JP3876551B2 - Insulation and refrigerator - Google Patents

Insulation and refrigerator Download PDF

Info

Publication number
JP3876551B2
JP3876551B2 JP27541498A JP27541498A JP3876551B2 JP 3876551 B2 JP3876551 B2 JP 3876551B2 JP 27541498 A JP27541498 A JP 27541498A JP 27541498 A JP27541498 A JP 27541498A JP 3876551 B2 JP3876551 B2 JP 3876551B2
Authority
JP
Japan
Prior art keywords
heat insulating
wall material
vacuum
panel
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27541498A
Other languages
Japanese (ja)
Other versions
JP2000105069A (en
Inventor
威則 足達
芳夫 西本
修一 岩田
信義 原川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP27541498A priority Critical patent/JP3876551B2/en
Publication of JP2000105069A publication Critical patent/JP2000105069A/en
Application granted granted Critical
Publication of JP3876551B2 publication Critical patent/JP3876551B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、冷蔵庫などの断熱を要する壁面の金属製薄板や樹脂成型品などで構成された間隙に、断熱材として真空断熱パネルを配設して成る断熱体に係り、特に、真空断熱パネルの冷蔵庫外殻への配設に関する。
【0002】
【従来の技術】
従来、冷蔵庫などに用いる断熱体の壁面は、外郭面を鉄板などの金属製薄板で覆い内面部分を樹脂成形品で形成して、その間隙に発泡ウレタンを注入発泡して充填させたものが用いられてきた。
断熱材である発泡ウレタンの発泡剤には、ハイドロクロロフルオロカーボン類である1, 1−ジクロロ−1−フルオロエタン(HCFC141b)が用いられてきたが、近年、オゾン層破壊の原因となる塩素を分子中に含まないハイドロフルオロカーボン類やハイドロカーボン類を用いることが提案されている。
【0003】
例えば、特開平2−235982号公報では1, 1, 1, 3, 3−ペンタフルオロプロパン(HFC245fa)や1, 1, 1, 4, 4, 4−ヘキサフルオロブタン(HFC356mffm)のようなハイドロフルオロカーボン類を、特開平3−152160号公報ではシクロペンタンなどのハイドロカーボンを、発泡剤に適用した発泡ウレタンの製造方法が開示されている。しかしながら、これら発泡ウレタンの断熱性は19〜20mw/MK であり、オゾン層破壊物質の仕様規制前に用いていたクロロフルオロカーボン類を用いた場合の16mw/MK の断熱性に比較すれば明らかに劣る。
【0004】
このため、従来の発泡ウレタンの2倍以上の断熱性能である5〜10mw/MK の断熱性が得られる真空断熱パネルを応用する技術が提案されている。このような真空断熱パネルの芯材は、大気圧相当以上の強度を有し、熱伝導と輻射伝熱の量を抑制することが必要になり、従って、芯材には伝熱量が小さい物質で作られた多孔質物質の板を用いることが有効であり、例えば、特開昭60−205164号公報では連通気泡の発泡ウレタンが用いられている。
【0005】
また、断熱体への配設についても、特開昭60−60483号公報では冷蔵庫の内装材である内箱または外装材である外箱の表面に真空断熱パネルを貼り付けることに関して、発泡ウレタンの注入液が流れて拡散する通路を設けて配設する方法が提案されている。さらに、特開昭61−195259号公報では冷蔵庫の内箱の形状に合わせて一方の面を成形した真空断熱パネルを作成し、その内箱形状の適合位置に配設する方法が提案されている。
【0006】
【発明が解決しようとする課題】
一方、真空断熱パネルが有する伝熱構成要素としては、多孔体が有する伝熱構成要素のうち、気孔内のガスを排除したことによってガスを伝わる熱が削除され、樹脂を伝わる熱と輻射によって伝わる熱のみとなるため、真空断熱パネルに優れた断熱性能が発現されることが知られている。従って、アルミ箔を備えたラミネートシートなどで包装された真空断熱パネルが、例えば、一般的な冷蔵庫の配設方法である薄板鋼板から成る外箱に接着などによって固定され、樹脂成型品から成る内箱との間隙に発泡ウレタンが充填されてなる構成においては、その包装材を伝わる熱拡散を加味した断熱性能を考慮する必要がある。
【0007】
例えば、特開昭59−146993号公報においては、包装材のガスバリヤー性を確実なものにするために内層部分に設けたアルミ箔について、その伝熱による影響を抑制する目的のために、ピンホールなどの欠陥を含まないようにしてガスバリヤー性の低下を阻止し、しかも最も薄い厚さのアルミ箔を用いるものであり、厚さを特定厚さに制限する提案がなされている。
しかし、外装材が受けた熱は、真空断熱パネルの包装材に伝わり、さらに、真空断熱パネルの一方の面に伝わった熱がアルミ箔を含む包装材の側面を伝わってもう一方の面へ移動する。従って、真空断熱パネルに比べて10の4乗倍もの伝熱性を有するアルミ箔の存在は、真空断熱パネルの断熱性能に少なからず影響を与えることになる。
【0008】
このため、実開昭62−143184号公報では、伝熱を防止する目的で真空断熱材の外被を構成する金属箔層を部分的に除去する発明が提案されている。しかし、これによって得られた真空断熱材には部分的にアルミ箔の除去された樹脂フィルムのみの部分が存在するため、包装材による断熱性能への影響を軽減したとしても、樹脂フィルムのみの部分を通じて外部からのガスの侵入を防ぐことができなくなり、結果的に、真空度の低下に伴う断熱性能の悪化を招くこととなる。
【0009】
この発明は、上記課題を解決するためになされたものであり、冷蔵庫等の断熱箱体において外箱表面の熱が、外箱内側に接着された真空断熱パネルの比較的熱伝導の良い包装材に伝わり、さらにこの包装材を伝導することによって生じる真空断熱パネルの断熱性能の悪化を防止することで、断熱効率に優れた断熱体を得るとともに、経時的な真空度の低下に伴う断熱性能の悪化も防止できる断熱体を得ることを目的とする。
【0010】
【課題を解決するための手段】
この発明に係る断熱体は、壁材によって形成された外殻内の空隙に真空断熱パネルを配設し、残った空隙に多孔質断熱材を充填して成る断熱体において、前記壁材に複数の凹部を形成し、前記真空断熱パネルを前記凹部に対応する前記壁材内面の複数の底点を介して前記壁材と接触させて配設したものである。
【0012】
また、前記壁材と前記真空断熱パネルとが、断熱性のある接着剤または多孔質物質の接着剤を介して接するものである。
【0015】
さらに、本発明の冷蔵庫は、上記いずれかに記載の断熱体を備えた冷蔵庫である。
【0016】
【発明の実施の形態】
実施の形態1.
図1はこの発明の第1の態様に係る断熱体6の例を表す部分断面図である。断熱体6は金属製薄板等で構成された外壁材1と樹脂成型品等で構成された内壁材2とから成る外殻を有し、その内部には真空断熱パネル3が配置され、残りの空隙に多孔質断熱材4が充填されている。
真空断熱パネル3の表面には例えば5〜15mm程度の段差を有する凹凸面を形成して凸部5aを設け、真空断熱パネル3はその凸部5aを外壁材1に接して配設されている。4は発泡ウレタンフォーム等の多孔質断熱材で、前記外壁材1と真空断熱パネル3の凸部5aによって作られた空間と、内壁材2と真空断熱パネル3との間に構成された空間の双方に充填されており、各々を接着することで断熱体を構成している。
【0017】
真空断熱パネル3は、例えば図2に表した断面図のように、芯材7とそれを覆うアルミ箔等のガスバリヤー性を有する持ったフィルム層8により構成される。また、芯材7に一定の方向性を持った凹凸面を形成することで、真空断熱パネル3表面の凸部5aを形成するようにしている。
図3は断熱体6を製造する際における多孔質断熱材4の充填過程を表したものである。真空断熱パネル3に設ける凸部5aの形状や数は適宜定めて良いが、図3に示すように、多孔質断熱材4の充填方向と平行する向きに延長する凸部を真空断熱パネル3に複数個設けると、凸部5aと壁材とによって形成された5〜15mmの段差の空間部への多孔質断熱材4の充填を容易に行えるので好都合である。なお、図3において、11は多孔質断熱材4の注入口、矢印は多孔質断熱材4の流れを示す。
【0018】
このように、真空断熱パネル3の凸部5a部分でのみ外壁材1と接触する構成とすることにより、真空断熱パネル3を構成するフィルム層8の片側全面が外壁材1と接触していた従来に対し、接触面積が小さくなり、結果として真空断熱パネル3に伝わる熱量が少なくなり、3〜5%の熱通過率が改善された断熱性能に優れた断熱体を得ることができる。また、凸部5aを含めた芯材7全体をフィルム層8により覆っているので、真空断熱パネル内への経時的なガス侵入も防止でき、経時的な真空度の上昇に伴う熱伝導率の悪化を招くこともない。
【0019】
なお、上記実施の形態1では、真空断熱パネル3はその凸部5aを外壁材1に接するように配設したが、図4に表すように、真空断熱パネル3の凸部5aを内壁材2に接するように配設しても同様の効果が得られる。
【0020】
実施の形態2.
図5はこの発明の第2の態様に係る断熱体6の例を表す部分断面図である。ここでは、外殻を構成する外壁材1の金属製薄板を5〜15mm程度の段差を有する波形状に加工し、外壁材1に複数の凹部5bを形成している。真空断熱パネル3はこの凹部5bの底点に接するよう配設される。
【0021】
このようにすることで、実施の形態1と同様に、外壁材1と真空断熱パネル3の接触面積が小さくなるので、断熱性能の良い断熱体を得ることができる。
【0022】
なお、上記実施の形態2においては、外壁材1に波形を形成して凹部5bを設けたが、図6に表すように、外殻を構成する内壁材2に波形を形成して凹部5cを設け、真空断熱パネル3をその凹部5cに位置決めしても同様の効果が得られる。
また、凹部5bや5cの形状や数は適宜定めて良いが、凹部5b,5cの延長方向が多孔質断熱材4の充填方向と平行となるように壁材1,2に波形を設けると、多孔質断熱材4の充填がこれらの凹部によって妨げられることがなくなり好都合である。
【0023】
実施の形態3.
図7はこの発明の第3の態様に係る断熱体6の例を表す部分断面図である。ここで、9は断熱性を有する接着剤であり、例えば多孔質樹脂の接着剤である。先の実施の形態1において真空断熱パネル3は、その表面に設けた凸部5aを外壁材1に直接に接して配設されていたが、ここでは、そこに接着剤9を介して外壁材1と凸部5a頂点とを間接的に接着し、外壁材1と真空断熱パネル3とを固定する。これによって、実施の形態1より更に断熱性能を改善した断熱体6が得られる。
【0024】
なお、図8に表すように、断熱性を有する接着剤9を介して外殻を構成する内壁材2と真空断熱パネル3の凸部5a頂点との間を間接的に接着し、内壁材2と真空断熱パネル3とを固定しても、同様に断熱性能を改善した断熱体6が得られる。
【0025】
実施の形態4.
図9はこの発明の第4の態様に係る断熱体6の例を表す部分断面図である。ここで、9は断熱性を有する接着剤であり、例えば多孔質樹脂の接着剤である。先の実施の形態2において、真空断熱パネル3は、外殻を構成する外壁材1を波形状に形成して得られた凹部5bと直接接するように配設されていたが、ここでは、そこに断熱性のある接着剤9を介して凹部5b底点と真空断熱パネル3とを間接的に接着し、外壁材1と真空断熱パネル3を固定する。これによって、実施の形態2より更に断熱性能を改善した断熱体6が得られる。
【0026】
なお、図10に表すように、外殻を構成する内壁材2を波形状に形成して凹部5cを設け、断熱性を有する接着剤9を介してその凹部5c底点と真空断熱パネル3との間を間接的に接着し、内壁材2と真空断熱パネル3とを固定しても、同様に断熱性能を改善した断熱体6が得られる。
【0027】
実施の形態5.
図11はこの発明の第5の態様に係る断熱体6の例を表す断面図、そして図12は、この断熱体6に用いられる真空断熱パネル3である。
ここで真空断熱パネル6は、表面に凹凸を有するように粗面として仕上げられた芯材7とそれを覆うフィルム層8により構成され、その面粗さ故に、フィルム層8に覆われた状態で、真空断熱パネル3の表面に、例えば0〜2mm程度の高さの多数の凸部5dを有している。このように構成した真空断熱パネル3を、外壁材1や内壁材2に接触させ、これらの凸部5dとの間に多数の空気層10を形成し、しかる後に内壁材2または外壁材1と真空断熱パネル3との空間に多孔質断熱材4を充填することで、断熱壁を構成する外壁材1や内壁材2との接触面積を減じて、断熱性能に優れた断熱体を得ることもできる。
【0028】
なお、上記各実施例では、外壁材1または内壁材2のいずれかと真空断熱パネル3とが接触する例を説明したが、本発明は、外壁材1および内壁材2の双方と真空断熱パネル3とが接触する場合も含む。
【0029】
【発明の効果】
以上この発明によれば、真空断熱パネルがその表面に形成された凸部を壁材に接して配設されるため、壁材と真空断熱パネルとの接触面積が小さくなり、壁材から真空断熱パネルの構成要素の中で最も熱伝導率の高い包装材への直接の熱伝導を遮断する効果が得られる。したがって、受熱面(例えば外壁材)からその対面(例えば内壁材)へ伝わる熱量の内、真空断熱パネルの包装材表面を伝わる熱量が減じて、断熱体の断熱性能が向上する。
【0030】
また、真空断熱パネルがその一部を壁材に形成された凹部に接して配設されるため、壁材と真空断熱パネルとの接触面積が小さくなり、真空断熱パネルの包装材表面を伝わる熱量が減じて、断熱体の断熱性能が向上する。この場合には、真空断熱パネルの形状を簡易にできるので、製造が容易で安価な真空断熱パネルが使えるという利点を有する。
【0031】
また、樹脂などから成る接着層を介在させて壁材と真空断熱パネルとを部分的に接触させることで、更なる伝熱が抑制でき、断熱体の断熱性能が大きく向上する。
【0032】
また、真空断熱パネルを構成する芯材に凸部を形成することにより真空断熱パネルの表面に凸部を設けるため、他の要素や部品を別途設けて凸部を形成した場合に比べて、配設の安定性が優れ製造が容易になる。
【0033】
さらに、真空断熱パネルを構成する芯材の表面を粗面に仕上げることで真空断熱パネルの表面に凸部を設けるため、比較的小さくしかも先端が鋭角な凸部が多数得られて、壁材と真空断熱パネルとの接触面積を効率よく小さくできるので、優れた断熱性能の断熱体が得られる。
【図面の簡単な説明】
【図1】 この発明の第1の態様を示す断熱体の部分断面図である。
【図2】 この発明に用いる真空断熱パネルの一例を示す断面図である。
【図3】 この発明の断熱体の製造時における多孔質断熱材の充填過程を説明する斜視図である。
【図4】 第1の態様の他の例を示す断熱体の部分断面図である。
【図5】 この発明の第2の態様を示す断熱体の部分断面図である。
【図6】 第2の態様の他の例を示す断熱体の部分断面図である。
【図7】 この発明の第3の態様を示す断熱体の部分断面図である。
【図8】 第3の態様の他の例を示す断熱体の部分断面図である。
【図9】 この発明の第4の態様を示す断熱体の部分断面図である。
【図10】 第4の態様の他の例を示す断熱体の部分断面図である。
【図11】 この発明の第5の態様を示す断熱体の部分断面図である。
【図12】 この発明に用いる真空断熱パネルの他の例を示す断面図である。
【符号の説明】
1 外壁材、2 内壁材、3 真空断熱パネル、4 多孔質断熱材、5a 真空断熱パネルの凸部、5b 外壁材の凹部、5c 内壁材の凹部、5d 真空断熱パネルの凸部、6 断熱体、7 芯材、8 フィルム層、9 接着剤、10 空気層。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat insulating body in which, for example, a vacuum heat insulating panel is disposed as a heat insulating material in a gap formed by a thin metal plate or a resin molded product on a wall surface that requires heat insulation, such as a refrigerator. It is related with arrangement | positioning to the refrigerator outer shell of a panel.
[0002]
[Prior art]
Conventionally, the wall surface of a heat insulator used in a refrigerator or the like is formed by covering the outer surface with a thin metal plate such as an iron plate and forming the inner surface portion with a resin molded product, and injecting and filling urethane foam into the gap. Has been.
Hydrochlorofluorocarbons 1,1-dichloro-1-fluoroethane (HCFC141b) has been used as a foaming agent for foamed urethane, which is a heat insulating material. It has been proposed to use hydrofluorocarbons and hydrocarbons that are not contained therein.
[0003]
For example, JP-A-2-235882 discloses hydrofluorocarbons such as 1, 1, 1, 3, 3-pentafluoropropane (HFC245fa) and 1, 1, 1, 4, 4, 4-hexafluorobutane (HFC356mffm). For example, Japanese Patent Laid-Open No. 3-152160 discloses a method for producing foamed urethane in which a hydrocarbon such as cyclopentane is applied as a foaming agent. However, the heat insulating properties of these urethane foams are 19-20 mw / MK, which is clearly inferior to the heat insulating properties of 16 mw / MK when using chlorofluorocarbons used before the regulation of ozone-depleting substances. .
[0004]
For this reason, the technique which applies the vacuum heat insulation panel which can obtain the heat insulation of 5-10mw / MK which is the heat insulation performance more than twice of the conventional urethane foam is proposed. The core material of such a vacuum heat insulation panel has a strength equal to or higher than atmospheric pressure, and it is necessary to suppress the amount of heat conduction and radiant heat transfer. Therefore, the core material is a substance having a small heat transfer amount. It is effective to use a plate made of a porous material. For example, in Japanese Patent Application Laid-Open No. 60-205164, open-cell foamed urethane is used.
[0005]
In addition, regarding the disposition to the heat insulator, Japanese Patent Application Laid-Open No. 60-60483 discloses a foamed urethane foam for attaching a vacuum heat insulating panel to the surface of the inner box that is the interior material of the refrigerator or the outer box that is the outer material. There has been proposed a method of providing and arranging a passage through which the injected liquid flows and diffuses. Furthermore, Japanese Patent Application Laid-Open No. 61-195259 proposes a method of creating a vacuum heat insulation panel having one surface formed in accordance with the shape of the inner box of the refrigerator, and disposing the vacuum heat insulation panel at an appropriate position of the inner box shape. .
[0006]
[Problems to be solved by the invention]
On the other hand, as the heat transfer component of the vacuum heat insulation panel, the heat transferred to the gas is eliminated by eliminating the gas in the pores from the heat transfer component of the porous body, and transferred by the heat and radiation transmitted through the resin. Since only heat is used, it is known that the vacuum insulation panel exhibits excellent heat insulation performance. Therefore, a vacuum heat insulation panel wrapped with a laminated sheet or the like provided with an aluminum foil is fixed by, for example, bonding to an outer box made of a thin steel plate, which is a common refrigerator arrangement method, and is made of a resin molded product. In the structure in which urethane foam is filled in the gap with the box, it is necessary to consider the heat insulation performance in consideration of the heat diffusion transmitted through the packaging material.
[0007]
For example, in Japanese Patent Application Laid-Open No. 59-146993, for the purpose of suppressing the influence of heat transfer on the aluminum foil provided in the inner layer portion in order to ensure the gas barrier property of the packaging material, A proposal has been made to limit the thickness to a specific thickness by preventing the deterioration of the gas barrier property by not including defects such as holes, and using the thinnest aluminum foil.
However, the heat received by the exterior material is transferred to the vacuum insulation panel packaging material, and the heat transferred to one side of the vacuum insulation panel is transferred to the other side through the side surface of the packaging material containing the aluminum foil. To do. Therefore, the presence of the aluminum foil having a heat conductivity of 10 4 times that of the vacuum heat insulation panel has a considerable influence on the heat insulation performance of the vacuum heat insulation panel.
[0008]
For this reason, Japanese Utility Model Laid-Open No. 62-143184 proposes an invention in which the metal foil layer constituting the envelope of the vacuum heat insulating material is partially removed for the purpose of preventing heat transfer. However, since the vacuum insulation material obtained in this way has only a part of the resin film from which the aluminum foil has been partially removed, even if the influence on the insulation performance by the packaging material is reduced, the part of the resin film only Intrusion of gas from outside cannot be prevented, and as a result, the heat insulation performance is deteriorated due to the decrease in the degree of vacuum.
[0009]
The present invention has been made to solve the above problems, and a packaging material having relatively good heat conduction of a vacuum heat insulating panel in which the heat of the outer box surface is bonded to the inner side of the outer box in a heat insulating box such as a refrigerator. In addition to preventing the deterioration of the heat insulation performance of the vacuum heat insulation panel caused by conducting this packaging material, it is possible to obtain a heat insulator with excellent heat insulation efficiency and to improve the heat insulation performance associated with a decrease in the degree of vacuum over time. It aims at obtaining the heat insulating body which can also prevent deterioration.
[0010]
[Means for Solving the Problems]
A heat insulating body according to the present invention is a heat insulating body in which a vacuum heat insulating panel is disposed in a void in an outer shell formed of a wall material, and a porous heat insulating material is filled in the remaining space, and a plurality of the wall materials are provided. The vacuum heat insulation panel is disposed in contact with the wall material through a plurality of bottom points on the inner surface of the wall material corresponding to the recess.
[0012]
Moreover, the said wall material and the said vacuum heat insulation panel contact | connect through the adhesive agent with heat insulation, or the adhesive agent of a porous substance .
[0015]
Furthermore, the refrigerator of this invention is a refrigerator provided with the heat insulating body in any one of the above.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a partial cross-sectional view showing an example of a heat insulator 6 according to the first aspect of the present invention. The heat insulating body 6 has an outer shell composed of an outer wall material 1 made of a thin metal plate and an inner wall material 2 made of a resin molded product, and a vacuum heat insulating panel 3 is disposed in the inner shell, The space is filled with a porous heat insulating material 4.
The surface of the vacuum heat insulation panel 3 is provided with a convex portion 5a by forming a concave / convex surface having a level difference of about 5 to 15 mm, for example, and the vacuum heat insulation panel 3 is disposed in contact with the outer wall material 1. . 4 is a porous heat insulating material such as urethane foam, which is a space formed by the outer wall material 1 and the convex portion 5a of the vacuum heat insulating panel 3, and a space formed between the inner wall material 2 and the vacuum heat insulating panel 3. Both sides are filled, and a heat insulator is formed by bonding each of them.
[0017]
The vacuum heat insulation panel 3 includes a core layer 7 and a film layer 8 having a gas barrier property such as an aluminum foil covering the core material 7 as shown in the cross-sectional view shown in FIG. Moreover, the convex part 5a of the vacuum heat insulation panel 3 surface is formed by forming the uneven surface with a fixed directionality in the core material 7. FIG.
FIG. 3 shows a filling process of the porous heat insulating material 4 when the heat insulating body 6 is manufactured. Although the shape and number of the convex portions 5a provided on the vacuum heat insulating panel 3 may be determined as appropriate, the convex portions extending in the direction parallel to the filling direction of the porous heat insulating material 4 are formed on the vacuum heat insulating panel 3 as shown in FIG. Providing a plurality is advantageous because the porous heat insulating material 4 can be easily filled into a space portion having a level difference of 5 to 15 mm formed by the convex portion 5a and the wall material. In FIG. 3, 11 indicates an inlet for the porous heat insulating material 4, and an arrow indicates the flow of the porous heat insulating material 4.
[0018]
In this way, the entire surface of one side of the film layer 8 constituting the vacuum heat insulation panel 3 is in contact with the outer wall material 1 by making the structure in contact with the outer wall material 1 only at the convex portion 5a portion of the vacuum heat insulation panel 3. On the other hand, the contact area is reduced, and as a result, the amount of heat transferred to the vacuum heat insulation panel 3 is reduced, and a heat insulator excellent in heat insulation performance with improved heat passage rate of 3 to 5% can be obtained. Moreover, since the whole core material 7 including the convex part 5a is covered with the film layer 8, the gas intrusion into the vacuum heat insulation panel over time can be prevented, and the thermal conductivity accompanying the increase in the degree of vacuum over time can be prevented. There will be no deterioration.
[0019]
In the first embodiment, the vacuum heat insulating panel 3 is arranged so that the convex portion 5a is in contact with the outer wall material 1. However, as shown in FIG. The same effect can be obtained even if it is arranged so as to be in contact with.
[0020]
Embodiment 2. FIG.
FIG. 5 is a partial cross-sectional view showing an example of the heat insulator 6 according to the second aspect of the present invention. Here, the metal thin plate of the outer wall material 1 constituting the outer shell is processed into a corrugated shape having a level difference of about 5 to 15 mm, and a plurality of concave portions 5 b are formed in the outer wall material 1. The vacuum heat insulation panel 3 is disposed in contact with the bottom of the recess 5b.
[0021]
By doing in this way, since the contact area of the outer wall material 1 and the vacuum heat insulation panel 3 becomes small similarly to Embodiment 1, the heat insulator with good heat insulation performance can be obtained.
[0022]
In the second embodiment, the corrugation is formed in the outer wall material 1 and the recess 5b is provided. However, as shown in FIG. 6, the corrugation is formed in the inner wall material 2 constituting the outer shell and the recess 5c is formed. The same effect can be obtained even if the vacuum insulation panel 3 is provided and positioned in the recess 5c.
Further, the shape and number of the recesses 5b and 5c may be determined as appropriate, but when the corrugations are provided on the wall materials 1 and 2 so that the extending direction of the recesses 5b and 5c is parallel to the filling direction of the porous heat insulating material 4, Advantageously, the filling of the porous insulation 4 is not hindered by these recesses.
[0023]
Embodiment 3 FIG.
FIG. 7 is a partial cross-sectional view showing an example of the heat insulator 6 according to the third aspect of the present invention. Here, 9 is an adhesive having heat insulation properties, for example, an adhesive of porous resin. In the first embodiment, the vacuum heat insulating panel 3 is arranged in such a manner that the convex portion 5 a provided on the surface thereof is in direct contact with the outer wall material 1, but here, the outer wall material is interposed therethrough with an adhesive 9. 1 and the convex part 5a vertex are bonded indirectly, and the outer wall material 1 and the vacuum heat insulation panel 3 are fixed. As a result, the heat insulating body 6 having further improved heat insulating performance than that of the first embodiment is obtained.
[0024]
In addition, as shown in FIG. 8, the inner wall material 2 is indirectly bonded between the inner wall material 2 constituting the outer shell and the vertex of the convex portion 5a of the vacuum heat insulating panel 3 through an adhesive 9 having heat insulation properties. And the vacuum heat insulating panel 3 are fixed, the heat insulating body 6 having improved heat insulating performance is obtained.
[0025]
Embodiment 4 FIG.
FIG. 9 is a partial cross-sectional view showing an example of the heat insulator 6 according to the fourth aspect of the present invention. Here, 9 is an adhesive having heat insulation properties, for example, an adhesive of porous resin. In the previous second embodiment, the vacuum heat insulating panel 3 is disposed so as to be in direct contact with the concave portion 5b obtained by forming the outer wall material 1 constituting the outer shell into a wave shape. The bottom of the recess 5b and the vacuum heat insulating panel 3 are indirectly bonded to each other through the heat insulating adhesive 9, and the outer wall material 1 and the vacuum heat insulating panel 3 are fixed. As a result, the heat insulating body 6 having further improved heat insulating performance than that of the second embodiment is obtained.
[0026]
As shown in FIG. 10, the inner wall material 2 constituting the outer shell is formed in a wave shape to provide a recess 5 c, and the bottom of the recess 5 c and the vacuum heat insulation panel 3 are provided via an adhesive 9 having heat insulation properties. Even if the inner wall material 2 and the vacuum heat insulating panel 3 are fixed indirectly, the heat insulating body 6 having improved heat insulating performance is obtained.
[0027]
Embodiment 5 FIG.
FIG. 11 is a cross-sectional view showing an example of a heat insulating body 6 according to the fifth aspect of the present invention, and FIG. 12 shows a vacuum heat insulating panel 3 used for the heat insulating body 6.
Here, the vacuum heat insulating panel 6 is constituted by a core material 7 finished as a rough surface so as to have irregularities on the surface and a film layer 8 covering the core material 7, and is covered with the film layer 8 because of its surface roughness. The surface of the vacuum heat insulation panel 3 has a large number of convex portions 5d having a height of about 0 to 2 mm, for example. The vacuum heat insulating panel 3 configured in this manner is brought into contact with the outer wall material 1 and the inner wall material 2 to form a large number of air layers 10 between these convex portions 5d, and then the inner wall material 2 or the outer wall material 1 and By filling the space with the vacuum heat insulating panel 3 with the porous heat insulating material 4, the contact area with the outer wall material 1 and the inner wall material 2 constituting the heat insulating wall can be reduced to obtain a heat insulating material with excellent heat insulating performance. it can.
[0028]
In each of the above embodiments, an example in which either the outer wall material 1 or the inner wall material 2 and the vacuum heat insulating panel 3 are in contact with each other has been described. However, in the present invention, both the outer wall material 1 and the inner wall material 2 and the vacuum heat insulating panel 3 are described. Including the case of contact with.
[0029]
【The invention's effect】
As described above, according to the present invention, since the vacuum heat insulating panel is arranged in contact with the wall material with the convex portion formed on the surface thereof, the contact area between the wall material and the vacuum heat insulating panel is reduced, and the vacuum heat insulation from the wall material. An effect of blocking direct heat conduction to the packaging material having the highest thermal conductivity among the components of the panel can be obtained. Therefore, the amount of heat transmitted from the heat receiving surface (for example, the outer wall material) to the opposite surface (for example, the inner wall material) is reduced, and the heat insulating performance of the heat insulating body is improved.
[0030]
In addition, since the vacuum insulation panel is placed in contact with a recess formed in the wall material, the contact area between the wall material and the vacuum insulation panel is reduced, and the amount of heat transmitted through the surface of the packaging material of the vacuum insulation panel Is reduced, and the heat insulation performance of the heat insulator is improved. In this case, since the shape of the vacuum heat insulation panel can be simplified, there is an advantage that a vacuum heat insulation panel that is easy to manufacture and inexpensive can be used.
[0031]
In addition, the wall material and the vacuum heat insulation panel are partially brought into contact with each other through an adhesive layer made of resin or the like, so that further heat transfer can be suppressed and the heat insulation performance of the heat insulator is greatly improved.
[0032]
In addition, since the convex portion is provided on the surface of the vacuum thermal insulation panel by forming the convex portion on the core material constituting the vacuum thermal insulation panel, compared to the case where the convex portion is formed by separately providing other elements and parts. The stability of the installation is excellent and the manufacture becomes easy.
[0033]
Furthermore, since the surface of the vacuum insulation panel is provided with a rough surface by finishing the surface of the core material constituting the vacuum insulation panel, a large number of relatively small projections with sharp edges are obtained. Since the contact area with the vacuum heat insulation panel can be reduced efficiently, a heat insulator with excellent heat insulation performance can be obtained.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view of a heat insulator showing a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing an example of a vacuum heat insulation panel used in the present invention.
FIG. 3 is a perspective view for explaining a filling process of a porous heat insulating material at the time of manufacturing the heat insulating body of the present invention.
FIG. 4 is a partial cross-sectional view of a heat insulator showing another example of the first mode.
FIG. 5 is a partial cross-sectional view of a heat insulator showing a second embodiment of the present invention.
FIG. 6 is a partial cross-sectional view of a heat insulator showing another example of the second mode.
FIG. 7 is a partial cross-sectional view of a heat insulator showing a third embodiment of the present invention.
FIG. 8 is a partial cross-sectional view of a heat insulator showing another example of the third mode.
FIG. 9 is a partial cross-sectional view of a heat insulator showing a fourth embodiment of the present invention.
FIG. 10 is a partial cross-sectional view of a heat insulator showing another example of the fourth aspect.
FIG. 11 is a partial sectional view of a heat insulator showing a fifth embodiment of the present invention.
FIG. 12 is a cross-sectional view showing another example of the vacuum heat insulating panel used in the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Outer wall material, 2 Inner wall material, 3 Vacuum heat insulation panel, 4 Porous heat insulation material, 5a Convex part of vacuum heat insulation panel, 5b Concave part of outer wall material, 5c Concave part of inner wall material, 5d Convex part of vacuum heat insulation panel, 6 Thermal insulator 7 core material, 8 film layer, 9 adhesive, 10 air layer.

Claims (4)

壁材によって形成された外殻内の空隙に真空断熱パネルを配設し、残った空隙に多孔質断熱材を充填して成る断熱体において、
前記壁材に複数の凹部を形成し、前記真空断熱パネルを前記凹部に対応する前記壁材内面の複数の底点を介して前記壁材と接触させて配設したことを特徴とする断熱体。
In a heat insulating body in which a vacuum heat insulation panel is disposed in a void in an outer shell formed by a wall material, and a porous heat insulating material is filled in the remaining void,
A plurality of concave portions are formed in the wall material, and the vacuum heat insulating panel is disposed in contact with the wall material through a plurality of bottom points on the inner surface of the wall material corresponding to the concave portions. .
前記壁材と前記真空断熱パネルとが、断熱性のある接着剤を介して接する請求項1に記載の断熱体。The heat insulator according to claim 1, wherein the wall material and the vacuum heat insulating panel are in contact with each other through a heat insulating adhesive. 前記壁材と前記真空断熱パネルとが、多孔質物質の接着剤を介して接する請求項1に記載の断熱体。The heat insulating body according to claim 1, wherein the wall material and the vacuum heat insulating panel are in contact with each other through an adhesive of a porous material. 請求項1〜3のいずれかに記載の断熱体を備えた冷蔵庫。The refrigerator provided with the heat insulating body in any one of Claims 1-3.
JP27541498A 1998-09-29 1998-09-29 Insulation and refrigerator Expired - Fee Related JP3876551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27541498A JP3876551B2 (en) 1998-09-29 1998-09-29 Insulation and refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27541498A JP3876551B2 (en) 1998-09-29 1998-09-29 Insulation and refrigerator

Publications (2)

Publication Number Publication Date
JP2000105069A JP2000105069A (en) 2000-04-11
JP3876551B2 true JP3876551B2 (en) 2007-01-31

Family

ID=17555178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27541498A Expired - Fee Related JP3876551B2 (en) 1998-09-29 1998-09-29 Insulation and refrigerator

Country Status (1)

Country Link
JP (1) JP3876551B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4238475B2 (en) * 2000-11-06 2009-03-18 パナソニック株式会社 refrigerator
JP2006226551A (en) * 2005-02-15 2006-08-31 Noritz Corp Vaporization type combustion device
US9271429B2 (en) 2010-04-12 2016-02-23 Fujikura Ltd. Cooling device, cooling system, and auxiliary cooling device for datacenter
JP2012177531A (en) * 2011-02-28 2012-09-13 Fujikura Ltd Auxiliary cooling device for data center
JP5865581B2 (en) * 2010-09-07 2016-02-17 株式会社東芝 refrigerator
JP5608611B2 (en) * 2011-07-11 2014-10-15 日立アプライアンス株式会社 Insulation
JP6125163B2 (en) * 2012-06-27 2017-05-10 東芝ライフスタイル株式会社 refrigerator
JP5985039B2 (en) * 2013-06-07 2016-09-06 三菱電機株式会社 refrigerator
JP6294317B2 (en) * 2013-06-07 2018-03-14 三菱電機株式会社 refrigerator
JP6562682B2 (en) * 2015-04-07 2019-08-21 日立グローバルライフソリューションズ株式会社 refrigerator
EP4293304A1 (en) * 2021-02-15 2023-12-20 Hitachi Global Life Solutions, Inc. Refrigerator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174473A (en) * 1984-02-17 1985-09-07 シャープ株式会社 Manufacture of heat-insulating structure
JPS60240980A (en) * 1984-05-14 1985-11-29 松下冷機株式会社 Manufacture of heat-insulator pack
JP3455250B2 (en) * 1993-10-15 2003-10-14 明星工業株式会社 Vacuum insulation
JPH07120138A (en) * 1993-10-25 1995-05-12 Hitachi Ltd Vacuum insulated box
JPH0882475A (en) * 1994-09-13 1996-03-26 Toshiba Corp Heat insulating box body

Also Published As

Publication number Publication date
JP2000105069A (en) 2000-04-11

Similar Documents

Publication Publication Date Title
JP3876551B2 (en) Insulation and refrigerator
US6164030A (en) Fixed vacuum insulation panel
JP4186835B2 (en) Hot water storage tank
JP2000320958A (en) Vacuum heat insulating body and heat insulating structural body
JP6959808B2 (en) refrigerator
JP2009236183A (en) Vacuum thermal insulation panel and its manufacturing method
JPH07120138A (en) Vacuum insulated box
WO2014156703A1 (en) Vacuum heat-insulating material
JP2008248618A (en) Heat-insulating and sound-insulating material
KR20100119939A (en) Vacuum insulator and envelope for vacuum insulator
JP3852537B2 (en) Heat insulation box
CN209877463U (en) Vacuum heat insulator and refrigerator using the same
JP2004286252A (en) Heat insulation panel
JP4130982B2 (en) Vacuum insulation
JP7380852B2 (en) Manufacturing method for resin molding mold and hot water storage tank unit
JP3136713B2 (en) Refrigerator manufacturing method
EP3141370B1 (en) Method for producing composite thermal insulator, method for producing water heater, and composite thermal insulator
JP3909295B2 (en) Thermal insulation panel
JP6021066B2 (en) Thermal insulation panel
JP7297616B2 (en) Heat-insulating box, refrigerator, and method for manufacturing heat-insulating box
JPS5934867Y2 (en) insulation panels
JPH08303940A (en) Insulating box and refrigerator using the box
JPH10205993A (en) Refrigerator cabinet and manufacture thereof
JPH05209700A (en) Vacuum heat insulating material pack
JP2006029413A (en) Vacuum heat insulating material and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060830

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees