JP2013194979A - Heat insulating structure for storage water heater - Google Patents

Heat insulating structure for storage water heater Download PDF

Info

Publication number
JP2013194979A
JP2013194979A JP2012062057A JP2012062057A JP2013194979A JP 2013194979 A JP2013194979 A JP 2013194979A JP 2012062057 A JP2012062057 A JP 2012062057A JP 2012062057 A JP2012062057 A JP 2012062057A JP 2013194979 A JP2013194979 A JP 2013194979A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
hot water
water storage
vacuum heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012062057A
Other languages
Japanese (ja)
Other versions
JP5835041B2 (en
Inventor
Norito Takeuchi
史人 竹内
Toshinori Sugiki
稔則 杉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012062057A priority Critical patent/JP5835041B2/en
Publication of JP2013194979A publication Critical patent/JP2013194979A/en
Application granted granted Critical
Publication of JP5835041B2 publication Critical patent/JP5835041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Thermal Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent leakage of heat of a hot water storage tank from a clearance of a heat insulating structure and improve strength by feeding foamed particles to every corner within a molding tool during molding of a heat insulating structure.SOLUTION: A heat insulating structure 100 of a hot water storage tank 21 includes divided heat insulating materials 100A-100E, and the divided heat insulating material 100C includes a foamed heat insulating material 101 and a vacuum heat insulating material 102. The vacuum heat insulating 102 is inclined to an inner face 101a and an outer face 101b of the foamed heat insulating material 101, and a distance between the surface of the vacuum heat insulating material 102 and the inner face 101a and the outer face 101b varies depending on portions. Thus during molding of the foamed heat insulating material 101, pre-expanded particles 111 foamed and expanded can be fed to each portion within a molding tool 110, so as to prevent generation of a clearance within the molded foamed heat insulating material 101.

Description

本発明は、貯湯タンクを備えた貯湯式給湯機の断熱構造体に関する。   The present invention relates to a heat insulating structure of a hot water storage type hot water heater provided with a hot water storage tank.

一般に、貯湯式給湯機に搭載された貯湯タンクの断熱性能を改善すると、給湯機自体の性能が改善する。このため、従来技術では、貯湯タンクの断熱材として、ビーズ法ポリスチレンフォーム(EPS)に代表される発泡断熱材だけでなく、熱伝導率の優れた真空断熱材を採用し、貯湯タンクの断熱性能を改善したものが知られている(特許文献1)。   Generally, when the heat insulation performance of the hot water storage tank mounted on the hot water storage type hot water heater is improved, the performance of the hot water heater itself is improved. For this reason, the conventional technology employs not only foam insulation represented by beaded polystyrene foam (EPS) but also heat insulation performance of hot water storage tanks as a thermal insulation for hot water storage tanks. The thing which improved this is known (patent document 1).

また、他の従来技術としては、貯湯タンクの外郭のほぼ全面を覆って保温及び断熱を行う断熱材であって、耐熱性発泡ポリスチレンからなる発泡断熱材と真空断熱材とを一体成形した断熱材が知られている(特許文献2)。この断熱材は、真空断熱材が予め挿入された成形型内に発泡樹脂を流し込むことで、発泡断熱材のほぼ中央に真空断熱材が位置するように成形され、さらに貯湯タンクの形状に合わせて複数個に分割されている。   In addition, as another conventional technique, a heat insulating material that covers and covers almost the entire outer surface of the hot water storage tank, and that is formed by integrally forming a heat insulating foam material made of heat-resistant foamed polystyrene and a vacuum heat insulating material. Is known (Patent Document 2). This heat insulating material is formed so that the vacuum heat insulating material is positioned almost in the center of the foam heat insulating material by pouring the foamed resin into a mold in which the vacuum heat insulating material has been inserted in advance, and further in accordance with the shape of the hot water storage tank. Divided into multiple pieces.

特開2010−091134号公報JP 2010-091134 A 特開2007−139072号公報JP 2007-139072 A

しかしながら、特許文献1の従来技術において、発泡断熱材には、真空断熱材を取付けるための取付溝及び取付孔が形成されており、これらの取付溝や取付孔の位置には隙間が生じ易い。このため、特許文献1の従来技術では、前記隙間から貯湯タンクの熱が漏れることにより、真空断熱材の高い断熱性能を十分に発揮できないという問題がある。一方、特許文献2の従来技術では、真空断熱材が発泡断熱材の内部(厚さ方向のほぼ中央)に配置されており、複数個の断熱材を組合わせて貯湯タンクの全面を覆った状態では、個々の断熱材を構成する真空断熱材の端部同士が互いに重なり合うように接続される。しかしながら、この構成では、発泡断熱材と真空断熱材とを一体成形するときに、成形型内で発泡粒子が回り込まない部位が発生し易く、この部位で断熱材の強度が局所的に低下するという問題がある。   However, in the prior art of Patent Document 1, the foamed heat insulating material is formed with mounting grooves and mounting holes for mounting the vacuum heat insulating material, and gaps are likely to occur at the positions of these mounting grooves and mounting holes. For this reason, in the prior art of patent document 1, when the heat | fever of a hot water storage tank leaks from the said clearance gap, there exists a problem that the high heat insulation performance of a vacuum heat insulating material cannot fully be exhibited. On the other hand, in the prior art of Patent Document 2, the vacuum heat insulating material is disposed inside the foam heat insulating material (approximately in the center in the thickness direction), and covers the entire surface of the hot water storage tank by combining a plurality of heat insulating materials. Then, it connects so that the edge parts of the vacuum heat insulating material which comprises each heat insulating material may mutually overlap. However, in this configuration, when the foam heat insulating material and the vacuum heat insulating material are integrally formed, a portion where the foam particles do not circulate easily occurs in the mold, and the strength of the heat insulating material is locally reduced at this portion. There's a problem.

本発明は、上述のような問題点を解消するためになされたもので、貯湯タンクの熱が断熱構造体の隙間から漏れるのを防止し、かつ、断熱構造体の成形時に発泡粒子を成形型内の隅々まで回りこませて強度を向上させることが可能な貯湯式給湯機の断熱構造体を提供することを目的とする。   The present invention has been made to solve the above-described problems, and prevents the heat of the hot water storage tank from leaking from the gaps of the heat insulation structure, and the foamed particles are molded when the heat insulation structure is molded. An object of the present invention is to provide a heat insulation structure for a hot water storage type hot water heater capable of improving strength by wrapping around every corner.

本発明に係る貯湯式給湯機の断熱構造体は、温水を貯留する貯湯タンクに面した内側面と外部空間に面した外側面とを有し、貯湯タンクの少なくとも一部を外側から覆う発泡断熱材と、発泡断熱材の内部に設けられ、貯湯タンクを覆うように発泡断熱材の内側面と外側面との間に延在した板状の真空断熱材と、を備え、発泡断熱材の内側面と外側面のうち少なくとも一方の表面と真空断熱材の表面との距離が部位によって異なるように、真空断熱材を発泡断熱材の一方の表面に対して傾斜させる構成としている。   A heat insulation structure for a hot water storage type hot water heater according to the present invention has an inner surface facing a hot water storage tank for storing hot water and an outer surface facing an external space, and foam insulation that covers at least a part of the hot water storage tank from the outside. And a plate-like vacuum heat insulating material provided between the inner side surface and the outer side surface of the foam heat insulating material so as to cover the hot water storage tank. The vacuum heat insulating material is inclined with respect to one surface of the foam heat insulating material so that the distance between at least one of the side surface and the outer surface and the surface of the vacuum heat insulating material varies depending on the part.

本発明によれば、断熱構造体の成形時には、発泡及び膨張する発泡粒子を成形型内の各部位に円滑に回り込ませることができ、成形された発泡断熱材の内部に隙間が生じるのを防止することができる。これにより、断熱構造体の強度を向上させることができ、また、貯湯タンクの熱が隙間から漏れるのを防止して貯湯タンクの保温及び断熱性能を高めることができる。   According to the present invention, at the time of molding a heat insulating structure, foamed and expanding foam particles can be smoothly wound around each part in the mold, and a gap is prevented from being formed inside the molded foam heat insulating material. can do. Thereby, the intensity | strength of a heat insulation structure can be improved, and it can prevent that the heat | fever of a hot water storage tank leaks from a clearance gap, and can improve the heat insulation and heat insulation performance of a hot water storage tank.

本発明の実施の形態1の貯湯式給湯機を示す構成図である。It is a block diagram which shows the hot water storage type water heater of Embodiment 1 of this invention. 図1中の断熱構造体を拡大して示す分解斜視図である。It is a disassembled perspective view which expands and shows the heat insulation structure in FIG. 断熱構造体を図2中の平面Aに沿って破断した状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which fractured | ruptured the heat insulation structure along the plane A in FIG. 断熱構造体を図2中の平面Bに沿って破断した状態を示す横断面図である。It is a cross-sectional view which shows the state which fractured | ruptured the heat insulation structure along the plane B in FIG. 従来の方法による断熱材部品の成形工程を模式的に示す説明図である。It is explanatory drawing which shows typically the formation process of the heat insulating material components by the conventional method. 本発明の実施の形態1による断熱構造体の成形工程を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the formation process of the heat insulation structure by Embodiment 1 of this invention. 本発明の実施の形態2による断熱構造体を成形型と共に示す縦断面図である。It is a longitudinal cross-sectional view which shows the heat insulation structure by Embodiment 2 of this invention with a shaping | molding die. 本発明の実施の形態3による断熱構造体を成形型と共に示す縦断面図である。It is a longitudinal cross-sectional view which shows the heat insulation structure by Embodiment 3 of this invention with a shaping | molding die.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、本発明は、以下に説明する実施の形態1乃至3に限定されるものではない。また、各図において共通する要素には、同一の符号を付して、重複する説明を省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the first to third embodiments described below. Moreover, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted.

実施の形態1.
まず、図1乃至図6を参照しつつ、本発明の実施の形態1について説明する。図1は、本発明の実施の形態1の貯湯式給湯機を示す構成図である。ヒートポンプ式給湯機1は、市水等の低温水を熱源機により湯に沸き上げて所望個所に給湯するもので、ヒートポンプユニット10と貯湯ユニット20とを備えている。
Embodiment 1 FIG.
First, Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is a configuration diagram illustrating a hot water storage type water heater according to Embodiment 1 of the present invention. The heat pump type hot water heater 1 boils low temperature water such as city water into hot water using a heat source machine and supplies hot water to a desired location, and includes a heat pump unit 10 and a hot water storage unit 20.

ヒートポンプユニット10は、圧縮機11、水作動媒体熱交換器12、膨張弁13及び蒸発器14を備えている。これらの機器は、作動媒体循環配管15により環状に接続されて冷凍サイクルシステムを構成し、熱源機として機能する。また、上記機器はユニットケース16内に収容されている。上記冷凍サイクルシステムの作動時には、二酸化炭素等の作動媒体(冷媒)が圧縮機11により圧縮されて高温・高圧となる。そして、この作動媒体は、水作動媒体熱交換器12内で放熱し、膨張弁13により減圧された後に、蒸発器14内で吸熱して圧縮機11に吸い込まれる。作動媒体として二酸化炭素を用いる場合には、高圧側での冷媒圧力が二酸化炭素の臨界圧を超える条件下で運転することが好ましい。   The heat pump unit 10 includes a compressor 11, a water working medium heat exchanger 12, an expansion valve 13, and an evaporator 14. These devices are annularly connected by a working medium circulation pipe 15 to constitute a refrigeration cycle system and function as a heat source machine. The device is housed in the unit case 16. During operation of the refrigeration cycle system, a working medium (refrigerant) such as carbon dioxide is compressed by the compressor 11 and becomes a high temperature and a high pressure. The working medium dissipates heat in the water working medium heat exchanger 12 and is decompressed by the expansion valve 13. Then, the working medium absorbs heat in the evaporator 14 and is sucked into the compressor 11. When carbon dioxide is used as the working medium, it is preferable to operate under conditions where the refrigerant pressure on the high pressure side exceeds the critical pressure of carbon dioxide.

一方、貯湯ユニット20は、貯湯タンク21、給水管路30、貯湯用循環管路40、給湯管路50、後述の断熱構造体100等を備えており、これらの機器はユニットケース60内に収容されている。貯湯タンク21は、給水管路30から供給される低温水及びヒートポンプユニット10で沸き上げられた高温水(湯)を貯留する積層式のタンクであり、その外郭は断熱構造体100により覆われている。また、貯湯タンク21は、鉛直方向(上下方向)に延びる軸線を中心として略円筒状に形成されている。   On the other hand, the hot water storage unit 20 includes a hot water storage tank 21, a water supply pipe 30, a hot water circulation pipe 40, a hot water supply pipe 50, a heat insulating structure 100 described later, and the like, and these devices are accommodated in a unit case 60. Has been. The hot water storage tank 21 is a stacked tank that stores low temperature water supplied from the water supply pipe 30 and high temperature water (hot water) boiled by the heat pump unit 10, and its outer shell is covered with a heat insulating structure 100. Yes. The hot water storage tank 21 is formed in a substantially cylindrical shape with an axis extending in the vertical direction (vertical direction) as a center.

貯湯タンク21の下部には、水導入口22、水導出口23及びバイパス戻り口(図示せず)が設けられている。そして、水導入口22には、給水管路30が接続され、水導出口23には、貯湯用循環管路40の往き管41が接続されている。また、前記バイパス戻り口には、貯湯用循環回路40のバイパス管43が接続されている。一方、貯湯タンク21の上部には、温水導入導出口24が設けられており、温水導入導出口24には、貯湯用循環管路40の戻り管42と、給湯管路50とが接続されている。貯湯タンク21は、常に満水状態に保たれる。   In the lower part of the hot water storage tank 21, a water inlet 22, a water outlet 23 and a bypass return port (not shown) are provided. A water supply line 30 is connected to the water introduction port 22, and an outgoing pipe 41 of a hot water storage circulation line 40 is connected to the water outlet port 23. In addition, a bypass pipe 43 of a hot water circulation circuit 40 is connected to the bypass return port. On the other hand, a hot water inlet / outlet port 24 is provided in the upper part of the hot water storage tank 21, and a return pipe 42 of a hot water circulating circulation line 40 and a hot water supply line 50 are connected to the hot water inlet / outlet port 24. Yes. The hot water storage tank 21 is always kept full.

給水管路30は、市水等の低温水を貯湯タンク21、給湯管路50及び所定の給湯先に供給する管路であり、第1〜第3給水管部31〜33および減圧弁(図示せず)を備えている。第1給水管部31は、水道等の水源(図示せず)と貯湯タンク21の水導入口22とを接続し、第2給水管部32は、第1給水管部31から分岐して第1給水管部31と後述の混合弁44とを接続している。第3給水管部33は、第1給水管部31から分岐して第1給水管部31と所定の給湯先とを接続している。図1では、給湯先の一例として1つの給湯栓45を例示している。前記減圧弁は、第1給水管部31での第3給水管部33の分岐個所よりも下流側に設けられ、水源水圧を所定以下となるように減圧する。   The water supply pipe 30 is a pipe that supplies low-temperature water such as city water to the hot water storage tank 21, the hot water supply pipe 50, and a predetermined hot water supply destination. The first to third water supply pipe sections 31 to 33 and the pressure reducing valve (see FIG. Not shown). The first water supply pipe section 31 connects a water source (not shown) such as water supply and the water introduction port 22 of the hot water storage tank 21, and the second water supply pipe section 32 is branched from the first water supply pipe section 31 to The 1 water supply pipe part 31 and the below-mentioned mixing valve 44 are connected. The third water supply pipe section 33 branches from the first water supply pipe section 31 and connects the first water supply pipe section 31 and a predetermined hot water supply destination. In FIG. 1, one hot water tap 45 is illustrated as an example of a hot water supply destination. The pressure reducing valve is provided on the downstream side of the branch point of the third water supply pipe section 33 in the first water supply pipe section 31, and reduces the water source water pressure to be a predetermined value or less.

貯湯用循環管路40は、貯湯タンク21の水導出口23からヒートポンプユニット10中の水作動媒体熱交換器12を経由して貯湯タンク21の温水導入導出口24に達する管路である。また、貯湯用循環管路40は、三方弁34と熱源ポンプ35とが設けられた貯湯用循環管路往き管41と、貯湯用循環管路戻り管42と、貯湯用循環管路バイパス管43とを備えている。貯湯用循環管路往き管41は、水導出口23と三方弁34とを接続し、貯湯用循環管路戻り管42は、三方弁34と温水導入導出口24とを接続し、貯湯用循環管路バイパス管43は、三方弁34とバイパス戻り口(図示せず)とを接続している。凍結防止運転時には、貯湯タンク21から貯湯用循環管路往き管41に流入した水が水作動媒体熱交換器12とバイパス管43を経由してタンク下部に再び流入する。   The hot water storage circulation line 40 is a pipe line that reaches from the water outlet port 23 of the hot water storage tank 21 to the hot water inlet / outlet port 24 of the hot water storage tank 21 via the water working medium heat exchanger 12 in the heat pump unit 10. The hot water storage circulation line 40 includes a hot water storage circulation pipe 41 provided with a three-way valve 34 and a heat source pump 35, a hot water storage circulation return pipe 42, and a hot water storage circulation pipe bypass pipe 43. And. The hot water storage circulation pipe forward pipe 41 connects the water outlet port 23 and the three-way valve 34, and the hot water storage circulation pipe return pipe 42 connects the three-way valve 34 and the hot water introduction / outlet port 24 to circulate hot water. The pipe bypass pipe 43 connects the three-way valve 34 and a bypass return port (not shown). During the freeze prevention operation, water that has flowed from the hot water storage tank 21 into the hot water storage circulation pipe forward pipe 41 flows again into the lower part of the tank via the water working medium heat exchanger 12 and the bypass pipe 43.

給湯管路50は、貯湯タンク21に貯留された湯と給水管路30から供給される低温水とを混合弁44で混合して所定温度の湯水を生成し、この湯水を所定の給湯先(例えば、給湯栓45)に供給する管路である。給湯管路50は、混合弁44の他に、第1,第2給湯管部51,52を備えている。第1給湯管部51は、貯湯タンク21の温水導入導出口24と混合弁44とを接続し、第2給湯管部52は、混合弁44と給湯栓45とを接続している。図1では、給湯栓45からの湯水の流出方向を矢印で示している。   The hot water supply pipe 50 mixes the hot water stored in the hot water storage tank 21 and the low temperature water supplied from the water supply pipe 30 with the mixing valve 44 to generate hot water at a predetermined temperature. For example, it is a pipeline that supplies the hot water tap 45). The hot water supply pipe 50 includes first and second hot water supply pipe parts 51 and 52 in addition to the mixing valve 44. The first hot water supply pipe portion 51 connects the hot water introduction / outlet port 24 of the hot water storage tank 21 and the mixing valve 44, and the second hot water supply pipe portion 52 connects the mixing valve 44 and the hot water tap 45. In FIG. 1, the outflow direction of the hot water from the hot water tap 45 is indicated by an arrow.

上述した貯湯ユニット20の構成部材のうち、給水管路30、貯湯用循環管路40及び給湯管路50は、その一部がユニットケース60の外部にまで延在しており、残りの構成部材は、ユニットケース60に納められている。   Among the constituent members of the hot water storage unit 20 described above, a part of the water supply pipe 30, the hot water circulation pipe 40 and the hot water supply pipe 50 extends to the outside of the unit case 60, and the remaining constituent members Are housed in a unit case 60.

次に、図2乃至図6を参照しつつ、本実施の形態の特徴事項である断熱構造体100について説明する。図2は、図1中の断熱構造体を拡大して示す分解斜視図である。この図に示すように、断熱構造体100は、複数の分割断熱材100A〜100Eを備えており、これらの分割断熱材100A〜100Eを組立てることにより、略円筒状をなす貯湯タンク21の少なくとも一部を覆うように構成されている。これにより、断熱構造体100は、貯湯タンク21の保温及び断熱を行うものである。なお、本発明において、分割断熱材の個数や形状は、実施の形態1に限定されるものではなく、例えば配管を接続するために分割断熱材を部分的にくり抜いた形状や、当該くり抜き部を別の断熱材で施蓋する構造も可能である。   Next, the heat insulating structure 100 that is a feature of the present embodiment will be described with reference to FIGS. 2 to 6. FIG. 2 is an exploded perspective view showing the heat insulating structure in FIG. 1 in an enlarged manner. As shown in this figure, the heat insulating structure 100 includes a plurality of divided heat insulating materials 100A to 100E, and by assembling these divided heat insulating materials 100A to 100E, at least one of the hot water storage tanks 21 having a substantially cylindrical shape. It is comprised so that a part may be covered. Thereby, the heat insulation structure 100 performs the heat insulation and heat insulation of the hot water storage tank 21. In the present invention, the number and shape of the divided heat insulating materials are not limited to those of the first embodiment. For example, a shape in which the divided heat insulating materials are partially cut out in order to connect a pipe, A structure in which the lid is covered with another heat insulating material is also possible.

ここで、各分割断熱材について説明すると、まず、貯湯タンク21の上面部を覆う上部の分割断熱材100Aと、貯湯タンク21の下面部を覆う下部の分割断熱材100Bとは、例えば略半球状に湾曲した蓋体(底体)として形成されている。また、貯湯タンク21の外周面(側面)を覆う側面部の分割断熱材100C,100Dは、四角形状の平板を半円弧状に湾曲させた形状を有し、両者の端面を衝合することにより円筒状の断熱材となるように構成されている。また、一方の分割断熱材100Dには、くり貫き部(貫通孔)が設けられており、この部位は分割断熱材100Eにより施蓋される構成となっている。さらに、分割断熱材100A〜100Eの端面には、それぞれ突条部または凹溝からなる嵌合構造(図示せず)が設けられている。そして、分割断熱材100A〜100E同士は、この嵌合構造によって互いに連結され、貯湯タンク21の熱が断熱構造体100の外側に漏れるのを抑制するように構成されている。   Here, each divided heat insulating material will be described. First, the upper divided heat insulating material 100A covering the upper surface portion of the hot water storage tank 21 and the lower divided heat insulating material 100B covering the lower surface portion of the hot water storage tank 21 are, for example, substantially hemispherical. It is formed as a lid body (bottom body) that is curved. Moreover, the divided heat insulating materials 100C and 100D on the side surface portions covering the outer peripheral surface (side surface) of the hot water storage tank 21 have a shape obtained by curving a rectangular flat plate into a semicircular arc shape, and abutting both end surfaces. It is comprised so that it may become a cylindrical heat insulating material. In addition, one divided heat insulating material 100D is provided with a cut-through portion (through hole), and this portion is configured to be covered with the divided heat insulating material 100E. Furthermore, the end surfaces of the divided heat insulating materials 100 </ b> A to 100 </ b> E are provided with fitting structures (not shown) each including a protrusion or a groove. And the division | segmentation heat insulating materials 100A-100E are mutually connected by this fitting structure, and it is comprised so that the heat | fever of the hot water storage tank 21 may leak out of the heat insulation structure 100 outside.

また、個々の分割断熱材100A〜100Eは、単材料型の断熱材と複合材料型の断熱材とからなる2種類の断熱材の何れかにより構成されている。単材料型の断熱材は、非真空断熱材(例えば、発泡断熱材)のみを用いて形成されたもので、複合材料型の断熱材は、非真空断熱材と真空断熱材とを組合わせる(一体成形する)ことにより形成されている。複合材料型の断熱材に用いる非真空断熱材は、例えばビーズ法ポリスチレンフォーム(EPS)断熱材等の発泡断熱材により構成されている。   Each of the divided heat insulating materials 100 </ b> A to 100 </ b> E is configured by one of two types of heat insulating materials including a single material type heat insulating material and a composite material type heat insulating material. A single material type heat insulating material is formed using only a non-vacuum heat insulating material (for example, a foam heat insulating material), and a composite material type heat insulating material combines a non-vacuum heat insulating material and a vacuum heat insulating material ( Formed integrally). The non-vacuum heat insulating material used for the heat insulating material of the composite material type is configured by a foam heat insulating material such as a bead method polystyrene foam (EPS) heat insulating material.

分割断熱材100A〜100Eのうち、何れの分割断熱材を単材料型(または複合材料型)の断熱材により構成するかについては、任意に選択することができる。一例を挙げると、例えばくり抜き部が存在せず、平板状の真空断熱材を湾曲させるだけで形成可能な側面部の分割断熱材100Cは、複合材料型の断熱材により構成するのが好ましい。また、他の分割断熱材100A,100B,100D,100Eは、単材料型の断熱材により構成するのが容易であるが、本発明はそれに限定されるものではない。即ち、本発明では、全ての分割断熱材100A〜100Eを複合材料型の断熱材により構成してもよい。   Of the divided heat insulating materials 100A to 100E, which of the divided heat insulating materials is constituted by a single material type (or composite material type) heat insulating material can be arbitrarily selected. For example, it is preferable that the side-part divided heat insulating material 100 </ b> C that does not have a cut-out portion and can be formed only by curving a flat vacuum heat insulating material is composed of a composite material type heat insulating material. In addition, the other divided heat insulating materials 100A, 100B, 100D, and 100E can be easily constituted by a single material type heat insulating material, but the present invention is not limited thereto. That is, in this invention, you may comprise all the division | segmentation heat insulating materials 100A-100E with a composite material type heat insulating material.

次に、図3及び図4を参照して、複合材料型の断熱材からなる側面部の分割断熱材100Cについて説明する。図3は、断熱構造体を図2中の平面Aに沿って破断した状態を示す縦断面図であり、図4は、断熱構造体を図2中の平面Bに沿って破断した状態を示す横断面図である。これらの図に示すように、分割断熱材100Cは、後述の発泡断熱材101と真空断熱材102とを備えており、例えば半円筒形の板状に成形されている。   Next, with reference to FIG.3 and FIG.4, the division | segmentation heat insulating material 100C of the side part which consists of a composite material type heat insulating material is demonstrated. 3 is a longitudinal sectional view showing a state in which the heat insulating structure is broken along the plane A in FIG. 2, and FIG. 4 shows a state in which the heat insulating structure is broken along the plane B in FIG. It is a cross-sectional view. As shown in these drawings, the divided heat insulating material 100C includes a foam heat insulating material 101 and a vacuum heat insulating material 102, which will be described later, and is formed in a semi-cylindrical plate shape, for example.

発泡断熱材101は、EPS断熱材等により半円筒形の板状に形成され、貯湯タンク21の側面に面して配置される内側面101aと、外部空間に面して配置される外側面101bとを有している。これらの内側面101aと外側面101bとは、発泡断熱材101の表面を構成している。本実施の形態では、発泡断熱材101が径方向に対して一定の厚さをもって形成され、内側面101aと外側面101bとは互いに平行に配置されている。ここで、発泡断熱材101の厚さとは、図3中の左右方向(図4中の径方向)における内側面101aと外側面101bとの距離に対応する寸法である。そして、発泡断熱材101は、貯湯タンク21の側面に沿って鉛直方向及び周方向に延在し、貯湯タンク21を外側から覆うように配置される。   The foam heat insulating material 101 is formed in a semi-cylindrical plate shape by an EPS heat insulating material or the like, and has an inner side surface 101a disposed facing the side surface of the hot water storage tank 21 and an outer side surface 101b disposed facing the external space. And have. These inner side surface 101 a and outer side surface 101 b constitute the surface of the foam heat insulating material 101. In the present embodiment, the foam heat insulating material 101 is formed with a certain thickness in the radial direction, and the inner side surface 101a and the outer side surface 101b are arranged in parallel to each other. Here, the thickness of the foam heat insulating material 101 is a dimension corresponding to the distance between the inner side surface 101a and the outer side surface 101b in the left-right direction in FIG. 3 (the radial direction in FIG. 4). And the foaming heat insulating material 101 is arrange | positioned so that the vertical direction and the circumferential direction may be extended along the side surface of the hot water storage tank 21, and the hot water storage tank 21 may be covered from the outer side.

一方、真空断熱材102は、例えば芯材及び真空断熱材外皮(何れも図示せず)により構成されている。芯材は、例えばガスバリア性のラミネートフィルムからなる真空断熱材外皮の内部に真空に近い圧力状態で封止されている。また、真空断熱材102は、例えば鉛直方向に延びる長辺と水平方向に延びる短辺とを有する略矩形状の真空断熱材を半円筒状に湾曲させることにより、発泡断熱材101と略同形の板状に形成されている。また、真空断熱材102は、例えばインサート成形等の手段を用いて発泡断熱材101と一体成形され、発泡断熱材101の内部に埋設された状態で内側面101aと外側面101bとの間に延在している。これにより、真空断熱材102は、発泡断熱材101と共に貯湯タンク21を外側から覆うように配置される。   On the other hand, the vacuum heat insulating material 102 is composed of, for example, a core material and a vacuum heat insulating material outer shell (both not shown). The core material is sealed in a vacuum heat insulating shell made of a gas barrier laminate film, for example, in a pressure state close to vacuum. Further, the vacuum heat insulating material 102 has, for example, a substantially rectangular vacuum heat insulating material having a long side extending in the vertical direction and a short side extending in the horizontal direction, curved in a semi-cylindrical shape, thereby having substantially the same shape as the foam heat insulating material 101. It is formed in a plate shape. Further, the vacuum heat insulating material 102 is integrally formed with the foam heat insulating material 101 using means such as insert molding, and extends between the inner side surface 101a and the outer side surface 101b while being embedded in the foam heat insulating material 101. Exist. Thereby, the vacuum heat insulating material 102 is arrange | positioned so that the hot water storage tank 21 may be covered from the outer side with the foam heat insulating material 101. FIG.

また、本実施の形態では、水平方向における発泡断熱材101の表面(内側面101a及び外側面101b)と、真空断熱材102の表面との間の距離dが部位によって異なるように、真空断熱材102を発泡断熱材101の内側面101a及び外側面101bに対して傾斜させる構成としている(図3参照)。具体的に述べると、まず、分割断熱材100Cは、鉛直方向に延びる貯湯タンク21の側面に沿って配置される。この状態で、真空断熱材102は、湾曲させる前の形状(矩形状)の長辺の一端が上部側となり、長辺の他端が下部側となるように配置される。そして、真空断熱材102は、上部側よりも下部側で発泡断熱材101の内側面101aに近接するように鉛直方向に対して傾斜している。即ち、図3に示すように、真空断熱材102の上部側の表面と発泡断熱材101の内側面101aとの距離d1は、真空断熱材102の下部側の表面と前記内側面101aとの距離d2よりも大きく設定されている(d1>d2)。なお、d1及びd2は、距離dの具体例を示すものである。   Moreover, in this Embodiment, the vacuum heat insulating material so that the distance d between the surface (the inner surface 101a and the outer surface 101b) of the foam heat insulating material 101 in the horizontal direction and the surface of the vacuum heat insulating material 102 may vary depending on the part. 102 is inclined with respect to the inner side surface 101a and the outer side surface 101b of the foam heat insulating material 101 (see FIG. 3). Specifically, first, the divided heat insulating material 100C is arranged along the side surface of the hot water storage tank 21 extending in the vertical direction. In this state, the vacuum heat insulating material 102 is disposed such that one end of the long side of the shape (rectangular shape) before being bent is on the upper side and the other end of the long side is on the lower side. And the vacuum heat insulating material 102 inclines with respect to the perpendicular direction so that it may approach the inner surface 101a of the foam heat insulating material 101 by the lower side rather than the upper side. That is, as shown in FIG. 3, the distance d1 between the upper surface of the vacuum heat insulating material 102 and the inner surface 101a of the foam heat insulating material 101 is the distance between the lower surface of the vacuum heat insulating material 102 and the inner surface 101a. It is set to be larger than d2 (d1> d2). D1 and d2 indicate specific examples of the distance d.

次に、図5及び図6を参照して、上記構成による作用効果について説明する。まず、図5は、従来の方法による断熱材部品の成形工程を模式的に示す説明図である。この図に示すように、従来の断熱材部品120は、発泡断熱材121と真空断熱材122とが一体成形されているものの、真空断熱材122は、発泡断熱材121の表面(内側面及び外側面)に対して平行に配置されている。   Next, with reference to FIG.5 and FIG.6, the effect by the said structure is demonstrated. First, FIG. 5 is explanatory drawing which shows typically the formation process of the heat insulating material components by the conventional method. As shown in this figure, in the conventional heat insulating material part 120, the foam heat insulating material 121 and the vacuum heat insulating material 122 are integrally formed, but the vacuum heat insulating material 122 is formed on the surface of the foam heat insulating material 121 (inner surface and outer surface). Are arranged parallel to the side surface.

従来の断熱材部品120を製造する場合には、まず、金型等の成形型130の内部に真空断熱材122を配置し、この状態で成形型130に設けられた発泡粒子挿入口130aから予備発泡粒子131を挿入する。次に、成形型130の内部に蒸気を吹き付けることにより、予備発泡粒子131を成形型130内で発泡(膨張)させる。これにより、発泡断熱材121の内部に真空断熱材122が一体成形された断熱材部品120を製造することができる。なお、上記成形工程では、真空断熱材122を成形型130内の空間に浮かせた状態で発泡断熱材121を成形するのが難しいので、例えば薄板状の発泡断熱材に真空断熱材122を固定した部品を予め作成しておき、この部品を成形型130内に配置した状態で予備発泡粒子131を挿入する等の方法が採用される。   In the case of manufacturing the conventional heat insulating material part 120, first, the vacuum heat insulating material 122 is disposed inside the mold 130 such as a mold, and in this state, a preliminary operation is performed from the expanded particle insertion port 130a provided in the mold 130. The expanded particle 131 is inserted. Next, the pre-expanded particles 131 are expanded (expanded) in the mold 130 by spraying steam into the mold 130. Thereby, the heat insulating material component 120 in which the vacuum heat insulating material 122 is integrally formed inside the foam heat insulating material 121 can be manufactured. In the molding step, it is difficult to mold the foam heat insulating material 121 in a state where the vacuum heat insulating material 122 is floated in the space in the mold 130. For example, the vacuum heat insulating material 122 is fixed to a thin plate-shaped foam heat insulating material. A method in which a part is prepared in advance and the pre-expanded particles 131 are inserted in a state where the part is placed in the mold 130 is employed.

従来の成形工程では、板状に形成された真空断熱材122が成形型130の内側面と平行に配置されている。従って、発泡粒子挿入口130aから挿入された予備発泡粒子131は、成形型130と真空断熱材122との間に形成された扁平かつ平行な空間内で膨張することになり、これによって自由な膨張(流動)が阻害され易い。この結果、従来の成形工程では、予備発泡粒子131を成形型130内の全体にわたって均等に膨張させることができず、特に真空断熱材122の上下両端側等には、予備発泡粒子131が充填されない(発泡断熱材121が形成されない)隙間が生じ易くなるという問題がある。   In the conventional molding process, the vacuum heat insulating material 122 formed in a plate shape is arranged in parallel with the inner surface of the molding die 130. Therefore, the pre-expanded particles 131 inserted from the expanded particle insertion port 130a expand in a flat and parallel space formed between the mold 130 and the vacuum heat insulating material 122, thereby free expansion. (Flow) is easily disturbed. As a result, in the conventional molding process, the pre-expanded particles 131 cannot be uniformly expanded over the entire mold 130, and the pre-expanded particles 131 are not particularly filled in the upper and lower ends of the vacuum heat insulating material 122. There is a problem that a gap is likely to occur (the foam heat insulating material 121 is not formed).

一方、図6は、本発明の実施の形態1による断熱構造体の成形工程を模式的に示す縦断面図である。この図に示すように、本実施の形態では、真空断熱材102を発泡断熱材101の内部で傾斜させる構成としている。この構成に対応して、本実施の形態の成形工程で用いる成形型110には、真空断熱材102が発泡断熱材101の内側面101a及び外側面101bに近接する位置にそれぞれ発泡粒子挿入口110a,110bが配置されている。即ち、成形型110を基準として説明すれば、真空断熱材102は、成形型110の発泡粒子挿入口110a(110b)と対面する位置で成形型110の内側面と真空断熱材102との距離が小さくなり、かつ、当該対面位置から離れるほど成形型110の内側面と真空断熱材102との距離が大きくなるように傾斜している。   On the other hand, FIG. 6 is a longitudinal cross-sectional view schematically showing a molding process of the heat insulating structure according to Embodiment 1 of the present invention. As shown in this figure, in this embodiment, the vacuum heat insulating material 102 is inclined inside the foam heat insulating material 101. Corresponding to this configuration, in the mold 110 used in the molding process of the present embodiment, the vacuum heat insulating material 102 is in the positions close to the inner side surface 101a and the outer side surface 101b of the foam heat insulating material 101, respectively, and the expanded particle insertion port 110a. 110b are arranged. That is, if the mold 110 is described as a reference, the vacuum heat insulating material 102 has a distance between the inner surface of the mold 110 and the vacuum heat insulating material 102 at a position facing the foamed particle insertion port 110a (110b) of the mold 110. Inclination is such that the distance between the inner surface of the mold 110 and the vacuum heat insulating material 102 increases as the distance decreases from the facing position.

これにより、予備発泡粒子111を挿入する前の状態において、成形型110の内側面と真空断熱材102との間には、発泡粒子挿入口110aの開口位置から上方に向けて拡開するV字状の空間と、発泡粒子挿入口110bの開口位置から下方に向けて逆V字状に拡開する空間とを形成することができる。成形型110の内部に挿入された予備発泡粒子111は、狭い空間から広い空間に向けて膨張する特性がある。このため、発泡断熱材101の成形工程では、成形型110の発泡粒子挿入口110aから挿入した予備発泡粒子111を、前記V字状の空間に沿って上方へと円滑に膨張させることができる。これにより、膨張する予備発泡粒子111を、発泡粒子挿入口110aからみて真空断熱材102の裏面側に安定的に回り込ませることができる。   Thereby, in the state before inserting the pre-expanded particle 111, between the inner surface of the shaping | molding die 110 and the vacuum heat insulating material 102, it expands upwards from the opening position of the expanded particle insertion port 110a upwards. And a space that expands in an inverted V shape downward from the opening position of the expanded particle insertion opening 110b. The pre-expanded particles 111 inserted into the mold 110 have a characteristic of expanding from a narrow space toward a wide space. For this reason, in the molding step of the foam heat insulating material 101, the pre-foamed particles 111 inserted from the foamed particle insertion port 110a of the mold 110 can be smoothly expanded upward along the V-shaped space. Thereby, the pre-expanded particle 111 which expand | swells can be made to wrap around to the back surface side of the vacuum heat insulating material 102 seeing from the expanded particle insertion port 110a stably.

従って、予備発泡粒子111を成形型110内の隅々まで円滑に回り込ませることができるので、成形された発泡断熱材101の内部に隙間が生じるのを防止し、分割断熱材100Cの強度を向上させることができる。また、貯湯タンク21の熱が前記隙間から漏れるのを防止し、貯湯タンク21の保温及び断熱性能を高めることができる。一方、発泡断熱材101の外側面101bでも、成形型110の発泡粒子挿入口110bから挿入した予備発泡粒子111を、前記逆V字状の空間に沿って下方へと円滑に膨張させ、発泡粒子挿入口110bからみて真空断熱材102の裏側に安定的に回り込ませることができる。これにより、発泡粒子挿入口110b側でも、発泡粒子挿入口110a側と同様の作用効果を得ることができる。   Accordingly, since the pre-expanded particles 111 can be smoothly wound to every corner in the mold 110, a gap is prevented from being formed inside the molded foam heat insulating material 101, and the strength of the divided heat insulating material 100C is improved. Can be made. Moreover, the heat of the hot water storage tank 21 can be prevented from leaking from the gap, and the heat retention and heat insulation performance of the hot water storage tank 21 can be enhanced. On the other hand, also on the outer surface 101b of the foam heat insulating material 101, the pre-foamed particles 111 inserted from the foamed particle insertion port 110b of the mold 110 are smoothly expanded downward along the inverted V-shaped space, so that the foamed particles As viewed from the insertion port 110b, the vacuum insulation material 102 can be stably wound around. Thereby, the same effect as the foam particle insertion port 110a side can be obtained also on the foam particle insertion port 110b side.

特に、成形型110内に挿入した予備発泡粒子111は、真空断熱材102の短辺よりも長辺に沿って長い距離を膨張(移動)させる必要がある。このため、本実施の形態では、真空断熱材102を長手方向に傾斜させる構成としている。これにより、前記V字状(及び逆V字状)の空間を真空断熱材102の長手方向に延在させることができ、予備発泡粒子111を長手方向に効率よく膨張させることができる。   In particular, the pre-expanded particles 111 inserted into the mold 110 need to expand (move) a longer distance along the longer side than the shorter side of the vacuum heat insulating material 102. For this reason, in this Embodiment, it is set as the structure which inclines the vacuum heat insulating material 102 to a longitudinal direction. Thereby, the V-shaped (and inverted V-shaped) space can be extended in the longitudinal direction of the vacuum heat insulating material 102, and the pre-expanded particles 111 can be efficiently expanded in the longitudinal direction.

また、分割断熱材100Cは、貯湯タンク21の側面に沿って配置される。貯湯タンク21は、上部側に高温水が貯留されて下部側に低温水が貯留される積層式であるから、上部側の方がより高温となる。一方、真空断熱材102は、比較的熱に弱い特性を有している。このため、本実施の形態では、真空断熱材102を、上部側よりも下部側で前記発泡断熱材の内側面に近接するように鉛直方向に対して傾斜させている。これにより、貯湯タンク21が高温となる上部側で貯湯タンク21と真空断熱材102との間に大きな距離を確保することができる。従って、真空断熱材102を貯湯タンク21の熱から保護し、分割断熱材100Cの耐久性を向上させることができる。   Further, the divided heat insulating material 100 </ b> C is disposed along the side surface of the hot water storage tank 21. Since the hot water storage tank 21 is a stacked type in which high temperature water is stored on the upper side and low temperature water is stored on the lower side, the upper side is hotter. On the other hand, the vacuum heat insulating material 102 has characteristics that are relatively weak against heat. For this reason, in this Embodiment, the vacuum heat insulating material 102 is made to incline with respect to a perpendicular direction so that it may approach the inner surface of the said foam heat insulating material by the lower side rather than the upper side. Thereby, a large distance can be ensured between the hot water storage tank 21 and the vacuum heat insulating material 102 on the upper side where the hot water storage tank 21 becomes high temperature. Therefore, the vacuum heat insulating material 102 can be protected from the heat of the hot water storage tank 21, and the durability of the divided heat insulating material 100C can be improved.

実施の形態2.
次に、図7を参照して、本発明の実施の形態2について説明する。図7は、本発明の実施の形態2による断熱構造体(分割断熱材)を成形型と共に示す縦断面図である。この図に示すように、本実施の形態では、発泡断熱材201の内部に、複数個(例えば、2個)の真空断熱材202を設ける構成としている。ここで、発泡断熱材201は、実施の形態1とほぼ同様に、互いに平行に配置された内側面201aと外側面201bとを有している。また、2個の真空断熱材202は略矩形状に形成され、それぞれ上部側よりも下部側で発泡断熱材201の内側面201aに近接するように、内側面201a及び外側面201b(鉛直方向)に対して傾斜している。さらに、各真空断熱材202は、互いに触れ合わないように離間した状態で発泡断熱材201の内部に埋設されると共に、互いに平行に配置されている。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 7 is a longitudinal sectional view showing a heat insulating structure (divided heat insulating material) according to Embodiment 2 of the present invention together with a mold. As shown in this figure, in this embodiment, a plurality of (for example, two) vacuum heat insulating materials 202 are provided inside the foam heat insulating material 201. Here, the foam heat insulating material 201 has an inner surface 201a and an outer surface 201b arranged in parallel to each other, as in the first embodiment. Further, the two vacuum heat insulating materials 202 are formed in a substantially rectangular shape, and the inner side surface 201a and the outer side surface 201b (vertical direction) are arranged closer to the inner side surface 201a of the foam heat insulating material 201 on the lower side than the upper side. It is inclined with respect to. Further, the vacuum heat insulating materials 202 are embedded in the foam heat insulating material 201 in a state of being separated so as not to touch each other, and are arranged in parallel to each other.

このように構成される本実施の形態でも、前記実施の形態1とほぼ同様の作用効果を得ることができる。特に、本実施の形態では、発泡断熱材201の内部に配置する真空断熱材を、2つの真空断熱材202に分割することにより、真空断熱材の寸法制約等に対処することができ、設計自由度を高めることができる。また、各真空断熱材202を互いに平行に配置することにより、隣接する2つの真空断熱材202の間に一定寸法の間隔(隙間)を安定的に確保することができる。これにより、発泡断熱材201の成形工程では、予備発泡粒子111を各真空断熱材202の間に円滑に回り込ませることができる。   In the present embodiment configured as described above, it is possible to obtain substantially the same operational effects as in the first embodiment. In particular, in this embodiment, by dividing the vacuum heat insulating material disposed inside the foam heat insulating material 201 into two vacuum heat insulating materials 202, it is possible to cope with the dimensional constraints of the vacuum heat insulating material, and the design freedom. The degree can be increased. In addition, by disposing the vacuum heat insulating materials 202 in parallel to each other, it is possible to stably ensure an interval (gap) having a certain dimension between two adjacent vacuum heat insulating materials 202. Thereby, in the formation process of the foam heat insulating material 201, the pre-expanded particles 111 can be smoothly wound between the vacuum heat insulating materials 202.

実施の形態3.
次に、図8を参照して、本発明の実施の形態3について説明する。図8は、本発明の実施の形態3による断熱構造体(分割断熱材)を成形型と共に示す縦断面図である。この図に示すように、本実施の形態では、発泡断熱材301を、上部側から下部側に向けて徐々に薄くなるように形成している。ここで、発泡断熱材301は、実施の形態1とほぼ同様に、内側面301aと外側面301bとを有するものの、外側面301bは、上部側よりも下部側で内側面301aに近接するように傾斜している。また、真空断熱材302は略矩形状に形成され、上部側よりも下部側で発泡断熱材301の内側面301aに近接するように、内側面301a(鉛直方向)に対して傾斜している。
Embodiment 3 FIG.
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 8 is a longitudinal sectional view showing a heat insulating structure (divided heat insulating material) according to Embodiment 3 of the present invention together with a mold. As shown in this figure, in this embodiment, the foam heat insulating material 301 is formed so as to gradually become thinner from the upper side toward the lower side. Here, although the foam heat insulating material 301 has the inner side surface 301a and the outer side surface 301b in substantially the same manner as in the first embodiment, the outer side surface 301b is closer to the inner side surface 301a on the lower side than the upper side. Inclined. Moreover, the vacuum heat insulating material 302 is formed in a substantially rectangular shape, and is inclined with respect to the inner side surface 301a (vertical direction) so as to be closer to the inner side surface 301a of the foamed heat insulating material 301 on the lower side than the upper side.

このように構成される本実施の形態でも、前記実施の形態1とほぼ同様の作用効果を得ることができる。特に、本実施の形態では、発泡断熱材301の下部側を薄肉に形成することができるので、成形工程では、発泡及び膨張する予備発泡粒子111を、成形型110′の発泡粒子挿入口110a′からみて真空断熱材302の裏面側に円滑に回り込ませることができる。また、予備発泡粒子111の使用量を削減し、コストダウンを促進することができる。しかも、発泡断熱材301の下部側は、積層式の貯湯タンク21の低温部に沿って配置されるので、薄肉化しても十分な断熱性能(保温性能)を確保することができる。   In the present embodiment configured as described above, it is possible to obtain substantially the same operational effects as in the first embodiment. In particular, in the present embodiment, since the lower side of the foam heat insulating material 301 can be formed thin, in the molding process, the pre-foamed particles 111 that expand and expand are used as the foamed particle insertion openings 110a ′ of the mold 110 ′. As a result, it is possible to smoothly wrap around the back side of the vacuum heat insulating material 302. Moreover, the usage-amount of the pre-expanded particle 111 can be reduced and cost reduction can be promoted. And since the lower part side of the foam heat insulating material 301 is arrange | positioned along the low-temperature part of the laminated | stacked hot water storage tank 21, sufficient heat insulation performance (heat retention performance) can be ensured even if it thins.

また、本実施の形態によれば、例えば発泡断熱材301のうち下部側の薄肉部位を予め成形しておき、この部位に真空断熱材302を固定した部品を成形型110内に配置した状態で、予備発泡粒子111を成形型110′内に挿入する製造方法が容易に採用可能となる。これにより、真空断熱材302を成形型110′内の空間に浮かせた状態で発泡断熱材301を円滑に成形することができ、製造効率を高めることができる。   Further, according to the present embodiment, for example, a lower thin portion of the foam heat insulating material 301 is formed in advance, and a part in which the vacuum heat insulating material 302 is fixed to this portion is placed in the mold 110. The manufacturing method in which the pre-expanded particles 111 are inserted into the mold 110 ′ can be easily employed. Thereby, the foam heat insulating material 301 can be smoothly shape | molded in the state which floated the vacuum heat insulating material 302 in the space in shaping | molding die 110 ', and manufacturing efficiency can be improved.

なお、前記実施の形態1,2では、発泡断熱材101,201の内側面101a,201aと外側面101b,201bとを平行に形成し、真空断熱材102,202を内側面101a,201a及び外側面101b,201bの両方に対して傾斜させる場合を例示した。しかし、本発明はこれに限らず、発泡断熱材の内側面と外側面とを平行に形成せず、真空断熱材を内側面と外側面の何れか一方のみに対して傾斜させる構成としてもよい。また、本発明では、真空断熱材を長手方向と垂直な方向(短辺の伸長方向)に対して傾斜させる構成としてもよく、さらには真空断熱材を上部側よりも下部側で発泡断熱材の内側面から離れるように傾斜させてもよい。   In the first and second embodiments, the inner side surfaces 101a and 201a and the outer side surfaces 101b and 201b of the foam heat insulating materials 101 and 201 are formed in parallel, and the vacuum heat insulating materials 102 and 202 are connected to the inner side surfaces 101a and 201a and the outer side surfaces 101a and 201a. The case where it inclines with respect to both the side surfaces 101b and 201b was illustrated. However, the present invention is not limited thereto, and the inner surface and the outer surface of the foam heat insulating material may not be formed in parallel, and the vacuum heat insulating material may be inclined with respect to only one of the inner surface and the outer surface. . Moreover, in this invention, it is good also as a structure which inclines a vacuum heat insulating material with respect to a direction (long side extension direction) perpendicular | vertical to a longitudinal direction, Furthermore, a vacuum heat insulating material is a foaming heat insulating material of the lower side rather than the upper side. You may incline so that it may leave | separate from an inner surface.

また、実施の形態1乃至3では、発泡断熱材101,201,301及び真空断熱材102,202,302を略矩形状に形成する場合を例示したが、本発明はこれに限らず、任意の形状に形成してよいものである。さらに、実施の形態1乃至3では、断熱構造体100のうち分割断熱材100Cに対して、本発明の特徴事項を適用したが、本発明は、分割断熱材100A〜100Eの全て、または任意の一部分に適用することができる。   In Embodiments 1 to 3, the case where the foam heat insulating materials 101, 201, 301 and the vacuum heat insulating materials 102, 202, 302 are formed in a substantially rectangular shape is illustrated, but the present invention is not limited thereto, and any arbitrary It may be formed into a shape. Furthermore, in Embodiments 1 to 3, the features of the present invention are applied to the divided heat insulating material 100C in the heat insulating structure 100. However, the present invention is not limited to all of the divided heat insulating materials 100A to 100E or any of the divided heat insulating materials 100A to 100E. Can be applied to a part.

また、前記実施の形態2では、発泡断熱材201の内部に2個の真空断熱材202を配置する場合を例示したが、本発明において、発泡断熱材の内部に配置する真空断熱材の個数は、2個以上の任意の個数に設定してよいものである。   In the second embodiment, the case where two vacuum heat insulating materials 202 are arranged inside the foam heat insulating material 201 is exemplified. However, in the present invention, the number of vacuum heat insulating materials arranged inside the foam heat insulating material is as follows. Two or more arbitrary numbers may be set.

また、本発明は、前記実施の形態2,3を組合わせることにより実現してもよい。即ち、本発明では、発泡断熱材の内部に複数個の真空断熱材を配置し、発泡断熱材を、上部側から下部側に向けて徐々に薄くなるように形成してもよい。   The present invention may be realized by combining the second and third embodiments. That is, in the present invention, a plurality of vacuum heat insulating materials may be disposed inside the foam heat insulating material, and the foam heat insulating material may be formed so as to gradually become thinner from the upper side toward the lower side.

1 ヒートポンプ式給湯機(貯湯式給湯機)
21 貯湯タンク
100 断熱構造体
100A〜100E 分割断熱材
101,201,301 発泡断熱材
101a,201a,301a 内側面
101b,201b,301b 外側面
102,202,302 真空断熱材
110,110′ 成形型
110a,110a′,110b,110b′ 発泡粒子挿入口
111 予備発泡粒子
1 Heat pump water heater (hot water storage water heater)
21 Hot water storage tank 100 Heat insulation structure 100A-100E Division heat insulation material 101,201,301 Foam heat insulation material 101a, 201a, 301a Inner side surface 101b, 201b, 301b Outer side surface 102,202,302 Vacuum heat insulation material 110,110 'Mold 110a , 110a ′, 110b, 110b ′ Expanded particle insertion slot 111 Pre-expanded particles

Claims (6)

温水を貯留する貯湯タンクに面した内側面と外部空間に面した外側面とを有し、前記貯湯タンクの少なくとも一部を外側から覆う発泡断熱材と、
前記発泡断熱材の内部に設けられ、前記貯湯タンクを覆うように前記発泡断熱材の内側面と外側面との間に延在した板状の真空断熱材と、を備え、
前記発泡断熱材の内側面と外側面のうち少なくとも一方の表面と前記真空断熱材の表面との距離が部位によって異なるように、前記真空断熱材を前記発泡断熱材の一方の表面に対して傾斜させる構成とした貯湯式給湯機の断熱構造体。
A foam heat insulating material having an inner surface facing a hot water storage tank for storing hot water and an outer surface facing an external space, and covering at least a part of the hot water storage tank from the outside;
A plate-like vacuum heat insulating material provided inside the foam heat insulating material and extending between an inner surface and an outer surface of the foam heat insulating material so as to cover the hot water storage tank;
The vacuum heat insulating material is inclined with respect to one surface of the foam heat insulating material so that a distance between at least one of the inner surface and the outer surface of the foam heat insulating material and the surface of the vacuum heat insulating material varies depending on a part. A heat insulation structure of a hot water storage type water heater that is configured to be allowed to move.
前記真空断熱材は長辺と短辺とを有する略矩形状の板材により形成し、前記長辺の一端側よりも他端側で前記発泡断熱材の内側面に近接するように傾斜させる構成としてなる請求項1に記載の貯湯式給湯機の断熱構造体。   The vacuum heat insulating material is formed by a substantially rectangular plate material having a long side and a short side, and is inclined so as to be closer to the inner surface of the foam heat insulating material on the other end side than the one end side of the long side. The heat insulation structure of the hot water storage type water heater according to claim 1. 前記発泡断熱材は、鉛直方向に延びる前記貯湯タンクの側面に沿って配置し、前記真空断熱材は、上部側よりも下部側で前記発泡断熱材の内側面に近接するように鉛直方向に対して傾斜させる構成としてなる請求項1または2に記載の貯湯式給湯機の断熱構造体。   The foam heat insulating material is disposed along a side surface of the hot water storage tank extending in the vertical direction, and the vacuum heat insulating material is positioned closer to the inner side surface of the foam heat insulating material on the lower side than the upper side. The heat insulation structure of the hot water storage type hot water supply device according to claim 1 or 2, wherein the heat insulation structure is configured to be inclined. 前記発泡断熱材は、上部側から下部側に向けて徐々に薄くなるように形成してなる請求項3に記載の貯湯式給湯機の断熱構造体。   The heat insulation structure of the hot water storage type hot water heater according to claim 3, wherein the foam heat insulating material is formed so as to be gradually thinned from the upper side toward the lower side. 前記発泡断熱材の内部には、少なくとも前記一方の表面に対して傾斜すると共に互いに離間した複数個の前記真空断熱材を配置してなる請求項1乃至4のうち何れか1項に記載の貯湯式給湯機の断熱構造体。   The hot water storage device according to any one of claims 1 to 4, wherein a plurality of the vacuum heat insulating materials that are inclined with respect to at least the one surface and spaced apart from each other are disposed inside the foam heat insulating material. Insulation structure of water heater. 前記真空断熱材は、前記発泡断熱材を成形する成形型の発泡粒子挿入口と対面する位置で前記成形型の内側面と前記真空断熱材との距離が小さくなり、当該対面位置から離れるほど前記成形型の内側面と前記真空断熱材との距離が大きくなるように傾斜させる構成としてなる請求項1乃至5のうち何れか1項に記載の貯湯式給湯機の断熱構造体。   The vacuum heat insulating material has a smaller distance between the inner surface of the mold and the vacuum heat insulating material at a position facing a foamed particle insertion port of a mold for forming the foam heat insulating material, The heat insulation structure of the hot water storage type hot water heater according to any one of claims 1 to 5, wherein the heat insulation structure is inclined so that a distance between an inner side surface of the mold and the vacuum heat insulating material is increased.
JP2012062057A 2012-03-19 2012-03-19 Thermal insulation structure of hot water storage type water heater Active JP5835041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012062057A JP5835041B2 (en) 2012-03-19 2012-03-19 Thermal insulation structure of hot water storage type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012062057A JP5835041B2 (en) 2012-03-19 2012-03-19 Thermal insulation structure of hot water storage type water heater

Publications (2)

Publication Number Publication Date
JP2013194979A true JP2013194979A (en) 2013-09-30
JP5835041B2 JP5835041B2 (en) 2015-12-24

Family

ID=49394171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012062057A Active JP5835041B2 (en) 2012-03-19 2012-03-19 Thermal insulation structure of hot water storage type water heater

Country Status (1)

Country Link
JP (1) JP5835041B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016014447A (en) * 2014-07-03 2016-01-28 三菱電機株式会社 Composite heat insulating material and insulation tank with composite heat insulating material
JP2016102580A (en) * 2014-11-28 2016-06-02 明星工業株式会社 Heat insulation cover and manufacturing method of heat insulation cover

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107080A (en) * 1984-10-30 1986-05-24 松下冷機株式会社 Heat-insulating box body
JPH0814733A (en) * 1994-06-27 1996-01-19 Hitachi Ltd Refrigerator
JPH10141584A (en) * 1996-11-15 1998-05-29 Sanyo Electric Co Ltd Vacuum heat insulating material
JP2000320958A (en) * 1999-05-11 2000-11-24 Mitsubishi Electric Corp Vacuum heat insulating body and heat insulating structural body
JP2007139072A (en) * 2005-11-18 2007-06-07 Corona Corp Heat insulating material for storage tank
JP2011237087A (en) * 2010-05-10 2011-11-24 Hitachi Appliances Inc Refrigerator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107080A (en) * 1984-10-30 1986-05-24 松下冷機株式会社 Heat-insulating box body
JPH0814733A (en) * 1994-06-27 1996-01-19 Hitachi Ltd Refrigerator
JPH10141584A (en) * 1996-11-15 1998-05-29 Sanyo Electric Co Ltd Vacuum heat insulating material
JP2000320958A (en) * 1999-05-11 2000-11-24 Mitsubishi Electric Corp Vacuum heat insulating body and heat insulating structural body
JP2007139072A (en) * 2005-11-18 2007-06-07 Corona Corp Heat insulating material for storage tank
JP2011237087A (en) * 2010-05-10 2011-11-24 Hitachi Appliances Inc Refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016014447A (en) * 2014-07-03 2016-01-28 三菱電機株式会社 Composite heat insulating material and insulation tank with composite heat insulating material
JP2016102580A (en) * 2014-11-28 2016-06-02 明星工業株式会社 Heat insulation cover and manufacturing method of heat insulation cover

Also Published As

Publication number Publication date
JP5835041B2 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP5677737B2 (en) refrigerator
JP2010145001A (en) Heat insulating case body for refrigerator
JP2009109063A (en) Four-way selector valve and refrigeration cycle device using this
JP5578266B1 (en) refrigerator
JP5835041B2 (en) Thermal insulation structure of hot water storage type water heater
JP6999452B2 (en) Loop type heat pipe and loop type heat pipe manufacturing method
JP5835042B2 (en) Hot water storage water heater
JP4211040B2 (en) Outdoor unit for water heater
JP2011117479A (en) Heat insulating box and refrigerator
JP2023123827A (en) Hot water storage tank unit
JP2017096539A (en) Hot water storage type water heater
TW201719097A (en) Vacuum heat-insulating material and refrigerator
JP2011117631A (en) Storage water heater
JP2009063283A (en) Cooling device and its manufacturing method
JP2015148251A (en) Vacuum heat insulation material, refrigerator and process of manufacture of vacuum heat insulation material
JP4240150B1 (en) Hot water storage water heater
CN105953509A (en) Refrigerator and shell assembly used for refrigerator
JP7257799B2 (en) Storage hot water heater
JP2015025576A (en) Hot water storage unit and hot water supply device
JP6324826B2 (en) Hot water storage tank unit
JP2009257715A (en) Refrigerator and vacuum heat insulating material
JP6504379B2 (en) refrigerator
JP2005009825A (en) Refrigerator
JP6557528B2 (en) Hot water storage tank unit
JP6402352B2 (en) refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151019

R150 Certificate of patent or registration of utility model

Ref document number: 5835041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250