JP2000320958A - Vacuum heat insulating body and heat insulating structural body - Google Patents

Vacuum heat insulating body and heat insulating structural body

Info

Publication number
JP2000320958A
JP2000320958A JP11129760A JP12976099A JP2000320958A JP 2000320958 A JP2000320958 A JP 2000320958A JP 11129760 A JP11129760 A JP 11129760A JP 12976099 A JP12976099 A JP 12976099A JP 2000320958 A JP2000320958 A JP 2000320958A
Authority
JP
Japan
Prior art keywords
heat insulating
heat
vacuum
vacuum heat
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11129760A
Other languages
Japanese (ja)
Other versions
JP2000320958A5 (en
Inventor
Yoshio Nishimoto
芳夫 西本
Kunihiko Kaga
邦彦 加賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11129760A priority Critical patent/JP2000320958A/en
Publication of JP2000320958A publication Critical patent/JP2000320958A/en
Publication of JP2000320958A5 publication Critical patent/JP2000320958A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a heat insulating structural body restricting the deterioration of heat insulating performance due to the heat of surface of the outer cell, such as an outer casing for a refrigerator or the like, by the thermal crosslinkage of a vacuum heat insulating panel arranged in the outer casing and reduced in the deformation of an appearance. SOLUTION: A heat insulating structural body is constituted so as to have a vacuum heat insulating body, having a thickness D whose ratio to the length L2 of an end side part or the ratio L2/D is not less than 2.0, while the ratio of the same to the length L1 of the short side of a surface part or the ration L1/D is not less than 20 and arranged in the outer cell, and remaining air gap is filled with porous bodies comprising independent bubbles. In this case, the end side part of the vacuum heat insulating body is positioned in the outer cell at a corner whereat the end side part is intersected with the wall surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷蔵庫の断熱箱体
などに断熱材として用いられる真空断熱体に関するもの
であり、さらに詳しくは断熱性能の向上を達成するため
の真空断熱体とそれを用いた断熱構造体に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum heat insulator used as a heat insulating material in a heat insulating box of a refrigerator, and more particularly to a vacuum heat insulator for achieving an improvement in heat insulating performance and a vacuum heat insulator using the same. Heat insulation structure.

【0002】[0002]

【従来の技術】従来、冷蔵庫や保冷車などの断熱構造体
の壁面は、外面部分を鉄板などの金属製薄板、内面部分
を樹脂成形品などで構成した外殻と、その内部空隙に多
孔質物質である発泡ウレタンを充填して成るが、断熱材
である発泡ウレタンの発泡剤にはオゾン層破壊の原因と
なる塩素を分子中に含むハイドロクロロフルオロカーボ
ン類(以下、HCFCと称す)である1,1−ジクロロ
−1−フルオロエタンに替えて、オゾン層を破壊せず、
しかも温暖化係数の低いハイドロカーボン類であるシク
ロペンタンへの代替えが進んでいる。
2. Description of the Related Art Conventionally, the wall surface of a heat insulating structure such as a refrigerator or an insulated car has an outer shell made of a thin metal plate such as an iron plate, an inner shell made of a resin molded product, and a porous inner space. The foaming agent for urethane foam, which is a heat insulating material, is a hydrochlorofluorocarbon (hereinafter, referred to as HCFC) containing chlorine that causes ozone layer destruction in its molecule. Instead of, 1-dichloro-1-fluoroethane, without destroying the ozone layer,
Moreover, replacement with cyclopentane, which is a hydrocarbon having a low global warming potential, is in progress.

【0003】しかし、シクロペンタンを発泡剤とする発
泡ウレタンの断熱性は17〜20mW/mK の熱伝導率であ
り、従来のHCFCを発泡剤とするものに比較して、一
般に、10%以上も劣る。このことは、オゾン層破壊の
原因物質を用いず、しかもエネルギー資源を有効に活用
できることを目的とした消費電力の低減が求められてい
る冷蔵庫などでは、断熱材である発泡ウレタンに対する
断熱性能向上が限界にあるを示唆したものと考えられる
ことから、図14の比較図で示す如く、発泡ウレタンの
2倍以上の断熱性能が得られる真空断熱体である真空断
熱パネルを応用する技術が提案されている。
However, the heat insulation of urethane foam using cyclopentane as a foaming agent has a thermal conductivity of 17 to 20 mW / mK, and is generally 10% or more higher than that of a conventional foaming agent using HCFC. Inferior. This means that in refrigerators, etc., which are required to reduce power consumption for the purpose of effectively utilizing energy resources without using substances that cause ozone layer depletion, the heat insulating performance of urethane foam, which is a heat insulating material, must be improved. Since it is considered to indicate that it is at the limit, as shown in the comparative diagram of FIG. 14, a technique of applying a vacuum heat insulating panel, which is a vacuum heat insulator capable of obtaining heat insulating performance more than twice that of urethane foam, has been proposed. I have.

【0004】真空断熱パネル1は図15に示す構造を成
しており、内部が真空に保持されているので、大気圧に
よる変形を防止して形状を維持する役割を備える芯材2
として多孔質物質が挿入され、包装材3が外部からのガ
スの侵入を抑制している。つまり、従来の断熱材である
発泡ウレタンなどの発泡樹脂と同様の多孔質物質である
が、連続した気孔によってガスを排除して真空状態を確
保すると共に、経時的に侵入する外部のガスを吸収する
ゲッター剤4を備えて高度な真空状態を維持して成るの
で、ガスによる熱伝達成分が排除され、優れた断熱性能
が発現するものである。ここで、更なる断熱性能の向上
を達成するためには、構成する材料に熱が伝達し難い物
質を用いるとともに材料間の接触面積を少なくすること
によって物質間を伝達する熱量を抑制していること、更
に小さな空隙を備えることによって輻射伝熱を抑制する
ことが有効となる。
The vacuum heat insulating panel 1 has the structure shown in FIG. 15, and since the inside is kept in a vacuum, the core material 2 has a role of preventing deformation due to atmospheric pressure and maintaining the shape.
As a result, a porous material is inserted, and the packaging material 3 suppresses invasion of gas from the outside. In other words, it is a porous material similar to foamed resin such as urethane foam, which is a conventional heat insulating material, but it eliminates gas by continuous pores to secure a vacuum state and absorbs external gas that enters over time. Since a high degree of vacuum is maintained by providing the getter agent 4, heat transfer components due to gas are eliminated, and excellent heat insulation performance is exhibited. Here, in order to achieve a further improvement in heat insulation performance, a material that does not easily transmit heat is used as a constituent material, and the amount of heat transferred between the materials is suppressed by reducing the contact area between the materials. In addition, it is effective to suppress radiant heat transfer by providing a smaller gap.

【0005】この様な条件を満たす物質として、樹脂や
ガラスなどの多孔質物質が好適に用いられ、特に、ガラ
ス繊維のマットや連続気泡を有する樹脂発泡体のボー
ド、樹脂や無機物の微粒子の成型品を適用することが一
般的である。例えば、特開昭60−71881ではパー
ライト粉末、特開昭60−243471ではPUF粉砕
品、を各々、合成樹脂袋に投入してボード状に真空パッ
クしたものが提案されている。この他に、特開昭60−
205164の連通気泡の発泡ウレタン、特開平4−2
18540の熱可塑性ウレタン樹脂の粉体を焼結させた
板状成形品、特開平7−96580ではガラスの長繊維
を無機微粉末にフィビリル化した樹脂繊維により固化保
持したボードを各々、真空断熱パネルのコア材として応
用することが提案されている。
As a material satisfying such conditions, a porous material such as a resin or glass is suitably used. In particular, a resin foam board having mats of glass fibers or open cells, and molding of resin or inorganic fine particles are preferable. It is common to apply goods. For example, Japanese Unexamined Patent Publication No. Sho 60-71881 proposes a method in which pearlite powder and a pulverized PUF product in Japanese Unexamined Patent Publication No. Sho 60-243471 are put into a synthetic resin bag and vacuum-packed into a board shape. In addition to this,
No. 205164, open-cell urethane foam
A plate-shaped molded product obtained by sintering thermoplastic urethane resin powder of No. 18540, and in Japanese Patent Application Laid-Open No. Hei 7-96580, a board in which long fibers of glass are solidified and held by resin fibers obtained by fibrillating inorganic fine powder into vacuum fine insulation panels It has been proposed to be applied as a core material.

【0006】上述した真空断熱パネル1は、一般に厚さ
が10〜30mmの板状であって、冷蔵庫などの断熱箱体
などの断熱壁5に図16の断面図に示す状態で配設して
用いる。つまり、塗装やプリントフィルム貼付などによ
って意匠性を備えた金属の薄板鋼板を折曲げて成形した
外箱6に、真空断熱パネル1を両面テープなどで貼り付
けて固定したのち、ABS樹脂のシートを真空成形法な
どによって賦型して得た内箱7と嵌合させることによっ
て、断熱箱体の外殻を得る。前記外殻における外箱6ま
たは真空断熱パネル1と内箱7とで形成された空隙内に
断熱材である発泡ウレタン8の原料混合液を注入して前
記空隙内を発泡させて充填すれば、冷蔵庫の断熱箱体に
おける断熱壁5が形成できる。
The above-mentioned vacuum heat insulating panel 1 is generally in the form of a plate having a thickness of 10 to 30 mm, and is disposed on a heat insulating wall 5 such as a heat insulating box of a refrigerator or the like in a state shown in a sectional view of FIG. Used. In other words, the vacuum insulation panel 1 is fixed to the outer box 6 formed by bending a thin metal steel plate having a design property by painting or pasting a print film with a double-sided tape or the like. The outer shell of the heat insulating box is obtained by fitting the inner box 7 obtained by shaping by a vacuum forming method or the like. If a raw material mixture of urethane foam 8 which is a heat insulating material is injected into the space formed by the outer box 6 or the vacuum heat insulating panel 1 and the inner box 7 in the outer shell to foam and fill the space, The heat insulating wall 5 in the heat insulating box of the refrigerator can be formed.

【0007】次に、真空断熱パネルの製造方法につい
て、図17に示す工程図を用いて説明すると、まず、3
方向が予め熱シールをして形成した包装材3である袋の
内に前記の連通気泡を有する発泡ウレタンなどを加工し
て得た芯材2を挿入する(S−1)。これを真空包装機
9のチャンバー内に固定し、前記チャンバー内を1*1
-1〜1*10-3torr程度の任意の真空雰囲気を確保す
る「真空引き」を行った(S−2)後、シール用加圧装
置10によって融着ヒータ11を降下させて挿入口であ
る残りの端辺12を融着する(S−3)ことによって封
止する。最後に、芯材2の挿入口である端辺12に用い
ている熱可塑性樹脂が融点以下にまで冷却すれば、真空
包装機9内部の真空を解除して常圧に戻して真空断熱パ
ネルを取り出す(S−4)。
Next, a method of manufacturing a vacuum heat insulating panel will be described with reference to the process chart shown in FIG.
The core material 2 obtained by processing urethane foam having the open cells is inserted into a bag which is a packaging material 3 formed by heat sealing in advance (S-1). This is fixed in the chamber of the vacuum packaging machine 9, and the inside of the chamber is 1 * 1.
After performing “evacuation” to secure an arbitrary vacuum atmosphere of about 0 −1 to 1 * 10 −3 torr (S-2), the sealing heater 11 is used to lower the fusion heater 11 to insert the insertion port. Is sealed by fusing the remaining end 12 (S-3). Finally, when the thermoplastic resin used for the end side 12 which is the insertion opening of the core material 2 cools down to the melting point or less, the vacuum inside the vacuum packaging machine 9 is released to return to normal pressure, and the vacuum insulation panel is removed. Take it out (S-4).

【0008】ここで用いる包装材3は、端辺のシールに
供する内層に熱融着が可能な、例えばポリエチレンなど
を用いて成るので、その面を重ね合わせて3方の端辺を
線状に熱融着させて袋状に成形することによって得たも
のである。
The packaging material 3 used here is made of, for example, polyethylene or the like, which can be heat-sealed to the inner layer used for sealing the edges, so that the surfaces are overlapped and the three edges are linear. It is obtained by heat-sealing and forming into a bag shape.

【0009】「真空引き」工程(S−2)では、真空包
装機内に芯材を挿入した包装材を固定して1torr以下、
好ましくは5*10-2torrの真空雰囲気を形成すること
によって芯材の気孔内に残存する空気などのガスを排気
する。残存する空気などのガスは、挿入口端部のみなら
ず、包装材と芯材の間に設けた隙間を通じて芯材の表面
からも排気が出来るので、前記真空度への到達が容易に
行われ、その後の「端辺シール」工程(S−3)では芯
材の前記挿入口端部を封止して内部の真空を確保するこ
とができる。
In the "vacuum evacuation" step (S-2), the packaging material in which the core material is inserted is fixed in a vacuum packaging machine, and the pressure is reduced to 1 torr or less.
Preferably, a gas such as air remaining in the pores of the core material is exhausted by forming a vacuum atmosphere of 5 * 10 -2 torr. The remaining gas such as air can be exhausted not only from the end of the insertion port but also from the surface of the core material through a gap provided between the packaging material and the core material, so that the degree of vacuum can be easily reached. In the subsequent "edge sealing" step (S-3), the end of the insertion opening of the core can be sealed to secure an internal vacuum.

【0010】ここで芯材2として用いる連続した気孔を
含む多孔体には、上述した樹脂などの発泡体の他にも、
粒状物質が粒子間の接触によって生じる連続した空隙で
ある気孔を多く備えるので好適に用いることができる。
何れの多孔質物質にあっても熱伝達を模式的に示すと、
式1のような4成分の総和として表現できる。つまり、
多孔体を構成する固体部分を伝わる固体伝熱成分(λ
s)、同様にガス成分を伝わるガス伝熱成分(λg)、
電磁波である熱線放射による輻射伝熱成分(λr)と、
気孔内のガスの対流運動によって伝わる対流成分(λ
c)である。このうち、対流成分(λc)は、本発明に
係る多孔質物質が、大気圧を受けても経時的に変形を来
さない強度を得るために発泡樹脂の樹脂の量比を高くし
たり、粒子を密に充填するなどの措置を施した結果、気
孔の中にあるガスが対流運動を来さないような大きさの
気孔が用いられて成るのでλcを無視しても良く、その
結果、残りの3成分(λs、λg、λr)によって実質
的に構成される。
Here, the porous body containing continuous pores used as the core material 2 includes, in addition to the above-mentioned foams such as resin,
Since the granular material has many pores which are continuous voids generated by contact between particles, it can be suitably used.
When heat transfer is schematically shown in any porous substance,
It can be expressed as a sum of four components as in Equation 1. That is,
The solid heat transfer component (λ) transmitted through the solid part of the porous body
s), a gas heat transfer component (λg) that similarly transmits the gas component,
Radiant heat transfer component (λr) due to heat ray radiation as an electromagnetic wave;
A convective component (λ) transmitted by the convective motion of the gas in the pores
c). Among them, the convection component (λc) is used to increase the ratio of the resin of the foamed resin in order to obtain a strength in which the porous substance according to the present invention does not deform with time even when subjected to atmospheric pressure. As a result of taking measures such as densely filling particles, λc may be neglected because pores of a size that does not cause convection movement of gas in the pores may be used, and as a result, It is substantially constituted by the remaining three components (λs, λg, λr).

【0011】 λ=λs+λg+λr+λc・ ・ ・ ・ ・ ・(1)Λ = λs + λg + λr + λc (1)

【0012】ところが、真空断熱パネルでは、その内部
にある多孔質物質の気孔内にあったガスを無くして真空
状態としたので、発泡樹脂と同様の連続した気孔を含む
多孔体の伝熱成分の一つであるガスによる熱伝達成分
(λg)をも無くするようにしたので、従来の発泡樹脂
の如き断熱材と比較して、際だって優れた断熱性能を発
現することができた。
However, in the vacuum insulation panel, since the gas in the pores of the porous substance inside the vacuum insulation panel is eliminated and a vacuum state is established, the heat transfer component of the porous body containing continuous pores similar to the foamed resin is obtained. Since the heat transfer component ([lambda] g) due to one of the gases was also eliminated, a remarkably superior heat insulating performance was able to be exhibited as compared with a conventional heat insulating material such as a foamed resin.

【0013】しかしながら、ここで用いる真空断熱パネ
ル1の包装材3は、図18に示す如くの構造を備える。
つまり、端辺のシールに供する内層には熱溶着が可能な
ポリエチレンやポリプロピレンなどの熱可塑性樹脂から
成る熱融着層13、最外層には傷つきなどに耐性のある
ナイロンやポリエステルなどの樹脂からなる表面層1
4、その間にある中間層には外気の侵入を完全に遮断す
るためのアルミなどの金属箔を用いて成るガス遮蔽層1
5がポリエチレンテレフタレートなどの強度の高いフィ
ルムである基材16上に固定された状態を備えて構成さ
れたものであって、シート状を成す各層を構成する材料
を接着剤や溶着などによって積層、一体化することによ
って得たものであって、発泡剤や大気中のガスが透過し
難い多層シート17が一般に用いられている。
However, the packaging material 3 of the vacuum insulation panel 1 used here has a structure as shown in FIG.
In other words, the inner layer used for sealing the side edges is made of a heat-fusible layer 13 made of a thermoplastic resin such as polyethylene or polypropylene that can be heat-sealed, and the outermost layer is made of a resin such as nylon or polyester resistant to damage. Surface layer 1
4. A gas shielding layer 1 made of a metal foil such as aluminum for completely blocking the intrusion of outside air into an intermediate layer between them.
5 is provided with a state fixed on a base material 16 which is a high-strength film such as polyethylene terephthalate, and a material constituting each layer in a sheet shape is laminated by an adhesive or welding; A multi-layer sheet 17 obtained by integration and hardly permeating a foaming agent or gas in the air is generally used.

【0014】しかし、包装材3である多層シート17内
にガスの透過を遮蔽する目的で配設されるガス遮蔽層1
5には、包装材2の取り扱いや加工性を考慮して、延展
性を含む柔軟性に優れたアルミニュームを蒸着や箔の状
態で薄膜の配設を行う。しかし、ガス遮蔽層15として
一般に用いるアルミ箔などの前記薄膜は、他の構成材で
ある樹脂シートに比較して約103倍もの高熱伝導性を
有することから、その影響として、真空状態の断熱材に
よって伝熱が遮蔽される厚さ方向よりも、むしろ物質単
体の伝熱によって醸し出される面方向の伝熱の影響が無
視できない量におよぶ。
However, the gas shielding layer 1 disposed in the multilayer sheet 17 as the packaging material 3 for the purpose of shielding gas permeation.
In 5, in consideration of handling and workability of the packaging material 2, aluminum having excellent flexibility including spreadability is deposited or a thin film is provided in a foil state. However, the thin film such as an aluminum foil used generally as a gas shielding layer 15, because it has about 103 times as high thermal conductivity as compared with the resin sheet as other constituent materials, as its effect, the vacuum heat insulation Rather than in the thickness direction in which the heat transfer is shielded by the material, the influence of the heat transfer in the surface direction produced by the heat transfer of the substance alone has a considerable amount.

【0015】従って、真空断熱パネルの構成全体に係る
伝熱機構を鑑みれば、断熱方向である厚さ方向のみによ
って支配されるものではなく、多孔質物質から成る芯材
の外部にあって、ガスの透過を抑制してガスバリヤー性
に優れた多層フィルムから成り、系外にある空気などの
各種ガスが侵入するのを遮断して真空度の低下を防止す
る上述のような構成の包装材による影響を加味すること
が肝要である。
Therefore, in view of the heat transfer mechanism relating to the entire configuration of the vacuum heat insulating panel, it is not limited only by the thickness direction, which is the heat insulating direction, but is located outside the core made of a porous material, It consists of a multi-layer film with excellent gas barrier properties by suppressing the permeation of air, and by the above-mentioned packaging material that prevents various gases such as air outside the system from entering and prevents the degree of vacuum from lowering. It is important to consider the effects.

【0016】つまり、包装材が芯材を包み込んで配設さ
れた真空断熱パネル1の態様では、例えば図16に示す
冷蔵庫などの断熱壁5外部の熱が外箱6に当接する真空
断熱パネル1の包装材表面(受熱面)から、その両端部
を伝わって対向する断熱壁内部に埋設されている面(放
熱面)を経る伝熱経路である熱架橋を来し、もう一つの
断熱材である発泡ウレタン8から内箱7を経て庫内に拡
散するので、この影響を排除することが真空断熱パネル
1の特性を十分に生かした断熱壁5を得るうえで重要な
要素であるといえる。
That is, in the embodiment of the vacuum heat insulating panel 1 in which the packaging material is arranged so as to wrap the core material, for example, the heat insulating outside the heat insulating wall 5 such as a refrigerator shown in FIG. From the surface of the packaging material (heat receiving surface), a thermal bridge that is a heat transfer path that passes through both ends and passes through the surface (heat radiating surface) buried inside the opposing heat insulating wall, and another heat insulating material Since the urethane foam 8 diffuses from the urethane foam 8 through the inner box 7 to the inside, it can be said that eliminating this effect is an important factor in obtaining the heat insulating wall 5 that makes full use of the characteristics of the vacuum heat insulating panel 1.

【0017】このような問題に対処するため、特開昭5
9−146993号公報では包装材2の内層に配するア
ルミ箔の厚さを20ミクロン以下とすることによって、
伝熱量を抑制することを提案している。
To cope with such a problem, Japanese Patent Laid-Open No.
In Japanese Patent Application Laid-Open No. 9-146993, by setting the thickness of the aluminum foil disposed on the inner layer of the packaging material 2 to 20 microns or less,
It is proposed to reduce the amount of heat transfer.

【0018】また、特開平5−302696号公報で
は、図19に示す如く、受熱面と放熱面の接合部分であ
る端辺12に熱融着層13と表面層14の間隙にガス遮
蔽層であるアルミ箔19を配しない包装材を、接合に供
する何れかの多層シート17bに用いることにより、ア
ルミ箔19を配したもう一方の多層シート17aとの間
で重なることを無くして伝熱経路を遮断することによっ
て熱架橋の影響が抑制できる構造を提案している。
In Japanese Unexamined Patent Publication No. Hei 5-302696, as shown in FIG. 19, a gas shielding layer is provided in a gap between the heat-sealing layer 13 and the surface layer 14 at an end 12 which is a junction between the heat-receiving surface and the heat-radiating surface. By using a packaging material not provided with a certain aluminum foil 19 for any of the multilayer sheets 17b provided for bonding, it does not overlap with the other multilayer sheet 17a provided with the aluminum foil 19, thereby providing a heat transfer path. We propose a structure that can suppress the effect of thermal crosslinking by blocking.

【0019】また、特開平4−165282号公報では
図20に示す如く、真空断熱パネル1が内部に備える芯
材3の外周にある端辺12部分に補助部材20を備えて
波形形状としたので、内部を真空に保持した際に、それ
を維持する機能を有する多層シート17が前記補助部材
20に沿って波形形状を成す。この形状によって、多層
シート17の受熱面にある多層シート17aから伝わっ
た熱がもう一方の放熱面にある多層シート17bを伝熱
するのに要するの端辺12部分の距離が長くなったの
で、距離の延長に伴って熱抵抗が増加し、その結果、伝
熱量が抑制でき、当該断熱壁における熱漏洩量が低減す
るので冷蔵庫などの断熱構造体の断熱性能が向上すると
いうものである。
In Japanese Patent Application Laid-Open No. 4-165282, as shown in FIG. 20, the auxiliary member 20 is provided at the end 12 on the outer periphery of the core member 3 provided inside the vacuum heat insulating panel 1 so as to be corrugated. When the inside is kept in a vacuum, the multilayer sheet 17 having a function of maintaining the vacuum forms a wavy shape along the auxiliary member 20. By this shape, the distance of the edge 12 required for the heat transmitted from the multilayer sheet 17a on the heat receiving surface of the multilayer sheet 17 to be transmitted to the multilayer sheet 17b on the other heat radiation surface becomes longer, As the distance increases, the thermal resistance increases. As a result, the amount of heat transfer can be suppressed, and the amount of heat leakage from the heat insulating wall is reduced, so that the heat insulating performance of a heat insulating structure such as a refrigerator is improved.

【0020】[0020]

【発明が解決しようとする課題】しかしながら、上述し
た特開昭59−146993号公報の方法では、アルミ
箔を展延させて薄膜にする過程で発生するピンホールな
どの欠陥がガス遮蔽性能の低下として影響を及ぼすこと
のない状態に止めておくことが必要であり、当該公報で
は下限の膜厚を7ミクロンとしている。しかし、たと
え、この下限膜厚を備えたとしても、これを熱伝導率の
関係から包装材に用いる樹脂に置き換えれば約10mmに
も達し、熱架橋として及ぼす影響として無視することは
できない。
However, according to the method disclosed in Japanese Patent Application Laid-Open No. 59-146993, defects such as pinholes generated in the process of spreading an aluminum foil into a thin film deteriorate gas shielding performance. It is necessary to keep the state in which no influence is exerted. In this publication, the lower limit film thickness is set to 7 microns. However, even if the lower limit film thickness is provided, if it is replaced with a resin used for a packaging material due to the relationship of thermal conductivity, it reaches about 10 mm and cannot be ignored as an effect as thermal crosslinking.

【0021】また、特開平5−302696号公報の方
法では包装材製造における2枚の多層シートの接合加工
に極めて高い精度を必要とし、係る工数と技術に汎用性
を有して対処できないという課題を有する。つまり、2
枚の多層シートを接合する際に位置ずれを来たせば、包
装材の一方の面にアルミ箔が存在せずにガス透過係数の
大きい樹脂の層しか存在しない部分が広く開くことにな
る。従って、ガスの遮蔽性能が大きく劣る当該部分から
は大気中のガスが容易に侵入し、包装材内部の真空度を
短期間に大きく低下させるので、断熱性能が短期に劣化
するという問題を発生させる可能性を生むことになる。
Further, the method disclosed in Japanese Patent Application Laid-Open No. 5-302696 requires extremely high precision in joining two multilayer sheets in the production of packaging materials, and cannot deal with such man-hours and techniques with versatility. Having. That is, 2
If a misalignment occurs when two multilayer sheets are joined, a portion where only the resin layer having a large gas permeability coefficient does not exist on one surface of the packaging material without the aluminum foil is opened widely. Therefore, the gas in the atmosphere easily enters from the portion where the gas shielding performance is significantly inferior, and the degree of vacuum inside the packaging material is greatly reduced in a short period of time. It creates potential.

【0022】一方、特開平4−165282号公報の方
法では、端辺部分の形状を複雑な波形形状にするために
芯材の加工または成形に困難を伴う。さらに、冷蔵庫な
どの断熱構造体の断熱壁に用いる場合に、断熱体を内箱
と外箱から構成される外殻内部の真空断熱パネルを配設
した残りの空隙内を発泡ウレタンなどの発泡樹脂によっ
て充填させる際に、前記発泡樹脂の原料液を注入して前
記空隙内を充填する際に、反流動方向にある波形形状部
分が備える凹状のくぼみ部分にまで完全に充填できず、
空隙が残存する。その結果、当該断熱壁における前記空
隙部分の断熱性能が低下するという問題を来すことがあ
る。
On the other hand, in the method disclosed in Japanese Patent Application Laid-Open No. 4-165282, it is difficult to process or mold the core material because the shape of the end portion is made into a complicated waveform. Furthermore, when used as a heat insulating wall of a heat insulating structure such as a refrigerator, the heat insulating body is provided with a vacuum heat insulating panel inside an outer shell composed of an inner box and an outer box. When filling by filling the voids by injecting the raw material liquid of the foamed resin, it is not possible to completely fill even the concave recessed portion provided with the corrugated portion in the counterflow direction,
Voids remain. As a result, there is a problem that the heat insulating performance of the gap portion in the heat insulating wall is reduced.

【0023】本発明は上記課題を解決するために成され
たものであり、冷蔵庫の外箱などの断熱体の外側にある
外殻表面の熱が、その内側に配設した真空断熱パネルが
備える熱伝導の良いアルミ箔を内層に有した包装材に伝
わる熱架橋によってもたらされる断熱性能の悪化を抑制
できる真空断熱体とそれを用いた断熱構造体を得るとと
もに、外観の変形が少ない前記断熱構造体を得ることを
目的とする。
The present invention has been made to solve the above-mentioned problems, and the heat of the outer shell surface outside the heat insulator such as the outer box of a refrigerator is provided by a vacuum heat insulating panel disposed inside the outer shell. A vacuum heat insulator capable of suppressing deterioration of heat insulation performance caused by thermal cross-linking transmitted to a packaging material having an aluminum foil with good heat conductivity in an inner layer and a heat insulation structure using the same, and the heat insulation structure having little deformation in appearance. The purpose is to get the body.

【0024】[0024]

【課題を解決するのための手段】本発明における第1の
発明である真空断熱体は、内部が連続した気孔を含む構
造体を備えて真空状態を保持して成る真空断熱体におい
て、前記真空断熱体の対向する2面からなる面部分の厚
さdと、前記真空断熱体の外周部分にあって外方向に向
かうほど薄くなる形状の端辺部分の長さL2との比L2
/dが2.0以上である端辺を含んで成るものである。
According to a first aspect of the present invention, there is provided a vacuum heat insulator comprising a structure having continuous pores therein, wherein the vacuum heat insulator is maintained in a vacuum state. A ratio L2 of a thickness d of a surface portion composed of two opposing surfaces of the heat insulator to a length L2 of an end portion of the outer peripheral portion of the vacuum heat insulator which becomes thinner toward the outside.
/ D is 2.0 or more.

【0025】また、本発明における第2の発明である真
空断熱体は、端辺部分が真空断熱の厚さdと端辺部分の
長さL2との比L2/dを3.7以下とする形状を成す
ものである。
Further, in the vacuum heat insulator according to the second invention of the present invention, the ratio L2 / d of the thickness d of the vacuum heat insulation at the edge and the length L2 of the edge is 3.7 or less. It forms a shape.

【0026】また、本発明における第3の発明である真
空断熱体は、端辺部分が、円弧または鈍角を備える直線
の組み合わせから構成された非直線を成すものである。
Further, in the vacuum heat insulator according to the third invention of the present invention, the edge portion forms a non-linear line composed of a combination of straight lines having an arc or an obtuse angle.

【0027】また、本発明における第4の発明である真
空断熱体は、対向する2面から成る面部分が、その面を
構成する最も短い辺の長さL1と、真空断熱体の厚さd
との比L1/dが20以上を成すものである。
Further, in the vacuum heat insulator according to the fourth invention of the present invention, the surface portion composed of the two opposing surfaces has a length L1 of the shortest side constituting the surface and a thickness d of the vacuum heat insulator.
And the ratio L1 / d is 20 or more.

【0028】本発明における第5の発明である断熱構造
体は、対向する2面から成る面部分と外方向が薄くなる
形状を備える端辺部分を含んで構成され、しかも、真空
断熱体の厚さdと前記端辺部分の長さL2の比L2/d
が2.0以上である端辺を含んで成る真空断熱体を外殻
内に配設し、残りの空隙を独立した気泡を含んで成る多
孔体が充填して成るものである。
According to a fifth aspect of the present invention, there is provided a heat insulating structure including a surface portion having two opposing surfaces and an edge portion having a shape in which an outward direction becomes thinner. Ratio L2 / d between the length d and the length L2 of the end portion.
Is provided in the outer shell, and the remaining voids are filled with a porous body containing independent air bubbles.

【0029】本発明における第6の発明である断熱構造
体は、真空断熱体の厚さdと真空断熱体を配設した外殻
内の断熱材厚さdtとの比d/dtが0.5〜0.7の構
成を備えるものである。
In the heat insulating structure according to the sixth aspect of the present invention, the ratio d / dt of the thickness d of the vacuum heat insulator to the thickness dt of the heat insulating material in the outer shell in which the vacuum heat insulator is disposed is equal to 0. 5 to 0.7.

【0030】また、本発明における第7の発明である断
熱構造体は、真空断熱体が傾斜を備える端辺部分が断熱
壁面内に位置して成るものである。
In a heat insulating structure according to a seventh aspect of the present invention, the vacuum heat insulating body has an inclined end portion located in the heat insulating wall surface.

【0031】また、本発明における第8の発明である断
熱構造体は、真空断熱体が、その端部に傾斜を備えるこ
と無しに直角を成す態様で構成された真空断熱体の端辺
部分を壁面が交差する角部の外殻内に位置するように配
設して成るものである。
Further, according to an eighth aspect of the present invention, there is provided the heat insulating structure, wherein the vacuum heat insulator has an end portion formed at a right angle without a slope at an end thereof. It is arranged so as to be located in the outer shell at the corner where the wall intersects.

【0032】また、本発明における第9の発明である断
熱構造体は、真空断熱体が、対向する面を構成する短辺
の長さL1と厚さdとの比L1/dを20以上とする形
態を有して成るものである。
The heat insulating structure according to the ninth aspect of the present invention is characterized in that the vacuum heat insulator has a ratio L1 / d of the length L1 of the short side constituting the facing surface to the thickness d of 20 or more. It has the form which does.

【0033】[0033]

【発明の実施の形態】実施の形態1.本実施の形態は、
本発明に係る真空断熱パネルの対向する面が交錯しない
面部分の端部における厚さ寸法dと前記面部分と接して
外方向に薄くなる傾斜を備える端辺部分の長さL2との
比(L2/d)の適正化と、断熱構造体の断熱壁におけ
る前記真空断熱パネルの配設に関するものであって、前
記端辺部分を備える真空断熱パネルを含んで図1の模式
図の断面構造を成す断熱構造体について、端辺部分の長
さ寸法L2を変化させた場合における熱漏洩量の変化を
示す図4の説明図を用いて、以下に詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 In this embodiment,
The ratio of the thickness dimension d at the end of the surface portion where the opposing surfaces of the vacuum heat insulating panel according to the present invention do not intersect to the length L2 of the end portion having a slope that is in contact with the surface portion and becomes thinner outwardly ( L2 / d) and the arrangement of the vacuum heat insulating panel on the heat insulating wall of the heat insulating structure. The cross sectional structure of the schematic diagram of FIG. The heat insulating structure to be formed will be described in detail below with reference to an explanatory diagram of FIG. 4 showing a change in the amount of heat leakage when the length L2 of the end portion is changed.

【0034】本発明の真空断熱パネル1は、従来の製造
方法である図17に示す工程図を用いて成り、連通した
気泡構造を備える発泡ウレタンを芯材2に用いたもので
ある。これを図1に示す如くの構造を備える真空断熱パ
ネル1の包装材3の内部を0.02torrの真空度を保持
し、前記真空断熱パネル1の端辺12部分にある鋭角形
状が、その鋭角領域の長さ寸法L2が対向する位置にあ
る面部分との境界部分における真空断熱パネルの厚さ寸
法dの3倍となるよう構成して成る。また、前記断熱構
造体は2枚の薄板鋼板21を外殻として有し、一方の薄
板鋼板21a上には真空断熱パネル1が固定され、もう
一方の薄板鋼板21bには複素構造を成すもう一方の断
熱材である発泡ウレタン8と一体化して成る。
The vacuum heat insulating panel 1 of the present invention is formed by using a process diagram shown in FIG. 17 which is a conventional manufacturing method, and uses urethane foam having an interconnected cell structure as the core material 2. The inside of the wrapping material 3 of the vacuum heat insulating panel 1 having the structure as shown in FIG. 1 is maintained at a degree of vacuum of 0.02 torr. The length dimension L2 of the region is configured to be three times the thickness dimension d of the vacuum heat insulating panel at the boundary portion with the surface portion at the opposing position. Further, the heat insulating structure has two thin steel plates 21 as outer shells, the vacuum heat insulating panel 1 is fixed on one thin steel plate 21a, and the other thin steel plate 21b has a complex structure on the other thin steel plate 21b. And is integrally formed with the urethane foam 8 which is a heat insulating material.

【0035】ここで、厚さ寸法dが20mmである真空断
熱パネルにおいて、端辺部分が傾斜しない態様(L2/
d=0)を備えた場合を基準(1.0)として端辺部分
の長さ寸法L2を0〜100mmに変化させたときの熱漏
洩量の比率を求めた。
Here, in a vacuum heat insulating panel having a thickness d of 20 mm, an aspect (L2 /
d = 0) was determined as a reference (1.0), and the ratio of the amount of heat leakage when the length L2 of the edge portion was changed to 0 to 100 mm was determined.

【0036】ここで用いた断熱構造体は図1に示す如
く、真空断熱パネル1が断熱構造体を成すもう一方の断
熱材である発泡ウレタン8と複素化した構造を成す板状
試料22を作成し、これに熱流センサー23(英弘精機
製の熱電対型)を、図2に示すように、試料中央22a
から試料端部22bに向かって、複数個をアレイ状に配
置した。ここで用いた真空断熱パネル1は、主に受熱お
よび放熱に供する面部分24と、前記面部分24に接し
て真空断熱パネルの外周の1辺が鋭角形状を成す端辺1
2部分を含んで成り、その大きさ(寸法)は、傾斜を備
える方向の面部分の長さが450mm、それと直交する面
部分の幅が390mm、厚さが40mmである。また、包装
材2の厚さは0.12mmであって、これの中間位置に備
えられたアルミ箔19の厚さは0.006mmである。
As shown in FIG. 1, the heat-insulating structure used here forms a plate-like sample 22 having a complexed structure with the urethane foam 8 as the other heat-insulating material in which the vacuum heat-insulating panel 1 forms the heat-insulating structure. Then, a heat flow sensor 23 (a thermocouple type manufactured by Eiko Seiki) was connected to the sample center 22a as shown in FIG.
From the sample to the sample end 22b. The vacuum heat insulating panel 1 used here has a surface portion 24 mainly used for heat reception and heat radiation, and an edge 1 in contact with the surface portion 24 and one side of an outer periphery of the vacuum heat insulation panel forms an acute angle.
The size (dimension) is such that the length of the surface portion in the direction having the inclination is 450 mm, the width of the surface portion orthogonal to it is 390 mm, and the thickness is 40 mm. The thickness of the packaging material 2 is 0.12 mm, and the thickness of the aluminum foil 19 provided at an intermediate position thereof is 0.006 mm.

【0037】以上の態様を成す真空断熱パネルは、発泡
ウレタンの発泡圧によって変形しないように発泡治具内
に固定し、上方向から真空断熱パネルを含む発泡成形に
供する投影面に、均一に発泡ウレタンの原料混合液を落
下させて散布し、直ちに前記発泡治具を閉塞する。発泡
ウレタンは数秒後に発泡を開始した後、泡状でこの間隙
内を流動して1分程度で充填した後、発泡ウレタンを構
成する樹脂の硬化が4〜6分で完了して当該断熱層が形
成されているので、これを治具から取り出すことによっ
て、所望する複素化した構造を成す板状試料を得ること
ができる。
The vacuum insulation panel of the above embodiment is fixed in a foaming jig so as not to be deformed by the foaming pressure of urethane foam, and is uniformly foamed on a projection surface for foam molding including the vacuum insulation panel from above. The urethane raw material mixture is dropped and sprayed, and the foaming jig is immediately closed. The urethane foam starts foaming after a few seconds, flows in this gap in a foamy state, and is filled in about 1 minute. After that, the curing of the resin constituting the urethane foam is completed in 4 to 6 minutes, and the heat insulating layer is formed. Since it is formed, by taking it out of the jig, a plate-like sample having a desired complex structure can be obtained.

【0038】次に、熱漏洩量を測定した。ここで、図3
に示す装置の26はシートヒータであり、27はペルチ
ェ式冷却器であって、断熱体の対向する上下面の加熱・
冷却をおこなうものである。また、試料の上下にはヒー
タ26およびペルチェ冷却器27との伝熱を平均化する
ための2mm厚さのアルミ板28aが、ペルチェ冷却器2
7の冷却面にはさらに10mmのアルミ板28bを配設
し、また、板状試料22の表面には熱流センサー23を
前記板状試料22に密着させるために、前記熱流センサ
ー23を埋め込んでなるゴム板29を設けて構成してい
る。
Next, the amount of heat leakage was measured. Here, FIG.
26 is a sheet heater, and 27 is a Peltier type cooler, which heats and heats the upper and lower surfaces of the heat insulator facing each other.
It performs cooling. Also, a 2 mm thick aluminum plate 28a for averaging heat transfer between the heater 26 and the Peltier cooler 27 is provided above and below the sample.
7 is further provided with a 10 mm aluminum plate 28b on the cooling surface, and the heat flow sensor 23 is embedded on the surface of the plate-shaped sample 22 in order to bring the heat flow sensor 23 into close contact with the plate-shaped sample 22. A rubber plate 29 is provided.

【0039】上記装置を用いて得られる熱漏洩量Qtと
アルミラミネートフィルムの影響をほとんど含まずに、
試料中心部分を貫通する熱に係る熱漏洩量Q1から、下
記に示す式2を用いてアルミラミネートを介して漏洩す
る熱漏洩量Q2を得ることにより、端部部分の傾斜度合
いが熱漏洩量に及ぼす影響を解析した。その結果とし
て、L2/Dと熱漏洩量の関係を図4に示す。
The heat leakage amount Qt obtained by using the above apparatus and the influence of the aluminum laminated film are almost not included.
By obtaining the heat leakage amount Q2 leaking through the aluminum laminate from the heat leakage amount Q1 relating to the heat penetrating the sample center portion using the following equation 2, the degree of inclination of the end portion becomes the heat leakage amount. The effects were analyzed. As a result, the relationship between L2 / D and the amount of heat leakage is shown in FIG.

【0040】 Q2=Qt−Q1・ ・ ・ ・ ・ ・ ・ ・ (2) Q2:アルミラミネートフィルムを介して漏洩する熱漏
洩量 Qt:実験により得られた熱漏洩量 Q1:試料中心部の熱漏洩量
Q2 = Qt−Q1 ············································································································································································ · amount

【0041】図4における結果から、端辺部分における
熱架橋の影響を受けることによる熱漏洩量の増加量が、
端辺部分の長さ寸法L2と厚さ寸法dの比L2/dが
2.8以下の領域では、前記L2/d比が小さくなる、
つまり鋭角形状から直角形状に近づくにしたがって、急
激に増加する傾向を示した。これに対し、真空断熱パネ
ルの端辺部分の形状がL2/dが2.0以上のものは、
熱漏洩量が比較的、安定して少ない増加量に留まってお
り、端辺からの熱漏洩、つまり受熱面から包装材内部に
配したアルミ箔を伝わり、放熱面を経て低温域に漏洩す
る伝熱経路を経る熱量を抑制し、断熱性能の悪化を抑制
できることが解った。
From the results shown in FIG. 4, it can be seen that the amount of increase in the amount of heat leakage due to the influence of the thermal bridge at the edge is
In a region where the ratio L2 / d of the length dimension L2 to the thickness dimension d of the end portion is 2.8 or less, the L2 / d ratio decreases.
In other words, there was a tendency to increase sharply as the shape approaches the right angle from the acute angle. On the other hand, when the shape of the end portion of the vacuum insulation panel has L2 / d of 2.0 or more,
The amount of heat leakage is relatively small and stable, and the amount of heat leakage is relatively small.The heat leaks from the edges, that is, the heat is transmitted from the heat receiving surface to the aluminum foil placed inside the packaging material, and then to the low-temperature region through the heat dissipation surface. It has been found that the amount of heat passing through the heat path can be suppressed, and deterioration of the heat insulation performance can be suppressed.

【0042】また、このときの結果から、熱漏洩量の低
減がなくなって断熱性能が全く悪化しなくなる特性無次
元長さは3.7であった。つまり、これ以上のL2/d
比を得た鋭角形状を成す端辺部分を備えることによっ
て、熱漏洩の増加分が十分に低減して、鋭角形状を備え
ることによってVIPの厚さが相対的に減少する断熱性
能を相殺しうる状況に至るので、これ以下のL2/d比
を備える端部形状とすることが好ましいといえる。
From this result, it was found that the characteristic dimensionless length at which the amount of heat leakage did not decrease and the heat insulating performance did not deteriorate at all was 3.7. That is, L2 / d
By providing the edge portion having an acute angle shape with a ratio obtained, the increase in heat leakage can be sufficiently reduced, and the thermal insulation performance that the VIP thickness is relatively reduced by providing the acute angle shape can be offset. In some cases, it is preferable to use an end portion having an L2 / d ratio less than this.

【0043】以上の如く、本実施形態における真空断熱
パネルの端辺部分が鋭角形状を有するので、複雑な構造
に加工することなしに、多層構造を有する包材の一層と
して用いられている金属フィルムを介して周辺部におい
て熱伝導により発生する熱漏洩量を低減でき、断熱性能
が向上するという効果を奏する。
As described above, since the edge portion of the vacuum heat insulating panel in this embodiment has an acute angle, the metal film used as one layer of the packaging material having a multilayer structure without being processed into a complicated structure. Thus, the amount of heat leakage generated due to heat conduction in the peripheral portion can be reduced, and the heat insulation performance is improved.

【0044】また、断熱体の形状が鋭角的な形状を端部
に備えた形状であるため、断熱構造体のもう一つの断熱
材である発泡ウレタンを充填するときに流れを乱すなど
の不要な抵抗を生んで充填を阻害し難く、また流れの反
対方向にある端辺部分であっても真空断熱パネルの表面
に沿うように流れるので、空気を巻き込んで生まれる空
隙であるボイドを生むこともない。従って、真空断熱体
との間に隙間を生ずることなしに完全に密着して充填で
きるため、充填不良による断熱性能低下が防止できると
ともに、前記ボイドなどの空隙部分の収縮や膨脹が他の
部分よりも大きいことに起因した変形の発生を抑制でき
る、という効果を奏する。
Further, since the shape of the heat insulator is a shape having an acute angle at the end portion, unnecessary filling of urethane foam, which is another heat insulating material of the heat insulating structure, such as disturbing the flow, is unnecessary. It creates resistance and does not hinder the filling.Also, even the edge part in the opposite direction to the flow flows along the surface of the vacuum insulation panel, so it does not create voids that are created by entrapping air . Therefore, since it is possible to completely fill the space without forming a gap between the vacuum heat insulator and the space, it is possible to prevent the heat insulation performance from being deteriorated due to poor filling, and to reduce or expand the voids such as the voids more than other parts. Therefore, it is possible to suppress the occurrence of deformation caused by the large size.

【0045】さらに、端部を斜めに切断のみの加工を行
うことによって、上述した形状を実現することができる
ので、加工が容易であるうえに単純な形状であるから、
芯材加工における端部で利用に供すること無しにむだに
廃棄する端材の発生を極力抑えることができるので、効
率よく活用できるという効果を奏する。
Further, the above-described shape can be realized by performing only the cutting of the end portion obliquely, so that the working is easy and the shape is simple.
Since it is possible to minimize the generation of waste material that is wasted without being used at the end in the processing of the core material, it is possible to effectively utilize the waste material.

【0046】実施の形態2.本実施の形態は、真空断熱
体である真空断熱パネルの厚さdと前記真空断熱パネル
を配設した外殻内の断熱材距離dtとの比d/dtの最
適化に関するものであって、図5に示す熱漏洩量とd/
dt比の関係を示す説明図を用いて、その最適な構成を
以下に詳述する。
Embodiment 2 The present embodiment relates to optimization of a ratio d / dt between a thickness d of a vacuum heat insulating panel, which is a vacuum heat insulator, and a heat insulating material distance dt in an outer shell provided with the vacuum heat insulating panel, The amount of heat leakage and d /
The optimum configuration will be described below in detail with reference to an explanatory diagram showing the relationship of the dt ratio.

【0047】ここで用いる真空断熱パネルは、それが備
える芯材の厚さによって調整し、10ミクロンの厚さの
アルミ箔をガス遮蔽層として備える包装材を含めた任意
の厚さのものを得た。また、包装材内部の真空度を急激
に断熱性能が悪化を来す真空度である0.3torrよりも
充分に高い0.02torrとした。
The vacuum insulation panel used here is adjusted according to the thickness of the core material provided therein, and has an arbitrary thickness including a packaging material provided with a 10-micron-thick aluminum foil as a gas shielding layer. Was. Further, the degree of vacuum inside the packaging material was set to 0.02 torr, which is sufficiently higher than 0.3 torr, which is a degree of abrupt deterioration of the heat insulating performance.

【0048】以上の試料を用いて、実施の形態1と同じ
装置と方法を用い、図6に示す位置に熱流センサー23
を配した板状試料22を用いて熱漏洩量を測定した。そ
の結果を、真空断熱構造体の厚さdtを一定として真空
断熱パネルの平均厚さdを変化させた時の熱漏洩量をd
/dt比が0つまり真空断熱パネルを配設しない場合の
値を基準してd/dt比と熱漏洩量の関係を図5に示し
た。以上の結果によれば、d/dt比が0.5〜0.7の
領域では熱漏洩量が最少になり、その範囲外、特に小さ
な領域では熱漏洩量の増加する傾向が見られた。
Using the above-described sample and the same apparatus and method as in the first embodiment, the heat flow sensor 23 is positioned at the position shown in FIG.
Was used to measure the amount of heat leakage. The result is expressed as the amount of heat leakage when the average thickness d of the vacuum insulation panel is changed while keeping the thickness dt of the vacuum insulation structure constant.
FIG. 5 shows the relationship between the d / dt ratio and the amount of heat leakage based on the value when the / dt ratio is 0, that is, when no vacuum insulation panel is provided. According to the above results, the amount of heat leakage was minimized in the region where the d / dt ratio was 0.5 to 0.7, and the amount of heat leakage tended to increase outside the range, especially in a small region.

【0049】d/dt比が小さい場合、熱漏洩量の増加
は真空断熱パネルの3倍程度の熱伝導率を有する発泡ウ
レタンの量が増加することによって、断熱構造体におけ
る断熱性能が低下したことに基づくものである。これに
対して、d/dt比が大きい場合に熱漏洩量の増加する
主要因は、断熱構造体の断熱性能が真空断熱パネルの端
辺部分における熱架橋による伝熱が大きく影響されるこ
とによるものである。つまり、複素構造を成す発泡ウレ
タンの厚さが相対的に減少することによって、受熱面か
らの伝熱が真空断熱パネルの端辺部分を通じて殆ど減衰
すること無しに対面へと移動するが、このときにd/d
t比が大きくなるに従って放熱面との距離が小さくなっ
ているので伝熱量の減衰が少なくなり、放熱面に伝熱さ
れる量が斬増することになる。
When the d / dt ratio is small, the amount of heat leakage increases because the amount of urethane foam having about three times the thermal conductivity of the vacuum heat insulating panel increases, and the heat insulating performance of the heat insulating structure decreases. It is based on. On the other hand, when the d / dt ratio is large, the main cause of the increase in the amount of heat leakage is that the heat insulation performance of the heat insulating structure is largely affected by the heat transfer due to the thermal crosslinking at the edge of the vacuum heat insulating panel. Things. In other words, due to the relative decrease in the thickness of the urethane foam forming the complex structure, the heat transfer from the heat receiving surface moves to the facing surface with almost no attenuation through the edge of the vacuum insulation panel. D / d
Since the distance from the heat radiating surface decreases as the t ratio increases, the attenuation of the heat transfer amount decreases, and the amount of heat transferred to the heat radiating surface increases.

【0050】以上の如く、d/dt比が0.5〜0.7の
領域において、真空断熱パネルの端辺部分を通じた熱架
橋することによる見掛けの断熱性能の低下を最小限に抑
制することができることが確認できたが、断熱構造体の
複素構造を成す発泡ウレタンを前記断熱構造体の外殻内
における真空断熱パネルを除く空隙に注入および発泡さ
せることを考慮すれば、真空断熱パネルと外殻面との間
を広くすることが好ましく、d/dt比が0.5に近い
構造を成すように真空断熱パネルの厚さを構成すること
が好ましい。
As described above, in the region where the d / dt ratio is in the range of 0.5 to 0.7, it is possible to minimize the decrease in the apparent heat insulating performance due to the thermal crosslinking through the edge of the vacuum heat insulating panel. However, considering that the urethane foam, which forms the complex structure of the heat insulating structure, is injected and foamed into voids in the outer shell of the heat insulating structure other than the vacuum heat insulating panel, the vacuum heat insulating panel and the outside are considered. It is preferable to widen the gap between the shell surface and the thickness of the vacuum heat insulating panel so that the d / dt ratio is close to 0.5.

【0051】以上の如く、本実施形態から、真空断熱パ
ネルの厚さdと前記真空断熱パネルが配設された空隙d
tとの比(d/dt)が0.5〜0.7であれば、多層構
造を有する包材の一層として用いられている金属フィル
ムを介して伝熱する端辺部分での熱漏洩量を低減できる
うえ、好ましくは0.5に近づけることによって発泡ウ
レタンの充填を容易にし、充填不良の発生を抑制するこ
とができるので一層の断熱性能の向上効果を奏すること
ができる。
As described above, according to the present embodiment, the thickness d of the vacuum heat insulating panel and the gap d in which the vacuum heat insulating panel is disposed are described.
When the ratio (d / dt) with respect to t is 0.5 to 0.7, the amount of heat leakage at the edge portion that transfers heat through the metal film used as one layer of the packaging material having a multilayer structure In addition, by making the value close to 0.5, the filling of the urethane foam is facilitated, and the occurrence of poor filling can be suppressed, so that the effect of further improving the heat insulating performance can be exhibited.

【0052】また、本実施の形態における図7−aに示
した真空断熱パネルの配設状態に対し、前記真空断熱パ
ネルの上下の面を逆に配設して外箱への当接面積が小さ
い状態になりうる態様(図7−b)であっても、前記真
空断熱パネルの端辺部分を通じて熱架橋することによる
見掛けの断熱性能の低下を、同程度に抑制することがで
きる。
In contrast to the arrangement of the vacuum insulation panel shown in FIG. 7-a in this embodiment, the upper and lower surfaces of the vacuum insulation panel are arranged upside down so that the contact area with the outer box is reduced. Even in a mode (FIG. 7B) that can be reduced to a small state, it is possible to suppress the decrease in apparent heat insulation performance due to thermal crosslinking through the edge portion of the vacuum heat insulation panel to the same extent.

【0053】実施の形態3.本実施の形態は真空断熱体
である真空断熱パネルの受熱部から端辺部分を介して伝
熱する熱架橋の影響に関し、真空断熱パネルの放熱部で
ある面方向への広がりに影響され難い前記真空断熱パネ
ルの厚さdと幅L1(ただし、幅<長さ)の比L1/d
の最適化に関するもので、図8に示す熱漏洩量とL1/
d比の関係を示す説明図を用いて以下に詳述する。な
お、L1の寸法は真空断熱パネルの面の短い方向の寸法
を示しており、例えば図13に記載してある。
Embodiment 3 The present embodiment relates to the effect of thermal bridges that conduct heat from the heat receiving portion of the vacuum heat insulating panel, which is a vacuum heat insulator, through the edge portion, and is less likely to be affected by the spread in the surface direction, which is the heat radiating portion of the vacuum heat insulating panel. Ratio L1 / d of thickness d and width L1 (however, width <length) of the vacuum insulation panel
Of the heat leakage and L1 / L1 shown in FIG.
This will be described in detail below with reference to an explanatory diagram showing the relationship of the d ratio. The dimension of L1 indicates the dimension in the short direction of the surface of the vacuum heat insulating panel, and is described, for example, in FIG.

【0054】実施の形態1と同様手段によって得た真空
断熱パネルは、発泡ウレタンの発泡圧によって変形しな
いように発泡治具内に固定した後、発泡ウレタンの原料
混合液を散布して真空断熱パネルと発泡ウレタンが複素
化した断熱層を形成するので、これを治具から取り出す
ことによって、所望する複素化した構造を成す板状試料
を得た。
The vacuum heat insulating panel obtained by the same means as in the first embodiment is fixed in a foaming jig so as not to be deformed by the foaming pressure of the urethane foam, and then a material mixture of the urethane foam is sprayed to the vacuum heat insulating panel. And urethane foam form a complexed heat insulating layer, which was taken out of the jig to obtain a plate-like sample having a desired complexed structure.

【0055】ここで用いた板状試料22は、実施の形態
1と同様であり、図2に示すように幅が450mm、長
さが390mm、厚さが10mm〜20mmまでの間で
異なる真空断熱パネルを用いて、幅が500mm、長さ
が500mm、厚さが40mmとなるように発泡ウレタ
ンにより複素化を成した試料である断熱構造体の表面
に、幅方向の中央に20mmの間隔で熱流センサー23
を図6に示す位置に配した構成を成した装置とし、伝熱
量を測定した。また、ここで用いた装置は図4に示す実
施の形態1にてのものと同様である。
The plate-like sample 22 used here is the same as that in the first embodiment, and has a vacuum insulation different from 450 mm in width, 390 mm in length, and 10 mm to 20 mm in thickness as shown in FIG. Using a panel, heat flow was performed at intervals of 20 mm at the center in the width direction on the surface of a heat insulating structure that was a sample complexed with urethane foam so as to have a width of 500 mm, a length of 500 mm, and a thickness of 40 mm. Sensor 23
Was arranged at the position shown in FIG. 6, and the amount of heat transfer was measured. The device used here is the same as that in the first embodiment shown in FIG.

【0056】上記の方法で得られた熱漏洩量Qtとアル
ミラミネートフィルムの影響を含まない、資料の厚さ方
向に貫通する理想的な熱漏洩量Q1から数3を用いて規
格化された熱漏洩量Q*を得ることによって、幅方向の
位置が熱漏洩量に及ぼす影響を解析した。ここで示す幅
方向の位置とは、真空断熱パネルの幅方向の位置(真空
断熱パネル端部からの距離)を真空断熱パネルの断熱厚
さdで除した値であり、真空断熱パネルの幅と断熱厚さ
との比であるL1/d比と同意として示すことができ
る。また、ここで示す熱漏洩量は、真空断熱パネルの端
部を伝わる熱架橋の影響を殆ど受けること無しに発現す
る熱漏洩量である当該試料の中心部分における熱漏洩量
を基準値とする下記に示す式3に基づく熱漏洩の比率Q
*を採用した。
The amount of heat leakage Qt obtained by the above method and the idealized amount of heat leakage penetrating in the thickness direction of the material, which does not include the influence of the aluminum laminate film, are standardized using Equation 3 from the ideal amount of heat leakage Q1. The influence of the position in the width direction on the amount of heat leakage was obtained by obtaining the amount of leakage Q *. The position in the width direction shown here is a value obtained by dividing the position in the width direction of the vacuum insulation panel (the distance from the end of the vacuum insulation panel) by the insulation thickness d of the vacuum insulation panel. It can be shown as an agreement with the L1 / d ratio, which is the ratio to the adiabatic thickness. In addition, the amount of heat leakage shown here is the amount of heat leakage that is hardly affected by the thermal bridge transmitted through the end of the vacuum insulation panel. The heat leakage ratio Q based on Equation 3 shown in
*It was adopted.

【0057】 Q*=Qt/Q1 ・ ・ ・ ・ ・ ・ ・ (3)Q * = Qt / Q1 (3)

【0058】L1/d比と熱漏洩量の関係を示す説明図
を図8示す。図8から、真空断熱パネルの端部を伝わる
熱架橋によって影響を受けて熱漏洩量が有意に増加する
傾向はL1/d比が10近傍まで急激に小さくなり、2
0以上でほとんど無視できるようになる。従って、前記
熱架橋の影響を越えて真空断熱パネルによる断熱性能向
上の影響を有意に得るためには、熱架橋による熱漏洩量
の増加が過度に発生しない位置を含んで成ることが肝要
であり、従って、真空断熱パネルの幅はL1/d比が2
0以上を成すことが必要であることを確認した。
FIG. 8 is an explanatory diagram showing the relationship between the L1 / d ratio and the amount of heat leakage. From FIG. 8, the tendency that the amount of heat leakage significantly increases due to the influence of the thermal bridge transmitted through the end of the vacuum insulation panel is that the L1 / d ratio is sharply reduced to around 10 and the L1 / d ratio decreases sharply to around 10.
If it is 0 or more, it can be almost ignored. Therefore, in order to significantly obtain the effect of improving the heat insulating performance by the vacuum insulating panel beyond the effect of the thermal bridge, it is important to include a position where the amount of heat leakage due to the thermal bridge does not excessively increase. Therefore, the width of the vacuum insulation panel is L1 / d ratio of 2
It was confirmed that it was necessary to achieve 0 or more.

【0059】以上のように、真空断熱パネルを備える断
熱構造体の熱漏洩量は、前記真空断熱パネルの幅と厚さ
の比であるL1/d比が20以上であるものを用いるこ
とによって、前記真空断熱パネルを配設したことに伴う
見かけの断熱性能を向上させる効果が得られる。
As described above, the amount of heat leakage of the heat insulating structure provided with the vacuum heat insulating panel can be obtained by using the heat insulating structure having an L1 / d ratio of 20 or more, which is a ratio of the width to the thickness of the vacuum heat insulating panel. The effect of improving the apparent heat insulation performance accompanying the provision of the vacuum heat insulation panel is obtained.

【0060】実施の形態4.本実施の形態は真空断熱体
である真空断熱パネルの熱架橋の影響に関して、断熱構
造体が備える前記真空断熱パネルの厚さ方向への伝熱を
容易にもたらす端辺部分の形状に関するものであって、
その一例として図9に示す形態を備えて、図10の説明
図に示す熱漏洩に供する熱流路の態様を用いて以下に詳
述する。
Embodiment 4 The present embodiment relates to the effect of thermal crosslinking of a vacuum heat insulating panel, which is a vacuum heat insulator, and relates to the shape of an edge portion that facilitates heat transfer in the thickness direction of the vacuum heat insulating panel provided in the heat insulating structure. hand,
As an example, the configuration shown in FIG. 9 is provided, and the embodiment will be described in detail below using the form of a heat flow path provided for heat leakage shown in the explanatory view of FIG.

【0061】実施の形態1と同様の方法を用い、図9の
断面構造図に示す形状の芯材が内部にアルミ箔19を備
える包装材3内にある真空断熱パネル1を得た後、薄板
鋼板21を上下に配設した金型内で発泡ウレタン8を充
填して複素化した構造を成す断熱層を備えた断熱構造体
である板状試料22を作成した。
Using the same method as in the first embodiment, after obtaining the vacuum insulation panel 1 in which the core material having the shape shown in the sectional structural view of FIG. A plate-shaped sample 22, which is a heat-insulating structure provided with a heat-insulating layer having a complexed structure by filling urethane foam 8 in a mold in which a steel plate 21 is disposed vertically, was prepared.

【0062】この板状試料22における真空断熱パネル
1の端辺12部分が関わる熱の流路を、図10にて以下
に説明する。受熱面である外壁面を成す薄板鋼板21a
から侵入した熱流101は包装材3に到達後、熱伝導率
の非常に小さい真空断熱パネル1の芯材2の内部をほと
んど流れず、その大部分が包装材3、特に内部にあるア
ルミ箔19を伝わって面方向に拡散し、受熱面にある包
装材2の対面にまで移動した後、複素構造を成すもう一
方の断熱材である発泡ウレタン8に到達する。その後、
前記発泡ウレタン8を貫通して放熱面である低温の内壁
面から拡散をすることになる。
The flow path of heat involving the edge 12 of the vacuum heat insulating panel 1 in the plate sample 22 will be described below with reference to FIG. Thin steel plate 21a forming the outer wall surface that is the heat receiving surface
After reaching the packaging material 3, almost no heat flow 101 flows through the core material 2 of the vacuum insulation panel 1 having a very low thermal conductivity, and most of the heat flow 101 enters the packaging material 3, especially the aluminum foil 19 inside the packaging material 3. And diffuses in the surface direction, moves to the opposite surface of the packaging material 2 on the heat receiving surface, and then reaches the urethane foam 8 which is the other heat insulating material forming the complex structure. afterwards,
Diffusion is performed from the low-temperature inner wall surface, which is the heat radiation surface, through the urethane foam 8.

【0063】このとき、本実施形態に用いた真空断熱パ
ネル1の端辺12部分には段を設けて薄くなるように構
成しているので、もう一方の断熱材である発泡ウレタン
8が相対的に厚く形成されている。このため、当該部位
において、前記発泡ウレタン8を貫通して内壁面に到達
する伝熱量は少なく、多くの熱はアルミ箔19をさらに
伝わって外周部分を形成する前記発泡ウレタン8が薄く
なっている受熱面と対面にあって発泡ウレタン8中に埋
設している真空断熱パネル1の表面にまで到達した後に
発泡ウレタン8が薄くなった面部分から貫通して放熱面
にある薄板鋼板21bに到達する。以上のように、真空
断熱パネルの端部12における多くの熱の流路101は
アルミ箔19を伝わって受熱面の反対側にある真空断熱
パネル1の中央付近に向かう大きな迂回経路をとるた
め、熱伝導距離が長くなり、結果としてアルミ箔19内
を流れることに伴う抵抗を受けて熱の流量が減少し、伝
熱量である熱漏洩量が抑制できることになる。
At this time, since the vacuum heat insulating panel 1 used in the present embodiment is formed so as to be thin by providing a step on the end side 12 thereof, the urethane foam 8 as the other heat insulating material is relatively thin. It is formed thick. Therefore, in this portion, the amount of heat transmitted through the urethane foam 8 and reaching the inner wall surface is small, and a large amount of heat is further transmitted through the aluminum foil 19 to make the urethane foam 8 forming the outer peripheral portion thin. After reaching the surface of the vacuum insulation panel 1 buried in the urethane foam 8 facing the heat receiving surface, the urethane foam 8 penetrates through the thinned surface portion and reaches the thin steel plate 21b on the heat dissipation surface. . As described above, many heat flow paths 101 at the end portion 12 of the vacuum insulation panel take a large detour along the aluminum foil 19 and toward the vicinity of the center of the vacuum insulation panel 1 on the opposite side of the heat receiving surface. The heat conduction distance becomes longer, and as a result, the flow rate of heat decreases due to the resistance caused by flowing in the aluminum foil 19, and the amount of heat leakage, which is the amount of heat transfer, can be suppressed.

【0064】同様にして、図11の断面構造図に示す断
熱構造体のように、上記真空断熱パネル1の厚み中央部
近傍に向かって傾斜形状を備える芯材2を備える真空断
熱パネル1を用いても、同様の効果が得られる。つま
り、この真空断熱パネル1の適用においても同様、受熱
面にある薄板鋼板21aから端辺12部分に向かっての
厚さが相対的に薄く形成され、もう一方の断熱材である
発泡ウレタン8が受熱面にも存在して伝熱量を抑制する
と共に、放熱面部分も相対的に厚く形成されているた
め、包装材3、特に内層にあるアルミ箔19を介して流
れる熱流は端部12を大きく迂回する経路をとることに
なる。従って、熱流経路の延長に伴う伝熱の抵抗が増加
して熱漏洩量を低減、断熱性能が向上するという効果を
得ることができるものである。
Similarly, as in the heat insulating structure shown in the sectional structural view of FIG. 11, a vacuum heat insulating panel 1 having a core material 2 having an inclined shape toward the vicinity of the center of the thickness of the vacuum heat insulating panel 1 is used. The same effect can be obtained. That is, also in the application of the vacuum heat insulating panel 1, similarly, the thickness from the thin steel plate 21a on the heat receiving surface toward the end 12 is formed relatively thin, and the urethane foam 8 as the other heat insulating material is formed. Since the heat transfer surface exists on the heat receiving surface to suppress the amount of heat transfer and the heat radiating surface is formed relatively thick, the heat flow flowing through the packaging material 3, particularly the aluminum foil 19 in the inner layer, increases the end portion 12. A detour will be taken. Therefore, the effect of increasing the heat transfer resistance with the extension of the heat flow path, reducing the amount of heat leakage, and improving the heat insulation performance can be obtained.

【0065】上述した如く、端辺部分における真空断熱
体の外周部の厚みを中央部の厚みに比べて薄くしたこと
によって、本実施形態は多層構造を有する包装材、特に
アルミ箔を介して受熱面から対面に向かう伝熱の主とな
る経路が大きく迂回するような形態を備えたので、包装
材内の伝熱量が抑制でき、断熱性能が向上するという効
果を得ることができた。
As described above, the thickness of the outer peripheral portion of the vacuum heat insulator at the edge portion is made smaller than the thickness of the central portion, so that the present embodiment is capable of receiving heat through a packaging material having a multilayer structure, particularly an aluminum foil. Since the main path of heat transfer from the surface to the opposite surface is provided with a large detour, the amount of heat transfer in the packaging material can be suppressed, and the effect of improving the heat insulation performance can be obtained.

【0066】また、これら端辺12部分を備える芯材2
は、複雑な加工を要とせずに得ることができる。また、
真空断熱パネル1の端辺12部分の形状が連続的に変化
して成るので複素構造を成す発泡ウレタン8の充填が容
易に行うことができる。特に、後者の芯材では傾斜を備
えて成るために、発泡ウレタンの流動が容易になって完
全な充填状態が得やすく、ボイドなどの空隙を含んで成
る充填不良によって生じる断熱性能の低下が防止できる
という効果を奏する。
Further, the core material 2 having these end portions 12 is provided.
Can be obtained without requiring complicated processing. Also,
Since the shape of the end portion 12 of the vacuum heat insulating panel 1 is continuously changed, the filling of the urethane foam 8 having a complex structure can be easily performed. In particular, since the latter core material is provided with a slope, the flow of urethane foam is facilitated and a complete filling state is easily obtained, and a decrease in heat insulation performance caused by poor filling including voids and the like is prevented. It has the effect of being able to.

【0067】実施の形態5.本実施の形態は直角形状を
成す端辺部分を含んで成る真空断熱体である真空断熱パ
ネルが熱架橋の影響を効率よく抑制するために、断熱構
造体である冷蔵庫の断熱箱体を成す壁面に鋭角を成す端
辺部分、角部に前記真空断熱パネルの直角を成す端辺部
分、を各々の位置するように配設したものであり、図1
2に示す態様を用いて以下に、その構成と効果を詳述す
る。
Embodiment 5 In the present embodiment, a vacuum insulation panel, which is a vacuum insulation body including a right-angled edge portion, has a wall surface forming a heat insulation box of a refrigerator, which is a heat insulation structure, in order to efficiently suppress the influence of thermal crosslinking. FIG. 1 is a diagram in which an end portion forming an acute angle and an end portion forming a right angle of the vacuum heat insulating panel are disposed at respective corners so as to be located respectively.
The configuration and effect will be described below in detail using the embodiment shown in FIG.

【0068】真空断熱パネル1が直角形状を成す端辺部
分30を含んで成る場合、内箱7と外箱6で構成された
断熱箱体の外殻を構成して図12aに示す様な側板31
と背面板32との嵌合部分33に直角形状を成す端辺部
分30が互いを接することの無いように、背面板32と
当接する位置から真空断熱パネル1の厚みの約半分に相
当する5mm以上の距離、好ましくは10mm以内の距離を
隔てた断熱壁角部34に配設し、対向する辺にある鋭角
を成す端辺部分35を断熱壁面36上に位置するように
配設した。また、背面板32に配設する真空断熱パネル
1については、端辺12が側板31と当接する位置から
5〜10mmの距離を隔てた線上になるように、図13に
示す断熱箱体37の斜視図における図示位置に配設し、
外殻内の残りの空隙を発泡ウレタン8を注入発泡するこ
とによって充填をした。以上のようにして得られた断熱
箱体37には、従来の断熱箱体に用いられている既存の
扉を断熱箱体に設置した。
When the vacuum heat insulating panel 1 includes a right-angled edge 30, the outer shell of the heat insulating box composed of the inner box 7 and the outer box 6 is formed to form a side plate as shown in FIG. 31
5 mm corresponding to about half of the thickness of the vacuum heat insulating panel 1 from the position where it contacts the back plate 32 so that the end portions 30 forming a right angle to the fitting portion 33 between the back plate 32 and the fitting portion 33 do not touch each other. The heat insulating wall corners 34 are arranged at the above distance, preferably within a distance of 10 mm or less, and the acute side edge portions 35 on the opposite sides are arranged on the heat insulating wall 36. The vacuum heat insulating panel 1 shown in FIG. 13 is arranged so that the edge 12 is on a line separated by a distance of 5 to 10 mm from a position where the edge 12 contacts the side plate 31. It is arranged at the position shown in the perspective view,
The remaining voids in the outer shell were filled by injecting and foaming urethane foam 8. In the heat-insulated box 37 obtained as described above, the existing door used for the conventional heat-insulated box was installed in the heat-insulated box.

【0069】[比較試料]真空断熱パネル1を図12b
の断面図に示す如くの角部を含まない断熱壁面36上位
置に配設した冷蔵庫の断熱箱体37を、上述の本発明に
よる断熱箱体と同一の態様を成すように作製した。この
断熱箱体37に用いる扉は、上述した本発明に関わる断
熱箱体に用いたものを再利用し、上記断熱箱体37との
熱漏洩の過度な差異を排除して、不要な誤差が発生しな
いようにした。
[Comparative Sample] FIG.
As shown in the cross-sectional view of FIG. 7, a heat insulating box 37 of a refrigerator disposed at a position on the heat insulating wall 36 not including the corners was manufactured so as to have the same form as the above-described heat insulating box according to the present invention. As the door used for the heat-insulating box 37, the same one used for the heat-insulating box according to the present invention described above is reused, and an excessive difference in heat leakage from the heat-insulating box 37 is eliminated. It did not occur.

【0070】[評価の方法]以上の手段によって得られ
た断熱箱体の断熱性能の評価として、熱漏洩量を測定し
た。熱漏洩量の測定は、庫内に発熱量Qが既知のヒータ
を内部に投入して断熱箱体内部の空気温度Tinと断熱箱
体外部の空気温度Toutを測定し以下数4を用いて単位温
度差当たりの熱漏洩量すなわち熱コンダクタンスKを求
めた。
[Evaluation Method] In order to evaluate the heat insulating performance of the heat insulating box obtained by the above means, the amount of heat leakage was measured. The amount of heat leakage is measured by putting a heater with a known calorific value Q into the refrigerator and measuring the air temperature Tin inside the heat insulation box and the air temperature Tout outside the heat insulation box. The amount of heat leakage per temperature difference, that is, the thermal conductance K was determined.

【0071】 K=Q/(Tin−Tout) ・ ・ ・ ・ ・ ・ (4)K = Q / (Tin−Tout) (4)

【0072】[結果]表1に本発明の配設方法により真
空断熱パネルを配設した実施例および従来の配設方法に
よる比較例である冷蔵庫の断熱箱体の各々について、そ
の断熱性能として示す熱漏洩量の測定結果を記した。
[Results] Table 1 shows the heat insulating performance of each of the heat insulating boxes of the refrigerators according to the embodiment in which the vacuum heat insulating panel is provided by the mounting method of the present invention and the comparative example according to the conventional mounting method. The measurement results of the amount of heat leakage are described.

【0073】[0073]

【表1】 [Table 1]

【0074】外箱の平面を成す断熱壁に真空断熱パネル
の端辺部分を配した従来の断熱箱体の場合は、外箱から
受熱した後に端辺部分にある断熱方向に配されて成る包
装材のアルミ箔を伝わって、対面の真空断熱パネル表面
から断熱材である発泡ウレタンが薄い位置から貫通して
庫内側に流入するので、断熱箱体の見掛けの断熱性能は
低下を来す。
In the case of a conventional heat-insulating box in which an edge portion of a vacuum heat-insulating panel is disposed on a heat-insulating wall forming a plane of an outer box, a package formed by receiving heat from the outer box and then disposed in the heat-insulating direction at the edge portion. Since the urethane foam, which is a heat insulating material, penetrates from a thin position through the aluminum foil of the material and flows into the inside of the storage from a thin surface, the apparent heat insulating performance of the heat insulating box deteriorates.

【0075】このとき、本発明に基づいく断熱箱体は、
直角形状を成す端辺部分を含んで成る真空断熱パネルを
前記直角形状を成す端辺部分を隣接する断熱壁が交差す
る領域内である角部に位置して配し、残りの鋭角を成す
端辺部分が平面状を成す断熱壁に位置した。これによっ
て、直角形状を成す端辺部分が配した角部では、残りの
空隙を埋めた発泡ウレタンから内箱までの厚さが増して
成るので、当該端辺などから集中した熱の断熱箱体内部
への到達を抑制できるので熱漏洩量を抑制でき、断熱性
能に優れる断熱箱体を得ることができた。
At this time, the heat insulation box according to the present invention
A vacuum insulation panel including a right-angled edge portion is disposed at a corner where the right-angled edge portion is in a region where an adjacent heat-insulating wall intersects, and the remaining acute-angled edge is provided. The side portion was located on a flat heat insulating wall. As a result, the thickness from the urethane foam that fills the remaining voids to the inner box increases at the corners where the right-angled edge portions are arranged, so that the heat-insulating box body concentrated from the edges and the like. Since it is possible to suppress the heat from reaching the inside, the amount of heat leakage can be suppressed, and a heat insulating box having excellent heat insulating performance can be obtained.

【0076】また、図12aに示すように、直角形状を
成す端辺部分30が外箱6の嵌合部分33などに当接し
ても折り返すことなく、90度の角度で折り曲げられる
のみであるから、折りじわを生じたことに伴う真空断熱
パネルの包装材にあるアルミ箔にクラックなどの欠陥を
来すことは少ない。しかし、鋭角を成す端辺部分35が
断熱箱体37の開口部分にある外周端部38などに当接
する場合には、図12bに示すような態様で殆ど反対方
向に折り返しを行うような大きな変形を来すことにな
る。しかも、端部が損傷を受けやすい形状である鋭角を
成しているので、場合によっては包装材に欠陥部を生ん
で、真空度の低下を来すこともあり得る。この為、鋭角
を成す端辺部分35は外箱6の壁面上に位置するように
配設することが好ましく、これによって端辺部分にある
端辺12が前記外周端部38に当接して折り曲げられて
も、包装材に損傷を来し難い状況であるから、真空度の
低下を招いて断熱性を損なうことを回避できるので好ま
しい。
Further, as shown in FIG. 12A, even when the right side edge portion 30 comes into contact with the fitting portion 33 of the outer box 6, the edge portion 30 does not turn back but is only bent at an angle of 90 degrees. In addition, cracks and other defects are unlikely to occur in the aluminum foil in the packaging material of the vacuum insulation panel due to the occurrence of folds. However, when the end portion 35 forming an acute angle comes into contact with the outer peripheral end portion 38 at the opening portion of the heat insulating box 37, a large deformation such as folding in almost the opposite direction as shown in FIG. Will come. In addition, since the end portion has an acute angle that is easily damaged, a defective portion may be generated in the packaging material and the degree of vacuum may be reduced in some cases. For this reason, it is preferable that the end portion 35 forming an acute angle is disposed so as to be located on the wall surface of the outer box 6, whereby the end portion 12 at the end portion comes into contact with the outer peripheral end portion 38 and is bent. Even if it is done, the packaging material is hardly damaged, so that it is possible to avoid lowering the degree of vacuum and impairing the heat insulating property, which is preferable.

【0077】上述したように、真空断熱パネルの端辺部
分を、もう一つの断熱材である発泡ウレタンが厚く形成
されている側面と背面、天井などの各壁面部分が交わっ
て接合する領域内に位置するように配設して成るので、
真空断熱パネルの端辺部分における熱架橋の影響による
断熱性能の低下を抑制することができた。
As described above, the edge portion of the vacuum heat insulating panel is placed in a region where the wall surface portion, such as the side surface and the back surface and the ceiling, where the thick urethane foam as another heat insulating material is formed, intersects and joins. Since it is arranged so that it is located
It was possible to suppress a decrease in heat insulation performance due to the influence of thermal crosslinking at the edge portion of the vacuum heat insulation panel.

【0078】以上に述べた本発明の実施例に関し、本発
明が上記し、且つ図面や実施例で示した如くの冷蔵庫用
なっどの断熱構造体に限定されるものではなく、例えば
車載用小型冷蔵庫やプレハブ式簡易冷蔵庫、保冷車やパ
イプや建築物の保温材など、保温および保冷用製品の断
熱用部品への応用も可能であり、その要旨を脱し得ない
範囲で種々変形して実施することができる。
With respect to the embodiments of the present invention described above, the present invention is not limited to the above-described heat insulating structure for refrigerators as shown in the drawings and the embodiments. And prefabricated refrigerators, cold storage vehicles, pipes, heat insulation materials for buildings, and other heat insulation and cooling products can be applied to heat insulation parts. Can be.

【0079】[0079]

【発明の効果】本発明における第1の発明である真空断
熱体は、内部が連続した気孔を含む構造体を備えて真空
状態を保持して成る真空断熱体において、前記真空断熱
体の対向する2面からなる面部分の厚さdと、前記真空
断熱体の外周部分にあって外方向に向かうほど薄くなる
形状の端辺部分の長さL2との比L2/dが2.0以上
である端辺を含んで成るものであるから、主たる伝熱の
経路である受熱面から対面に至る距離を延長して熱架橋
による断熱性能の低下を抑制できる。
According to a first aspect of the present invention, there is provided a vacuum heat insulator comprising a structure having continuous pores therein and maintaining a vacuum state, wherein the vacuum heat insulator is opposed to the vacuum heat insulator. When the ratio L2 / d of the thickness d of the two surface portions to the length L2 of the outer peripheral portion of the vacuum heat insulator that becomes thinner toward the outside is 2.0 or more. Since it includes a certain edge, the distance from the heat receiving surface, which is the main heat transfer path, to the facing surface can be extended to suppress a decrease in heat insulation performance due to thermal crosslinking.

【0080】また、本発明における第2の発明である真
空断熱体は、端辺部分が面部分の厚さdと端辺部分の長
さL2との比L2/dを3.7以下とする形状を成すも
のであるから、伝熱経路を延長が過度な断熱厚さの低下
を招くことがないので断熱性能の低下を有効に抑制でき
る。
Further, in the vacuum heat insulator according to the second aspect of the present invention, the ratio L2 / d of the thickness d of the surface portion to the length L2 of the edge portion is 3.7 or less. Since it has a shape, the extension of the heat transfer path does not cause an excessive decrease in the heat insulation thickness, so that a decrease in the heat insulation performance can be effectively suppressed.

【0081】また、本発明における第3の発明である真
空断熱体は、端辺部分が、円弧または鈍角を備える直線
の組み合わせから構成された非直線を成すものものであ
るから、主たる伝熱の経路の延長を効率よく短い領域内
で可能とすることができる。
Further, in the vacuum heat insulator according to the third aspect of the present invention, since the end portion forms a non-linear shape composed of a combination of straight lines having an arc or an obtuse angle, the main heat transfer is achieved. The path can be efficiently extended within a short area.

【0082】また、本発明における第4の発明である真
空断熱体は、対向する2面から成る面部分が、その面を
構成する最も短い辺の長さL1と、真空断熱体の厚さd
との比L1/dが20以上を成すものであるから、熱架
橋の影響を抑制して断熱性能が低下し難い。
Further, in the vacuum heat insulator according to the fourth invention of the present invention, the surface portion composed of the two opposing surfaces has a length L1 of the shortest side constituting the surface and a thickness d of the vacuum heat insulator.
And the ratio L1 / d is 20 or more, it is difficult to reduce the heat insulation performance by suppressing the influence of thermal crosslinking.

【0083】本発明における第5の発明である断熱構造
体は、対向する2面から成る面部分と外方向が薄くなる
形状を備える端辺部分を含んで構成され、しかも、真空
断熱体の厚さdと前記端辺部分の長さL2の比L2/d
が2.0以上である端辺を含んで成る真空断熱体を外殻
内に配設し、残りの空隙を独立した気泡を含んで成る多
孔体が充填して成るものであるから、熱架橋の影響を少
なくして本来の断熱性能を得ることが出来る上、ボイド
などの空隙を含みにくいので、優れた断熱性能と意匠性
を得ることが出来る。
A heat insulating structure according to a fifth aspect of the present invention includes a surface portion composed of two opposing surfaces and an edge portion having a shape in which the outward direction becomes thinner. Ratio L2 / d between the length d and the length L2 of the end portion.
Is provided in the outer shell, and the remaining voids are filled with a porous body containing independent air bubbles. In addition, it is possible to obtain the original heat insulation performance by reducing the influence of the heat dissipation, and it is difficult to include voids such as voids, so that it is possible to obtain excellent heat insulation performance and design properties.

【0084】また、本発明における第6の発明である断
熱構造体は、真空断熱体の厚さDと真空断熱体を配設し
た外殻内の断熱材距離dtとの比d/dtが0.5〜0.
7の構成を備えるものであるから、端辺部分の熱架橋に
よる伝熱と外殻内の断熱材による貫通熱の抑制を有効に
確保し、優れた断熱性能を確保できる。
Further, in the heat insulating structure according to the sixth aspect of the present invention, the ratio d / dt of the thickness D of the vacuum heat insulator to the heat insulating material distance dt in the outer shell in which the vacuum heat insulator is disposed is 0. 0.5-0.5.
With the configuration of 7, the heat transfer by the thermal bridge at the end portion and the suppression of the penetration heat by the heat insulating material in the outer shell are effectively secured, and the excellent heat insulating performance can be secured.

【0085】また、本発明における第7の発明である断
熱構造体は、真空断熱体が傾斜を備える端辺部分が断熱
壁面内に位置して成るものであるから、端辺部分にある
端辺12が前記外周端部38に当接して折り曲げられる
ことがないので、包装材に損傷を来して真空度の低下を
招いて断熱性を損なうことが回避できた。
Further, in the heat insulating structure according to the seventh aspect of the present invention, since the vacuum heat insulator has an inclined side portion located inside the heat insulating wall, the edge portion located at the end portion is provided. Since 12 is not bent by abutting on the outer peripheral end portion 38, damage to the packaging material, reduction in the degree of vacuum, and impairment of heat insulation can be avoided.

【0086】また、本発明における第8の発明である断
熱構造体は、真空断熱体が端部に傾斜を備えること無し
に直角を成す態様で構成された前記真空断熱体の端辺部
分を壁面が交差する角部の外殻内に位置するように配設
して成るものであるから、端辺部分における熱架橋の影
響を受けたとしても独立した気泡を含んで成る多孔体を
厚く備えて成るので、断熱性能の低下が少ないものを得
ることができた。
The heat insulating structure according to an eighth aspect of the present invention is characterized in that the vacuum heat insulator is formed at a right angle without a slope at the end, and the edge portion of the vacuum heat insulator is formed as a wall surface. Are disposed so as to be located in the outer shell of the corner where the crossing is made, so that even if the end portion is affected by thermal crosslinking, a thick porous body containing independent bubbles is provided. As a result, it was possible to obtain a material having a small decrease in heat insulation performance.

【0087】また、本発明における第9の発明である断
熱構造体は、真空断熱体が、対向する面を構成する短辺
の長さL1と厚さdとの比L1/dを20以上とする形
態を有して成るものであるから、熱架橋によって反受熱
面に至る伝熱の影響が少なくて済み、断熱性能の低下が
少ないものを得ることができた。
The heat insulating structure according to the ninth aspect of the present invention is characterized in that the vacuum heat insulator has a ratio L1 / d of the length L1 of the short side constituting the facing surface to the thickness d of 20 or more. Therefore, the effect of heat transfer to the heat-receiving surface due to the thermal crosslinking was small, and the heat-insulating performance was hardly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態の一例を示すものであっ
て、真空断熱パネルの端辺構造と断熱構造体の配設状態
を示す断面図。
FIG. 1, showing an example of an embodiment of the present invention, is a cross-sectional view illustrating an edge structure of a vacuum heat insulating panel and a state of disposing a heat insulating structure.

【図2】 本発明の実施の形態の一例を示すものであっ
て、面方向の伝熱量測定に要す熱流センサーの配置位置
を示す説明図。
FIG. 2, showing an example of an embodiment of the present invention, is an explanatory diagram showing an arrangement position of a heat flow sensor required for measuring a heat transfer amount in a plane direction.

【図3】 本発明の実施の形態の一例を示すものであっ
て、伝熱量を測定する装置の概念図。
FIG. 3, showing an example of an embodiment of the present invention, is a conceptual diagram of an apparatus for measuring a heat transfer amount.

【図4】 本発明の実施の形態の一例を示すものであっ
て、端部部分の傾斜と熱漏洩量の関係を示す関係図。
FIG. 4, showing an example of an embodiment of the present invention, is a relationship diagram illustrating a relationship between the inclination of an end portion and the amount of heat leakage.

【図5】 本発明の実施の形態の一例を示すものであっ
て、板状試料の厚さと真空断熱パネル厚さの関係を示す
説明図。
FIG. 5, showing an example of an embodiment of the present invention, is an explanatory diagram showing a relationship between the thickness of a plate-like sample and the thickness of a vacuum heat insulating panel.

【図6】 本発明の実施の形態の一例を示すものであっ
て、貫通熱量測定に要す熱流センサーの配置位置を示す
説明図。
FIG. 6, showing an example of an embodiment of the present invention, is an explanatory view showing an arrangement position of a heat flow sensor required for measuring a through heat quantity.

【図7】 本発明の実施の形態の一例を示すものであっ
て、断熱材と真空断熱パネル厚さの比と熱漏洩量の関係
を示す関係図。
FIG. 7, showing an example of an embodiment of the present invention, is a relationship diagram showing a relationship between a ratio of a heat insulating material to a thickness of a vacuum heat insulating panel and an amount of heat leakage.

【図8】 本発明の実施の形態の一例を示すものであっ
て、真空断熱パネルにおける厚さと短辺長さの比と熱漏
洩量との関係を示す関係図。
FIG. 8, showing an example of an embodiment of the present invention, is a relationship diagram showing a relationship between a ratio of a thickness to a short side length and a heat leakage amount in a vacuum heat insulating panel.

【図9】 本発明の実施の形態の一例を示すものであっ
て、真空断熱パネルの端辺部分における別な形状を示す
概念図。
FIG. 9 shows an example of the embodiment of the present invention, and is a conceptual diagram showing another shape at an end portion of the vacuum heat insulating panel.

【図10】 本発明の実施の形態の一例を示すものであ
って、図10の端辺形状における熱漏洩に供する熱流路
を示す説明図。
10 is a view showing one example of the embodiment of the present invention, and is an explanatory view showing a heat flow path provided for heat leakage in the edge shape of FIG. 10;

【図11】 本発明の実施の形態の一例を示すものであ
って、さらに別な真空断熱パネルの端辺部分の形状を示
す概念図。
FIG. 11 is a conceptual diagram showing an example of an embodiment of the present invention and showing a shape of an edge portion of still another vacuum heat insulating panel.

【図12】 本発明の実施の形態の一例を示すものであ
って、断熱箱体の壁面に配設した真空断熱パネルの態様
を示す断面図。
FIG. 12, showing an example of an embodiment of the present invention, is a cross-sectional view illustrating an embodiment of a vacuum heat insulating panel provided on a wall surface of a heat insulating box.

【図13】 本発明の実施の形態の一例を示すものであ
って、真空断熱パネルの断熱箱体における配設位置を示
す斜視図。
FIG. 13 is a perspective view showing an example of an embodiment of the present invention and showing a position where a vacuum heat insulating panel is provided in a heat insulating box.

【図14】 従来の実施の形態の一例を示すものであっ
て、各種断熱材の性能を示す比較図。
FIG. 14 shows an example of a conventional embodiment, and is a comparative diagram showing the performance of various heat insulating materials.

【図15】 従来の実施の形態の一例を示すものであっ
て、真空断熱パネルの内部構造を示す断面図。
FIG. 15 shows an example of a conventional embodiment, and is a cross-sectional view showing an internal structure of a vacuum heat insulating panel.

【図16】 従来の実施の形態の一例を示すものであっ
て、真空断熱パネルの冷蔵庫の断熱壁に配設した状態を
示す断面図。
FIG. 16 is a cross-sectional view showing an example of a conventional embodiment and showing a state where a vacuum heat insulating panel is disposed on a heat insulating wall of a refrigerator.

【図17】 従来の実施の形態の一例を示すものであっ
て、真空断熱パネルの製造方法を示す工程図。
FIG. 17 illustrates an example of a conventional embodiment, and is a process diagram illustrating a method of manufacturing a vacuum heat insulating panel.

【図18】 従来の実施の形態の一例を示すものであっ
て、包装材の構成を示す断面図。
FIG. 18 illustrates an example of a conventional embodiment, and is a cross-sectional view illustrating a configuration of a packaging material.

【図19】 従来の実施の形態の一例を示すものであっ
て、包装材における端辺部分構造の一例を示す断面図。
FIG. 19 is a cross-sectional view showing an example of a conventional embodiment and showing an example of an edge portion structure in a packaging material.

【図20】 従来の実施の形態の一例を示すものであっ
て、別な従来の真空断熱パネルにおける端辺部分の例を
示す断面図。
FIG. 20 is a cross-sectional view showing an example of the conventional embodiment and showing an example of an end portion in another conventional vacuum heat insulating panel.

【符号の説明】[Explanation of symbols]

1 真空断熱パネル、2 芯材、5 断熱壁、6 外
箱、7 内箱、8 発泡ウレタン、12 端辺、24
面部分、30 直角形状を成す端辺部分、34断熱壁角
部、35 鋭角を成す端辺部分、36 断熱壁面、37
断熱箱体。
1 vacuum insulation panel, 2 core materials, 5 insulation walls, 6 outer box, 7 inner box, 8 urethane foam, 12 edges, 24
Surface portion, 30 right side edge portion, 34 heat insulating wall corner portion, 35 acute angle side portion, 36 heat insulating wall surface, 37
Insulated box.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3E070 AA08 AA25 DA01 DA09 LA07 NA04 NA06 3H036 AA08 AB18 AB25 AB28 AC01 3L102 JA01 MA07 MB22 MB27  ────────────────────────────────────────────────── ─── Continued on the front page F term (reference) 3E070 AA08 AA25 DA01 DA09 LA07 NA04 NA06 3H036 AA08 AB18 AB25 AB28 AC01 3L102 JA01 MA07 MB22 MB27

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 内部が連続した気孔を含む構造体を備え
て真空状態を保持して成る真空断熱体において、前記真
空断熱体の対向する2面からなる面部分の厚さdと、前
記真空断熱体の外周部分にあって外方向に向かうほど薄
くなる形状の端辺部分の長さL2との比L2/dが2.
0以上である端辺を含んで成る真空断熱体。
1. A vacuum heat insulator comprising a structure having continuous pores therein and maintained in a vacuum state, wherein a thickness d of two opposing surface portions of said vacuum heat insulator is defined by: The ratio L2 / d to the length L2 of the end portion of the outer peripheral portion of the heat insulator that becomes thinner toward the outside is 2.
A vacuum insulator comprising an edge that is greater than or equal to zero.
【請求項2】 端辺部分が、真空断熱体の厚さdと端辺
部分の長さL2との比L2/dを3.7以下とする形状
を成すことを特徴とする請求項1に記載の真空断熱体。
2. An end portion having a shape in which a ratio L2 / d of a thickness d of the vacuum heat insulator to a length L2 of the end portion is 3.7 or less. The vacuum insulator as described.
【請求項3】 端辺部分、円弧または鈍角を備える直線
の組み合わせから構成された非直線を成すものであるこ
とを特徴とする請求項1または請求項2に記載の真空断
熱体。
3. The vacuum heat insulator according to claim 1, wherein the non-linear shape is formed by a combination of an end portion, a straight line having an arc or an obtuse angle.
【請求項4】 対向する2面から成る面部分が、その面
を構成する最も短い辺の長さL1と、真空断熱体の厚さ
dとの比L1/dが20以上を成すものであることを特
徴とする請求項1または2に記載の真空断熱体。
4. A ratio of L1 / d between the length L1 of the shortest side constituting the surface and the thickness d of the vacuum heat insulator is 20 or more. The vacuum heat insulator according to claim 1 or 2, wherein:
【請求項5】 対向する2面から成る面部分と外方向が
薄くなる形状を備える端辺部分を含んで構成され、しか
も、真空断熱体の厚さdと前記端辺部分の長さL2の比
L2/dが2.0以上である端辺を含んで成る真空断熱
体を外殻内に配設し、残りの空隙を独立した気泡を含ん
で成る多孔体が充填して成る断熱構造体。
5. A vacuum heat insulator having a thickness d and a length L2 of the vacuum heat insulator, comprising a surface portion composed of two opposing surfaces and an edge portion having a shape that becomes thinner in an outward direction. A heat insulating structure in which a vacuum heat insulator including an edge having a ratio L2 / d of 2.0 or more is disposed in an outer shell, and the remaining voids are filled with a porous material containing independent air bubbles. .
【請求項6】 真空断熱体が、厚さdと真空断熱体を配
設した外殻内の断熱材厚さdtとの比d/dtが0.5
〜0.7の構成を備えることを特徴とする請求項5に記
載の断熱構造体。
6. The ratio d / dt of the thickness d of the vacuum heat insulator to the thickness dt of the heat insulator in the outer shell in which the vacuum heat insulator is disposed is 0.5.
The heat insulating structure according to claim 5, comprising a configuration of -0.7.
【請求項7】 真空断熱体が、傾斜を備える端辺部分が
断熱壁面内に位置して成ることを特徴とする請求項5ま
たは6に記載の断熱構造体。
7. The heat insulating structure according to claim 5, wherein the vacuum heat insulating body has an inclined end portion located in the heat insulating wall surface.
【請求項8】 真空断熱体が、その端部に傾斜を備える
こと無しに直角を成す態様で構成された真空断熱体の端
辺部分を壁面が交差する角部の外殻内に位置するように
配設して成ることを特徴とする請求項5から7のいずれ
かに記載の断熱構造体。
8. The vacuum heat insulator is positioned in the outer shell of the corner where the wall surface intersects the end portion of the vacuum heat insulator formed in a right-angled manner without having a slope at its end. The heat insulating structure according to any one of claims 5 to 7, wherein the heat insulating structure is provided on a surface of the heat insulating structure.
【請求項9】 真空断熱体が、対向する面を構成する短
辺の長さL1と厚さdとの比L1/dを20以上とする
形態を有して成ることを特徴とする請求項5から8のい
ずれかに記載の断熱構造体。
9. A vacuum heat insulator having a configuration in which a ratio L1 / d of a length L1 of a short side constituting an opposing surface to a thickness d thereof is 20 or more. 9. The heat insulating structure according to any one of 5 to 8.
JP11129760A 1999-05-11 1999-05-11 Vacuum heat insulating body and heat insulating structural body Pending JP2000320958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11129760A JP2000320958A (en) 1999-05-11 1999-05-11 Vacuum heat insulating body and heat insulating structural body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11129760A JP2000320958A (en) 1999-05-11 1999-05-11 Vacuum heat insulating body and heat insulating structural body

Publications (2)

Publication Number Publication Date
JP2000320958A true JP2000320958A (en) 2000-11-24
JP2000320958A5 JP2000320958A5 (en) 2005-10-27

Family

ID=15017529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11129760A Pending JP2000320958A (en) 1999-05-11 1999-05-11 Vacuum heat insulating body and heat insulating structural body

Country Status (1)

Country Link
JP (1) JP2000320958A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010068518A (en) * 2000-01-06 2001-07-23 구자홍 Core with slant edges useful for vacuum insulating panel, and vacuum insulating panel made by the same
KR100724446B1 (en) 2006-03-24 2007-06-04 엘지전자 주식회사 Vacuum isolation panel for refrigerator cabinet and manuafacturing method of isolation structure of refrigerator cabinet
JP2007309478A (en) * 2006-05-22 2007-11-29 Toshiba Home Technology Corp Heat insulating material and manufacturing method for it
JP2009198129A (en) * 2008-02-25 2009-09-03 Panasonic Corp Hot water storage tank and water heater using the same
JP2013076471A (en) * 2013-01-30 2013-04-25 Mitsubishi Electric Corp Heat insulating wall, refrigerator, and equipment
JP2013194979A (en) * 2012-03-19 2013-09-30 Mitsubishi Electric Corp Heat insulating structure for storage water heater
US9476633B2 (en) 2015-03-02 2016-10-25 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
JP2017002949A (en) * 2015-06-08 2017-01-05 日立アプライアンス株式会社 Vacuum heat insulation material and equipment using the same
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
WO2018143691A1 (en) * 2017-02-02 2018-08-09 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US10105931B2 (en) 2014-02-24 2018-10-23 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US20180313598A1 (en) * 2015-10-19 2018-11-01 Samsung Electronics Co., Ltd Refrigerator and manufacturing method therefor
JP2018169097A (en) * 2017-03-30 2018-11-01 パナソニックIpマネジメント株式会社 Vacuum heat insulation housing and refrigerator
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10345031B2 (en) 2015-07-01 2019-07-09 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10350817B2 (en) 2012-04-11 2019-07-16 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10598424B2 (en) 2016-12-02 2020-03-24 Whirlpool Corporation Hinge support assembly
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10663217B2 (en) 2012-04-02 2020-05-26 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US10731915B2 (en) 2015-03-11 2020-08-04 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10808987B2 (en) 2015-12-09 2020-10-20 Whirlpool Corporation Vacuum insulation structures with multiple insulators
US10828844B2 (en) 2014-02-24 2020-11-10 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US11175090B2 (en) 2016-12-05 2021-11-16 Whirlpool Corporation Pigmented monolayer liner for appliances and methods of making the same
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure
US11994336B2 (en) 2015-12-09 2024-05-28 Whirlpool Corporation Vacuum insulated structure with thermal bridge breaker with heat loop

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010068518A (en) * 2000-01-06 2001-07-23 구자홍 Core with slant edges useful for vacuum insulating panel, and vacuum insulating panel made by the same
KR100724446B1 (en) 2006-03-24 2007-06-04 엘지전자 주식회사 Vacuum isolation panel for refrigerator cabinet and manuafacturing method of isolation structure of refrigerator cabinet
JP2007309478A (en) * 2006-05-22 2007-11-29 Toshiba Home Technology Corp Heat insulating material and manufacturing method for it
JP2009198129A (en) * 2008-02-25 2009-09-03 Panasonic Corp Hot water storage tank and water heater using the same
JP4730385B2 (en) * 2008-02-25 2011-07-20 パナソニック株式会社 Hot water storage tank and hot water supply device using the same
JP2013194979A (en) * 2012-03-19 2013-09-30 Mitsubishi Electric Corp Heat insulating structure for storage water heater
US10746458B2 (en) 2012-04-02 2020-08-18 Whirlpool Corporation Method of making a folded vacuum insulated structure
US10663217B2 (en) 2012-04-02 2020-05-26 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US10697697B2 (en) 2012-04-02 2020-06-30 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US10350817B2 (en) 2012-04-11 2019-07-16 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
JP2013076471A (en) * 2013-01-30 2013-04-25 Mitsubishi Electric Corp Heat insulating wall, refrigerator, and equipment
US10828844B2 (en) 2014-02-24 2020-11-10 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US10105931B2 (en) 2014-02-24 2018-10-23 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US9890990B2 (en) 2015-03-02 2018-02-13 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10365030B2 (en) 2015-03-02 2019-07-30 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US9476633B2 (en) 2015-03-02 2016-10-25 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US11243021B2 (en) 2015-03-05 2022-02-08 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US11713916B2 (en) 2015-03-05 2023-08-01 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10731915B2 (en) 2015-03-11 2020-08-04 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
JP2017002949A (en) * 2015-06-08 2017-01-05 日立アプライアンス株式会社 Vacuum heat insulation material and equipment using the same
US10345031B2 (en) 2015-07-01 2019-07-09 Whirlpool Corporation Split hybrid insulation structure for an appliance
US20180313598A1 (en) * 2015-10-19 2018-11-01 Samsung Electronics Co., Ltd Refrigerator and manufacturing method therefor
US11098947B2 (en) * 2015-10-19 2021-08-24 Samsung Electronics Co., Ltd. Refrigerator and manufacturing method therefor
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US11691318B2 (en) 2015-12-08 2023-07-04 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10605519B2 (en) 2015-12-08 2020-03-31 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US11009288B2 (en) 2015-12-08 2021-05-18 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10907886B2 (en) 2015-12-08 2021-02-02 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US11994337B2 (en) 2015-12-09 2024-05-28 Whirlpool Corporation Vacuum insulation structures with multiple insulators
US11555643B2 (en) 2015-12-09 2023-01-17 Whirlpool Corporation Vacuum insulation structures with multiple insulators
US10808987B2 (en) 2015-12-09 2020-10-20 Whirlpool Corporation Vacuum insulation structures with multiple insulators
US11994336B2 (en) 2015-12-09 2024-05-28 Whirlpool Corporation Vacuum insulated structure with thermal bridge breaker with heat loop
US10914505B2 (en) 2015-12-21 2021-02-09 Whirlpool Corporation Vacuum insulated door construction
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10514198B2 (en) 2015-12-28 2019-12-24 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US11577446B2 (en) 2015-12-29 2023-02-14 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US11752669B2 (en) 2015-12-30 2023-09-12 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11609037B2 (en) 2016-04-15 2023-03-21 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure
US10598424B2 (en) 2016-12-02 2020-03-24 Whirlpool Corporation Hinge support assembly
US11175090B2 (en) 2016-12-05 2021-11-16 Whirlpool Corporation Pigmented monolayer liner for appliances and methods of making the same
US11867452B2 (en) 2016-12-05 2024-01-09 Whirlpool Corporation Pigmented monolayer liner for appliances and methods of making the same
WO2018143691A1 (en) * 2017-02-02 2018-08-09 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11378223B2 (en) 2017-02-02 2022-07-05 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11719378B2 (en) 2017-02-02 2023-08-08 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11009177B2 (en) 2017-02-02 2021-05-18 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
JP2018169097A (en) * 2017-03-30 2018-11-01 パナソニックIpマネジメント株式会社 Vacuum heat insulation housing and refrigerator
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
US11543172B2 (en) 2019-02-18 2023-01-03 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface

Similar Documents

Publication Publication Date Title
JP2000320958A (en) Vacuum heat insulating body and heat insulating structural body
RU2253792C2 (en) Evacuated casing for heat insulation and method of its making
US20060101749A1 (en) Sound insulation members of a railroad vehicle, and production methods of sound insulation members
JP2001521128A (en) Insulation wall
JP3852537B2 (en) Heat insulation box
JP3876551B2 (en) Insulation and refrigerator
JP2000104889A (en) Manufacture of vacuum heat insulating material
JP3874046B2 (en) Heat insulation box
JPH11141796A (en) Vacuum heat insulating panel
JP6742090B2 (en) Vacuum insulation
JP2005140407A (en) Heat insulating wall body and refrigerator
JP4273466B2 (en) Vacuum insulation panel, method for manufacturing the same, and refrigerator using this vacuum insulation panel
JP2000018485A (en) Evacuated insulation panel
JP2000283643A (en) Vacuum heat insulation panel and its manufacture
JPH0814484A (en) Heat insulating body structure
JP4042004B2 (en) Vacuum insulation panel, method for manufacturing the same, and insulation box using the same
JP2002179158A (en) Heat insulating container
JPH11201627A (en) Vacuum heat-insulating panel, its manufacture and manufacture of heat insulation case using the panel
JPH10141583A (en) Heat insulating wall body
JP3482404B2 (en) Vacuum heat insulating material and manufacturing method, and equipment using the vacuum heat insulating material
JP6667079B2 (en) Vacuum insulation
JP3357747B2 (en) Insulation structure
JP2001141178A (en) Vacuum heat insulating material, heat insulating container, method for manufacturing heat insulating container, heat insulating box body and heat insulating panel
JP2564035B2 (en) Vacuum insulation
JP2002310554A (en) System and method for producing vacuum thermal insulation material, vacuum thermal insulation material, and thermal insulation box

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050830

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070821