも、本来、厚さ方向の配向にかかる
板状充填材との剥離が連続性をもたらしやすい亀裂を得
るものであるのに対して、不十分な配向状態では非連続
となって発泡ガスが残存しやすい状況を生み、それらの
ガスの漏洩から真空度の低下が断熱性能の悪化をもたら
す結果を招いたものと考えられる。
With respect to the change with time of the heat insulation performance, in each of the examples obtained under the proper conditions, the result was obtained that the change was limited to 1 to 3 points. If it did, it would cause 7-9 points worse. This is also intended to obtain cracks that tend to cause continuity due to peeling off from the plate-like filler in the thickness direction. It is considered that a situation in which the gas easily leaks is caused, and a reduction in the degree of vacuum caused by the leakage of the gas results in deterioration of the heat insulation performance.

【0065】実施例F 次に、発泡成型品の表面層削除による断熱性能の安定性
向上効果について述べる。硬質ポリウレタンフォームの
最表面には樹脂の薄皮層が存在し、さらにその下には高
密度なスキン層を有した後、コア層と呼ばれる均質で安
定した品質を有するコア層がある。このうち、スキン層
までは金型との流動抵抗が大きく、金型内を流動せずに
コア層との界面で割れて、金型面にほとんど滞留した結
果として生成される高密度な層である。従って、スキン
層までの表面層には流動に伴う泡同士または板状充填材
との間で剪断力が働かず、独立気泡が多く残存すること
が考えられる。
Example F Next, the effect of improving the stability of heat insulation performance by removing the surface layer of a foam molded article will be described. On the outermost surface of the rigid polyurethane foam, there is a thin skin layer of a resin, and further below it is a core layer having a uniform and stable quality called a core layer after having a high-density skin layer. Of these, the flow resistance with the mold is large up to the skin layer, it is a high-density layer generated as a result of cracking at the interface with the core layer without flowing in the mold and almost staying on the mold surface is there. Therefore, in the surface layer up to the skin layer, a shear force does not act between bubbles accompanying the flow or between the foam and the plate-like filler, and it is considered that many closed cells remain.

【0066】板状充填材を含有する連通気泡硬質ポリウ
レタンフォームの成型品を実施例Aと同様の成形方法で
作製した芯材および評価方法を用いて、10-2Torr
の真空雰囲気の包装材内に封入した真空断熱パネルに相
当する断熱性能(初期値および50℃で10日間放置し
た後の経時変化後の値)を評価した。なお、ここで表面
層から任意の厚さを均一に削除した芯材を作製して用
い、板状充填材には平均直径が1.0mmのフレーク状
マイカを用いて、これと連通気泡の硬質ポリウレタンフ
ォームとの複合構造体を得た。
A molded article of an open-celled rigid polyurethane foam containing a plate-like filler was manufactured using a core material prepared by the same molding method as in Example A and an evaluation method, and 10 −2 Torr.
Was evaluated for the heat insulation performance (initial value and value after a change over time after being left at 50 ° C. for 10 days) corresponding to the vacuum heat insulating panel sealed in the packaging material in the vacuum atmosphere. Here, a core material having an arbitrary thickness removed from the surface layer was prepared and used, and flake-like mica having an average diameter of 1.0 mm was used as the plate-like filler, and the rigidity of the bubbles communicated therewith. A composite structure with a polyurethane foam was obtained.

【0067】表7に、断熱性能を評価する真空断熱パネ
ルに用いた芯材の組成と、その芯材を得るために板状成
型品の表面層を削除する量について、実施例2および実
施例11、実施例12として示した。成形に用いた金型
(300W×500L×30T)の長さLと厚さTを変
えてL/Tを一定(16.6)としたうえで、厚さTを
25mm、30mm、40mmの板状成型品を作製し、
これから表裏各2.5mm、5.0mm、10.0mm
を削除して20mm厚の芯材を成形した。真空断熱パネ
ルはこれら表面削除量の異なる芯材を用いて作製し、そ
の熱伝導率の評価結果を、実施例2および実施例11、
実施例12に示した。
Table 7 shows the composition of the core material used for the vacuum insulation panel for evaluating the heat insulation performance and the amount of the surface layer of the plate-shaped molded product to be removed in order to obtain the core material. 11 and Example 12. After changing the length L and the thickness T of the mold (300W × 500L × 30T) used for molding to make L / T constant (16.6), the thickness T is set to 25 mm, 30 mm, and 40 mm. Produce a shaped product,
From now on each side 2.5mm, 5.0mm, 10.0mm
Was removed to form a core material having a thickness of 20 mm. Vacuum insulation panels were manufactured using these core materials having different surface removal amounts, and the evaluation results of the thermal conductivity thereof were evaluated in Examples 2 and 11,
This is shown in Example 12.

【0068】[0068]

【表7】 [Table 7]

【0069】また、この表面層の削除による熱伝導率の
安定確保を確認する目的で、表面層を削除しない例を比
較例8に、削除する量を少なくした例を比較例9に、各
々板状成型品のL/Tを一定とした上記と同様の方法で
得た芯材を用いた真空断熱パネルについて、熱伝導率の
初期値と50℃の雰囲気下で10日間放置後の値を併記
した。
In order to confirm the stability of thermal conductivity by removing the surface layer, an example in which the surface layer is not removed is shown in Comparative Example 8 and an example in which the amount of the removed surface layer is reduced is shown in Comparative Example 9. For the vacuum insulation panel using the core material obtained by the same method as above with the L / T of the molded article being constant, the initial value of the thermal conductivity and the value after being left for 10 days in an atmosphere of 50 ° C. are also described. did.

【0070】以上の結果、実施例2、11、12の断熱
性能にはほとんど差異がなく、かつ経時変化もきわめて
少ない安定した結果が得られた。これに対し、比較例で
示した表面層の削除量が少ない場合には、断熱性能の初
期値には実施例との間で差異がない反面、経時変化につ
いては表面層を削除する量に応じて悪化の生じることが
確認できた。表面層を削除する量に応じて経時変化が抑
制でき、削除しない場合の悪化量が最も大きい傾向を有
する。比較例における削除量では、実用に耐えうること
が不可能であるといえる。
As a result, there was almost no difference in the heat insulation performance between Examples 2, 11, and 12, and a stable result with little change with time was obtained. On the other hand, when the removal amount of the surface layer shown in the comparative example is small, the initial value of the heat insulation performance is not different from that of the embodiment, but the change with time depends on the removal amount of the surface layer. It was confirmed that deterioration occurred. The change with time can be suppressed in accordance with the amount of the surface layer to be deleted, and the amount of deterioration when the surface layer is not deleted tends to be largest. It can be said that it is impossible to endure practical use with the deletion amount in the comparative example.

【0071】実施例G 次に、本発明に係る真空断熱パネルを用いた冷蔵庫の運
転性能を測定し、その効果を確認した。まず、アルミ箔
を中間層に有する包装材を用いて実施例Aに示す実施例
1と同じ方法で作製した真空断熱パネルを用い、薄板鋼
板の折り曲げ加工によって得られた外箱8にABS樹脂
の真空成型によって得られた内箱9を嵌合して形成され
た空間に、図5に示すごとく、外箱8側に真空断熱パネ
ル7を貼り付けて配設した。この状態で、図6に示すよ
うに、残りの空間に硬質ポリウレタンフォーム10を注
入、発泡させ充填することで完全固定させた。
Example G Next, the operation performance of a refrigerator using the vacuum insulation panel according to the present invention was measured, and its effect was confirmed. First, using a vacuum insulation panel produced by the same method as in Example 1 shown in Example A using a packaging material having an aluminum foil in the intermediate layer, the outer box 8 obtained by bending a thin steel plate was used to form an ABS resin. As shown in FIG. 5, a vacuum heat insulating panel 7 was attached to the outer box 8 side in a space formed by fitting the inner box 9 obtained by vacuum molding. In this state, as shown in FIG. 6, the rigid polyurethane foam 10 was injected into the remaining space, foamed, and filled to be completely fixed.

【0072】上記方法で作製した断熱箱体を用いて組み
立てた400Lクラスの冷蔵庫を実施例13とした。一
方、実施例Aに示す比較例1と同じ方法で作製した芯材
を連通気泡の硬質ポリウレタンフォームを芯材とした真
空断熱パネルを用いて同様に作製した断熱箱体を用いた
冷蔵庫を比較例10、内箱と外箱の間隙のすべてを硬質
ポリウレタンフォームで充填した断熱箱体を比較例11
とし、これらすべての冷蔵庫をJIS9607における
消費電力B法測定法に準拠して消費電力を求め、表8に
併記した。
Example 13 A 400 L class refrigerator assembled using the heat insulating box produced by the above method was used as Example 13. On the other hand, a refrigerator using a heat-insulating box similarly manufactured using a vacuum heat-insulating panel using a rigid polyurethane foam having open cells as the core and made by the same method as in Comparative Example 1 shown in Example A was used as a comparative example. 10. Comparative Example 11: Insulated box in which all the gaps between the inner box and the outer box were filled with rigid polyurethane foam
The power consumption of all these refrigerators was determined in accordance with the power consumption B method measurement method in JIS 9607, and is also shown in Table 8.

【0073】[0073]

【表8】 [Table 8]

【0074】以上の結果から、本発明の真空断熱パネル
を用いた冷蔵庫の消費電力量は、硬質ポリウレタンフォ
ームのみを断熱材として用いた比較例11の従来の冷蔵
庫に比較して少なく、箱体の断熱性能が有為に優れてい
ることが解った。しかも、同様の真空断熱パネルを断熱
材の一部に用いた冷蔵庫と比較しても、連通気泡の硬質
ポリウレタンフォームが芯材である従来仕様の真空断熱
パネルを用いた比較例10の冷蔵庫より、消費電力量が
少ない冷蔵庫を得られることも確認できた。
From the above results, the power consumption of the refrigerator using the vacuum heat insulating panel of the present invention was smaller than that of the conventional refrigerator of Comparative Example 11 using only the rigid polyurethane foam as the heat insulating material. It was found that the heat insulation performance was significantly superior. Moreover, compared to the refrigerator using the same vacuum insulation panel as a part of the heat insulating material, the refrigerator of Comparative Example 10 using the conventional vacuum heat insulation panel in which the rigid polyurethane foam having open cells is the core material, It was also confirmed that a refrigerator with low power consumption can be obtained.

【0075】以上、本発明の実施の形態である冷蔵庫に
ついて説明したが、本発明はこれに限定されるものでは
なく、例えば、車載用小型冷蔵庫やプレハブ式簡易冷蔵
庫、保冷車やパイプや建築物の保温材など、保温および
保冷用製品の断熱用部品としての応用も可能であり、そ
の要旨を脱し得ない範囲で種々変形して実施することが
できる。
The refrigerator according to the embodiment of the present invention has been described above. However, the present invention is not limited to this. For example, a small refrigerator mounted on a car, a simple prefabricated refrigerator, a refrigerator car, a pipe, a building or the like may be used. It is also possible to apply the product for heat insulation and cold insulation as a heat insulation part, such as a heat insulation material, and various modifications can be made without departing from the gist of the invention.

【0076】[0076]

【発明の効果】以上の説明から明らかなように、本発明
によれば、次のような効果を得ることができる。なお、
説明に当たっては、請求項の番号と同じ番号を付してそ
れぞれの請求項の効果を記述する。
As is clear from the above description, according to the present invention, the following effects can be obtained. In addition,
In the description, the same numbers as those in the claims are used to describe the effects of each claim.

【0077】(1) 本発明に係る真空断熱パネルは、
芯材によって形状を保持されてなる真空断熱パネルであ
って、芯材を板状充填材を含有する連通気泡の硬質ポリ
ウレタンフォームからなる多孔体で構成したので、真空
状態のパネル形状を保持することができ、熱伝達と輻射
伝達の量を抑制でき、断熱性も大きい。
(1) The vacuum insulation panel according to the present invention comprises:
A vacuum insulation panel whose shape is maintained by a core material, wherein the core material is formed of a porous body made of open-celled rigid polyurethane foam containing a plate-like filler, so that the panel shape in a vacuum state is maintained. The amount of heat transfer and radiant transfer can be suppressed, and the heat insulating property is also large.

【0078】(2) 上記(1)の板状充填材の面を芯
材の面方向と平行に配向させたので、板状充填材の面が
熱の貫通方向と直交する方向に配向され、輻射熱の遮蔽
効果向上による優れた断熱性能とその経時安定性を確保
することができる。 (3) 上記(1)又は(2)の板状充填材に無機物ま
たは金属の少なくとも一方を用いたので、輻射熱を反射
し易く、その遮断効果によって断熱性が向上する。 (4) 上記(3)の板状充填材にフレーク状マイカを
用いたので、輻射熱を反射し易く、その遮蔽効果によっ
て断熱性が向上する。
(2) Since the surface of the plate-like filler in the above (1) is oriented parallel to the surface direction of the core material, the surface of the plate-like filler is oriented in a direction orthogonal to the direction of heat penetration. Excellent heat insulation performance due to the improvement of the radiation heat shielding effect and its temporal stability can be ensured. (3) Since at least one of an inorganic substance and a metal is used for the plate-like filler of the above (1) or (2), radiant heat is easily reflected, and the heat insulating effect is improved by its blocking effect. (4) Since flaky mica is used for the plate-like filler of (3), radiant heat is easily reflected, and the heat insulating effect is improved by its shielding effect.

【0079】(5) 上記(3)の板状充填材にプラス
チックスフィルムを用いたので、輻射熱を反射し易く、
その遮蔽効果によって断熱性が向上する。 (6) 上記(3)の板状充填材に金属薄膜を被覆した
プラスチックスフィルムを用いたので、輻射熱を反射し
やすく、その遮蔽効果によって断熱性が向上する。
(5) Since a plastic film is used for the plate-like filler of the above (3), radiant heat is easily reflected,
The heat insulating property is improved by the shielding effect. (6) Since the plastics film in which the plate-like filler of the above (3) is coated with a metal thin film is used, radiant heat is easily reflected, and the heat insulating property is improved by its shielding effect.

【0080】(7) 上記(3)の板状充填材に金属箔
を用いたので、輻射熱を反射しやすく、その遮蔽効果に
よって断熱性が向上する (8) 上記(6)又は(7)の金属薄膜または金属箔
にアルミニウムを用いたので、輻射熱を反射しやすく、
その遮蔽効果によって断熱性が向上する。
(7) Since metal foil is used for the plate-like filler of (3), radiant heat is easily reflected, and the heat insulating property is improved by its shielding effect. (8) The above (6) or (7) Since aluminum is used for the metal thin film or metal foil, it is easy to reflect radiant heat,
The heat insulating property is improved by the shielding effect.

【0081】(9) 上記(1),(2),(3),
(4),(5),(6),(7)又は(8)の板状充填
材の表面に離型剤を塗布したので、ウレタン樹脂と板状
充填材が剥離する際にセルの連通化がより確実に達成さ
れ、また、より確実に貫通される。しかも、その剥離が
新たな空隙を形成して真空中での熱の伝搬を妨げる効果
も生み、飛躍的に断熱性が向上する。 (10) 上記(1),(2),(3),(4),
(5),(6),(7),(8)又は(9)の板状充填
材の大きさを硬質ポリウレタンフォームのセルサイズよ
りも大きくしたので、セルの連通化を効率よく促進させ
ることができる。 (11) 上記(1)又は(2)の芯材の表面層を削除
したので、輻射熱の遮蔽効果が向上して、優れた断熱性
能と経時安定性を確保することができる。
(9) The above (1), (2), (3),
Since the release agent was applied to the surface of the plate-like filler of (4), (5), (6), (7) or (8), the cells were connected when the urethane resin and the plate-like filler were separated. Ventilation is more reliably achieved and more reliably penetrated. In addition, the peeling has the effect of forming new voids and preventing the propagation of heat in a vacuum, so that the heat insulation is dramatically improved. (10) The above (1), (2), (3), (4),
(5) Since the size of the plate-like filler of (6), (7), (8) or (9) is larger than the cell size of the rigid polyurethane foam, efficient communication of cells is promoted. Can be. (11) Since the surface layer of the core material of (1) or (2) is deleted, the effect of shielding radiant heat is improved, and excellent heat insulating performance and temporal stability can be secured.

【0082】(12) 本発明にかかる真空断熱パネル
の製造方法は、板状充填材と硬質ポリウレタンフォーム
の原料液を混合して板状成型型の端部から注入し、この
端部から発泡させて流れ方向にシェアをかけ、板状充填
材の面を板状成型品の面方向と平行に配向させるように
したので、板状充填材を伝熱方向と直角に配向でき、輻
射伝熱の遮断により一層の断熱性向上が可能となる。
(12) In the method for manufacturing a vacuum heat insulating panel according to the present invention, a plate-like filler and a raw material liquid for a rigid polyurethane foam are mixed, injected from the end of a plate-like molding die, and foamed from this end. The plate-shaped filler is oriented parallel to the surface direction of the plate-shaped molded product, so that the plate-shaped filler can be oriented at right angles to the heat transfer direction. The insulation can further improve the heat insulation.

【0083】(13) 上記(12)の板状充填材に離
型剤を塗布し、板状充填材を硬質ポリウレタンフォーム
の原料液であるプレミックス液とイソシアネート液を混
合する直前に投入し、これらの混合原料を発泡に間に合
うように板状成型型の端部から注入し、この端部から発
泡させてその後の発泡により流れ方向にシェアをかけ、
板状充填材の面を板状成型品の面方向と平行に配向させ
るようにしたので、板状充填材を伝熱方向と直角に配向
でき、輻射伝熱の遮断により一層の断熱性向上が可能と
なる。また、製造時の取扱いが容易で、量産性に優れ
る。
(13) A release agent is applied to the plate-like filler of the above (12), and the plate-like filler is introduced just before mixing the premix solution, which is a raw material solution of the rigid polyurethane foam, with the isocyanate solution. Inject these mixed raw materials from the end of the plate-shaped mold in time for foaming, foam from this end, and apply shear in the flow direction by subsequent foaming,
Since the surface of the plate-shaped filler is oriented parallel to the surface direction of the plate-shaped molded product, the plate-shaped filler can be oriented at right angles to the heat transfer direction. It becomes possible. In addition, it is easy to handle at the time of manufacturing and is excellent in mass productivity.

【0084】(14) 上記(12)又は(13)の硬
質ポリウレタンフォームの発泡速度を大きくしたので、
断熱性能を大幅に向上させることができる。 (15) 上記(12)又は(13)の発泡液の流動距
離Lに対する成型品厚さTの比率L/Tを、10以上に
したので、断熱性能を大幅に向上させることができる。
(14) Since the foaming rate of the rigid polyurethane foam of the above (12) or (13) has been increased,
Heat insulation performance can be greatly improved. (15) Since the ratio L / T of the molded product thickness T to the flow distance L of the foaming liquid in the above item (12) or (13) is set to 10 or more, the heat insulation performance can be greatly improved.

【0085】(16) 本発明にかかる冷蔵庫は、板状
充填材を含有する連続気泡の硬質ポリウレタンフォーム
を芯材とした真空断熱パネルを内箱と外箱の間に配設し
たので、断熱性が増して消費電力の低減が達成できる。
(16) In the refrigerator according to the present invention, a vacuum insulation panel having a core made of open-celled rigid polyurethane foam containing a plate-like filler is disposed between the inner box and the outer box. And power consumption can be reduced.

【0086】(17) 上記(16)の真空断熱パネル
を内箱又は外箱に貼り付け、残った空間に硬質ポリウレ
タンフォームを充填したので、上記(16)の効果と共
に外箱と内箱を完全に固定でき、また従来の構造仕様を
変更する必要もない。
(17) The vacuum insulation panel of (16) is attached to the inner box or outer box, and the remaining space is filled with rigid polyurethane foam. And there is no need to change the conventional structural specifications.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 真空断熱パネルの製造工程を示す説明図であ
る。
FIG. 1 is an explanatory view showing a manufacturing process of a vacuum heat insulating panel.

【図2】 真空断熱パネル製造装置を示す側面図であ
る。
FIG. 2 is a side view showing a vacuum insulation panel manufacturing apparatus.

【図3】 真空断熱パネルを用いた製品組立工程を示す
説明図である。
FIG. 3 is an explanatory view showing a product assembling process using a vacuum heat insulating panel.

【図4】 真空断熱パネルを組込んだ製品の斜視図であ
る。
FIG. 4 is a perspective view of a product incorporating a vacuum insulation panel.

【図5】 図4の要部の縦断面図である。FIG. 5 is a longitudinal sectional view of a main part of FIG. 4;

【図6】 断熱性能の真空度依存性を示す線図である。FIG. 6 is a diagram showing the degree of vacuum dependence of heat insulation performance.

【図7】 各断熱材の断熱性能を比較した説明図であ
る。
FIG. 7 is an explanatory diagram comparing the heat insulating performance of each heat insulating material.

【符号の説明】[Explanation of symbols]

2 芯材、7 真空断熱パネル、8 外箱、9 内箱、
10 硬質ポリウレタンフォーム。
2 core material, 7 vacuum insulation panel, 8 outer box, 9 inner box,
10 Rigid polyurethane foam.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B29K 105:16 105:20 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI B29K 105: 16 105: 20

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 芯材によって形状を保持されてなる真空
断熱パネルにおいて、 前記芯材を、板状充填材を含有する連通気泡の硬質ポリ
ウレタンフォームからなる多孔体で構成したことを特徴
とする真空断熱パネル。
1. A vacuum heat insulating panel whose shape is maintained by a core material, wherein the core material is constituted by a porous body made of open-celled rigid polyurethane foam containing a plate-like filler. Insulation panel.
【請求項2】 板状充填材の面を芯材の面方向と平行に
配向させたことを特徴とする請求項1に記載の真空断熱
パネル。
2. The vacuum heat insulating panel according to claim 1, wherein the surface of the plate-like filler is oriented parallel to the surface direction of the core material.
【請求項3】 板状充填材に無機物または金属の少なく
とも一方を用いたことを特徴とする請求項1又は2記載
の真空断熱パネル。
3. The vacuum insulation panel according to claim 1, wherein at least one of an inorganic substance and a metal is used as the plate-like filler.
【請求項4】 板状充填材にフレーク状マイカを用いた
ことを特徴とする請求項3記載の真空断熱パネル。
4. The vacuum insulation panel according to claim 3, wherein flake mica is used as the plate-like filler.
【請求項5】 板状充填材にプラスチックスフィルムを
用いたことを特徴とする請求項3記載の真空断熱パネ
ル。
5. The vacuum insulation panel according to claim 3, wherein a plastic film is used as the plate-like filler.
【請求項6】 板状充填材に金属薄膜を被覆したプラス
チックスフィルムを用いたことを特徴とする請求項3記
載の真空断熱パネル。
6. The vacuum insulation panel according to claim 3, wherein a plastic film in which a plate-like filler is coated with a metal thin film is used.
【請求項7】 板状充填材に金属箔を用いたことを特徴
とする請求項3記載の真空断熱パネル。
7. The vacuum insulation panel according to claim 3, wherein a metal foil is used as the plate-like filler.
【請求項8】 金属薄膜または金属箔にアルミニウムを
用いたことを特徴とする請求項6または7記載の真空断
熱パネル。
8. The vacuum insulation panel according to claim 6, wherein aluminum is used for the metal thin film or the metal foil.
【請求項9】 板状充填材の表面に離型剤を塗布したこ
とを特徴とする請求項1,2,3,4,5,6,7又は
8記載の真空断熱パネル。
9. The vacuum heat insulating panel according to claim 1, wherein a release agent is applied to a surface of the plate-like filler.
【請求項10】 板状充填材の大きさを硬質ポリウレタ
ンフォームのセルサイズよりも大きくしたことを特徴と
する請求項1,2,3,4,5,6,7,8又は9記載
の真空断熱パネル。
10. The vacuum according to claim 1, wherein the size of the plate-like filler is larger than the cell size of the rigid polyurethane foam. Insulation panel.
【請求項11】 芯材の表面層を削除したことを特徴と
する請求項1又は2記載の真空断熱パネル。
11. The vacuum insulation panel according to claim 1, wherein a surface layer of the core material is omitted.
【請求項12】 板状充填材と硬質ポリウレタンフォー
ムの原料液を混合して板状成型型の端部から注入し、該
端部から発泡させて流れ方向にシェアをかけ、前記板状
充填材の面を板状成型品の面方向と平行に配向させるこ
とを特徴とする真空断熱パネルの製造方法。
12. The plate-like filler is mixed with a raw material liquid of the rigid polyurethane foam, injected from an end of the plate-like molding die, foamed from the end, and subjected to shear in the flow direction. Characterized in that the surface is oriented parallel to the surface direction of the plate-like molded product.
【請求項13】 板状充填材に離型剤を塗布し、該板状
充填材を硬質ポリウレタンフォームの原料液であるプレ
ミックス液とイソシアネート液を混合する直前に投入
し、これらの混合原料を発泡に間に合うように板状成型
型の端部から注入し、該端部から発泡させてその後の発
泡により流れ方向にシェアをかけ、前記板状充填材の面
を板状成型品の面方向と平行に配向させることを特徴と
する請求項12記載の真空断熱パネルの製造方法。
13. A release agent is applied to the plate-like filler, and the plate-like filler is charged immediately before mixing a premix solution and a isocyanate solution, which are raw material liquids for a rigid polyurethane foam, and these mixed raw materials are mixed. Inject from the end of the plate-shaped molding die in time for foaming, foam from the end and apply shear in the flow direction by subsequent foaming, and make the surface of the plate-shaped filler and the surface direction of the plate-shaped molded product The method for manufacturing a vacuum insulation panel according to claim 12, wherein the panel is oriented in parallel.
【請求項14】 硬質ポリウレタンフォームの発泡速度
を大きくしたことを特徴とする請求項12又は13記載
の真空断熱パネルの製造方法。
14. The method for producing a vacuum insulation panel according to claim 12, wherein the foaming rate of the rigid polyurethane foam is increased.
【請求項15】 発泡液の流動距離Lに対する成型品厚
さTの比率L/Tを、10以上にしたことを特徴とする
請求項12又は13記載の真空断熱パネルの製造方法。
15. The method according to claim 12, wherein the ratio L / T of the thickness T of the molded product to the flow distance L of the foaming liquid is set to 10 or more.
【請求項16】 板状充填材を含有する連続気泡の硬質
ポリウレタンフォームを芯材とした真空断熱パネルを内
箱と外箱の間に配設したことを特徴とする冷蔵庫。
16. A refrigerator characterized in that a vacuum insulation panel having a core of open-celled rigid polyurethane foam containing a plate-like filler is disposed between an inner box and an outer box.
【請求項17】 真空断熱パネルを内箱又は外箱に貼り
付け、残った空間に硬質ポリウレタンフォームを充填し
たことを特徴とする請求項16記載の冷蔵庫。
17. The refrigerator according to claim 16, wherein the vacuum insulation panel is attached to the inner box or the outer box, and the remaining space is filled with a rigid polyurethane foam.
JP04313297A 1997-02-27 1997-02-27 Vacuum insulation panel, method for manufacturing the same, and refrigerator using this vacuum insulation panel Expired - Fee Related JP4273466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04313297A JP4273466B2 (en) 1997-02-27 1997-02-27 Vacuum insulation panel, method for manufacturing the same, and refrigerator using this vacuum insulation panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04313297A JP4273466B2 (en) 1997-02-27 1997-02-27 Vacuum insulation panel, method for manufacturing the same, and refrigerator using this vacuum insulation panel

Publications (2)

Publication Number Publication Date
JPH10238691A true JPH10238691A (en) 1998-09-08
JP4273466B2 JP4273466B2 (en) 2009-06-03

Family

ID=12655330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04313297A Expired - Fee Related JP4273466B2 (en) 1997-02-27 1997-02-27 Vacuum insulation panel, method for manufacturing the same, and refrigerator using this vacuum insulation panel

Country Status (1)

Country Link
JP (1) JP4273466B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001001352A (en) * 1999-04-23 2001-01-09 Lg Electronics Inc Production of vacuum insulating material core
JP2009541673A (en) * 2006-06-22 2009-11-26 ビーエーエスエフ ソシエタス・ヨーロピア Insulation element
JP2010194816A (en) * 2009-02-24 2010-09-09 Fuji Electric Retail Systems Co Ltd Method for manufacturing polyurethane molding, method for manufacturing ice storage container, polyurethane molding and ice storage container
JP2018109101A (en) * 2016-12-28 2018-07-12 トヨタ自動車株式会社 Composite material and method of producing the same
EP3998446A3 (en) * 2020-10-20 2022-07-06 Whirlpool Corporation Insulation materials for a vacuum insulated structure and methods of forming

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001001352A (en) * 1999-04-23 2001-01-09 Lg Electronics Inc Production of vacuum insulating material core
JP2009541673A (en) * 2006-06-22 2009-11-26 ビーエーエスエフ ソシエタス・ヨーロピア Insulation element
JP2010194816A (en) * 2009-02-24 2010-09-09 Fuji Electric Retail Systems Co Ltd Method for manufacturing polyurethane molding, method for manufacturing ice storage container, polyurethane molding and ice storage container
JP2018109101A (en) * 2016-12-28 2018-07-12 トヨタ自動車株式会社 Composite material and method of producing the same
EP3998446A3 (en) * 2020-10-20 2022-07-06 Whirlpool Corporation Insulation materials for a vacuum insulated structure and methods of forming
US11691908B2 (en) 2020-10-20 2023-07-04 Whirlpool Corporation Insulation materials for a vacuum insulated structure and methods of forming

Also Published As

Publication number Publication date
JP4273466B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
TW554159B (en) Method of deforming vacuum heat insulation material, method of fixing vacuum heat insulation material, refrigeration, cold storage vessel, and heat insulation box body
JPH10300331A (en) Vacuum heat insulating panel, its manufacture and refrigerator using the same
JP3968612B2 (en) FULL VACUUM INSULATION BOX, REFRIGERATOR USING THE VACUUM VACUUM INSULATION BOX, METHOD FOR PRODUCING THE FULL VACUUM INSULATION BOX, AND METHOD OF DECOMPOSING
TW568929B (en) Open-celled rigid polyurethane foam and method for producing the same
JPS6117263B2 (en)
JP2000320958A (en) Vacuum heat insulating body and heat insulating structural body
JPH11159693A (en) Vacuum heat insulating panel and manufacture therefor and heat insulating box body using it
JPH04165197A (en) Vacuum insulating member and manufacture thereof
JP3916460B2 (en) Architectural insulation made of polystyrene resin extruded foam
JPH10238691A (en) Vacuum heat insulation panel, manufacture thereof, and refrigerator using vacuum heat insulation panel
JP3852537B2 (en) Heat insulation box
US5439945A (en) Foams produced under reduced pressure and method of preparing such foams
JPH06213561A (en) Insulating material and refrigerator using the same
JP2007106973A (en) Foamed molded article and method for producing the same
JP3874046B2 (en) Heat insulation box
JP3921580B2 (en) Manufacturing method of heat insulation box
JP2004132438A (en) Compound vacuum heat insulating material and method of manufacturing the same
JP2000283643A (en) Vacuum heat insulation panel and its manufacture
JP2001181365A (en) Method for manufacturing open-cell rigid polyurethane foam for vacuum heat insulating panel-filler material
WO2018105394A1 (en) Foamed heat-insulating material production method and foamed heat-insulating material
JP4227683B2 (en) Plastic foam composite
JPH11201627A (en) Vacuum heat-insulating panel, its manufacture and manufacture of heat insulation case using the panel
JPH08303940A (en) Insulating box and refrigerator using the box
JP2004250596A (en) Communicated foam, production process therefor, and heat insulated structure using the foam and production process therefor
Suh et al. Rigid Polystyrene Foams and Alternative Blowing Agents

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees