JP3921580B2 - Manufacturing method of heat insulation box - Google Patents

Manufacturing method of heat insulation box Download PDF

Info

Publication number
JP3921580B2
JP3921580B2 JP30379398A JP30379398A JP3921580B2 JP 3921580 B2 JP3921580 B2 JP 3921580B2 JP 30379398 A JP30379398 A JP 30379398A JP 30379398 A JP30379398 A JP 30379398A JP 3921580 B2 JP3921580 B2 JP 3921580B2
Authority
JP
Japan
Prior art keywords
heat insulation
heat insulating
box
divider
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30379398A
Other languages
Japanese (ja)
Other versions
JP2000128256A (en
Inventor
芳夫 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP30379398A priority Critical patent/JP3921580B2/en
Publication of JP2000128256A publication Critical patent/JP2000128256A/en
Application granted granted Critical
Publication of JP3921580B2 publication Critical patent/JP3921580B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Packages (AREA)
  • Refrigerator Housings (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、冷蔵庫などの断熱箱体の製造方法に関し、さらに詳しくは、断熱箱体を構成する真空断熱パネルを備えた断熱壁の形成において、発泡断熱材を所望の位置に注入できるようにするための方法に関するものである。
【0002】
【従来の技術】
従来、冷蔵庫などの断熱体の壁面は、その外側を鉄板などの金属製薄板で、内側部分を樹脂成形品で形成され、その間隙を断熱性に優れた発泡ウレタンを注入発泡して充填させたものが用いられてきた。
【0003】
断熱材である発泡ウレタンの発泡剤には、優れた断熱性が得られるハイドロクロロフルオロカーボン類である1,1−ジクロロ−1−フルオロエタンに替えて、オゾン層破壊の原因となる塩素を分子中に含まないハイドロフルオロカーボン類やハイドロカーボン類が用いられつつある。たとえば、特開平2−235982号公報では1,1,2,2,3-ペンタフルオロプロパン(以後、HFC-245fa という。)や1,1,1,4,4,4-ヘキサフルオロブタン (以後、HFC-356mffという。)などのハイドロフルオロカーボン類を、特開平3−152160号公報ではシクロペンタンなどの可燃性物質を、各々、発泡剤に適用した発泡ウレタンの製造方法が述べられている。しかし、冷蔵庫などへに適用したこれら発泡ウレタンの断熱性能は、一般に、17〜20mw/mK に留まる。
【0004】
消費電力の低減が求められている冷蔵庫では、オゾン層破壊の原因物質を用いない発泡断熱材である発泡ウレタンに対する断熱性能が限界にあることから、図6の比較図で示す如く、発泡ウレタンの2倍以上の断熱性能が得られる真空断熱パネルを応用する技術が提案されている。
【0005】
この真空断熱パネルの断熱性能を確保するには、構成する材料に熱が伝達し難い物質を用いること、材料間の接触面積を少なくすることによって物質内を伝達する熱量を抑制すること、更に空隙を小さくすることによって輻射伝熱を抑制することが有効である。
【0006】
また、真空断熱パネルは、外部から空気や水蒸気などのガスが侵入するのを防止するため、外殻を構成する包装材を備えるとともに、その包装材は図7に示す断面図の如く、基材1の両面に最外層部分である表面層2とガスバリヤー層3を設け、さらにガスバリヤー層3の表面に最内層部分となる接着層4を備えた多層構造を有する。例えば、特開昭58−145488号公報では金属箔の両面にプラスチックスフィルムを貼合せたラミネートシートを用いており、最内層部分である接着層には熱融着フィルムを重ね合わせ、その端辺を熱融着して芯材を包装した真空断熱パネルが提案されている。さらに、特開平5−57105号公報では接着層に高密度ポリエチレンを用いて水分の侵入を抑制することが、特開平8−303685号公報ではその接着層を熱伝達を低減するために50〜150ミクロンの適正厚さにすることが、それぞれ提案されている。
【0007】
しかし、ガスバリヤー層3である金属薄膜が有するピンホールや各種樹脂で構成されている端辺シール部分を通じて、外部から経時的に侵入する空気( 酸素と窒素) や水蒸気、さらに各種構成材、特に接着層4が保有する収着水、未反応原料や副生成物である炭酸ガスや各種低分子有機物が真空中で飛散するなどの原因によって真空度が悪化を来す。このため、これらの透過または内部発生した各種ガスを吸着して真空度の低下を阻止することも重要であり、真空断熱パネルの内部には、それらガスの吸着機能を有する「ゲッター剤」と称する吸着物質が挿入され用いられている。
【0008】
「ゲッター剤」として、例えば、特開昭59−225275号公報では酸化カルシウム、ゼオライト、シリカゲルなどの水分を吸着する物質が、特公平7−89004号公報では有機ガスを吸着する物質として活性炭が、炭酸ガスを吸着する物質として水酸化ナトリウムが、水分を吸着する物質としてカルシウム塩を混合したものなどが提案されている。さらに、特開平8−159377号公報では、殆ど全ての物質を高温、高真空の条件下にあっても確実に吸着して再放出することがない化学的な吸着機構を有するゲッター剤である、バリウム−リチウム合金の提案がある。
【0009】
以上のような構成を有する真空断熱パネルは、図8の工程図に示す如く方法にて作製される。すなわち、まず、図7の断面構造を備えたラミネートシートの3方向を熱シールすることによって袋状に成形した包装材6の内部に芯材7を挿入する(S−1)。次に、包装材6の開放端辺9がシール加圧装置10の融着ヒータ11部に来るようにして、芯材7を挿入した包装材6を真空包装機8に装着する(S−2)。続いて、真空包装機8のチャンバー内を排気して所定真空度の雰囲気に形成した後、包装材6の端辺9である1方向を熱シールして(S−3)、図9の構造を有する真空断熱パネル12を得る(S−4)。
【0010】
図9に示すように、真空断熱パネル12の内部には、芯材7である連続した気孔を有する発泡ウレタンなどの多孔体に圧入された態様にてゲッター剤13が備えられ、その外側が大気中の空気などの侵入を防止する包装材6で覆われているので、内部の真空度の低下を維持できると共に、大気圧による圧縮応力によって変形するのを芯材7が防止している。さらに、包装材6の最外層には、傷つきなどに耐性を有すると共に、発泡ウレタンなどの発泡樹脂と接着が容易なナイロンやポリエチレンテレフタレートなどの樹脂を好適に用いているので、破壊され難い態様をも有している。
【0011】
以上のようにして構成される真空断熱パネルは、厚さが10〜30mmの板状であり、図10の断面図に示す如く、塗装鋼板などの折曲げ加工品である外箱15とABS樹脂などの熱成型品である内箱16の間隙に配置され、そこに断熱材である発泡ウレタン17が充填された状態で用いられる。
ここで、食品貯蔵のための各種部品を保持するとともに搬送や使用に必要な箱体強度を確保するためには、平面形状を多く有する外箱15面に真空断熱パネルを強固に固定したうえで、内箱16および真空断熱パネル12の表面とが、充填された発泡ウレタンと接着した状態で一体化して成ることが肝要である。
【0012】
発泡ウレタンの原料混合液を外箱15と内箱16との間に注入して断熱壁を充填する場合、その注入口が位置する断熱箱体の側壁中央部の外箱15面に真空断熱パネル12を設けているので、図11に示すように、内箱16と真空断熱パネル12との間隙は真空断熱パネルを設けない部分の間隙に比較して大幅に狭くなっていた。従って、側壁の真上に位置した従来の注入口位置のままでは、高圧発泡機などに備えられたミキシングヘッド20から吐出される発泡ウレタンの原料混合液21を注入すると、たとえ断熱箱体内の空間を所定の部屋に仕切るデバイダ18の端部の位置を避けたとしても、原料混合液21が注入速度に応じた特定の広がりを有して落下するため、真空断熱パネル12の上端部に衝突して不用意な位置で発泡が開始し、その後の適正な発泡状態で流動してきた発泡ウレタンの流動を阻害するという不具合を生じていた。
【0013】
【発明が解決しようとする課題】
上記のように、断熱壁の内部に10〜30mmの厚さを有する真空断熱パネルを配することは、発泡ウレタンの原料混合液を注入する際に必要な相応の空隙が確保できなくなって、注入した液が壁面に付着して発泡し、その後の壁内の充填に供する流動性のある泡の進路を塞ぎやすくする。この結果、発泡ウレタンの充填量が過度に必要になったり、場合によっては未充填となった空隙を残存することになって、断熱性能と外観の意匠性を損なうといった問題を来すことにもなる。
【0014】
この様な問題に対処するため、発泡ウレタンの注入位置および方向と真空断熱パネルの配設位置が干渉することが無いようにしたり、本来の注入に伴う液溜りの位置に発泡ウレタンの原料混合液の注入口を設けるなどの対処をすることが必要である。例えば、特開昭64−14584号公報および特開平5−288461号公報においては、断熱箱体の背面に設けた注入口から吐出する発泡ウレタンなどの発泡断熱材と干渉しない位置に真空断熱パネルを配設したものが、また、特開平8−61837号公報では注入口から吐出した発泡断熱材の原料混合液が真空断熱パネルと干渉しないように、所望する発泡ウレタンの原料混合液の液溜まりの位置に注入口を設けて流路を分岐したものが、各々示されている。
【0015】
しかし、これらの方法によれば、真空断熱パネルの配設位置を分割したり排除するなどの措置が必要であるために、真空断熱パネルの配設面積が狭くなることに起因して本来の断熱性能の確保が困難となったり、分割に伴って本来の配設枚数以上の真空断熱パネルが必要になり製造工数やコストの増加を来すなどの問題を生じる。また、液溜まりの位置に注入口を設ける方法では、液溜まりが断熱箱体の外殻下部にあるので、上方向に原料混合液を吐出することになり、この為、原料混合液を吐出する位置に洩れを来さない治具を設けるなどの措置が不可欠となるなど、この方法によっても製造工数やコストの増加を来すなどの問題を生じることになる。
【0016】
この発明は上記課題を解決するためになされたものであり、真空断熱パネルの形状やその配設位置を変えることなしに、しかも注入した発泡ウレタンの原料混合液が断熱壁面の途中で付着することなしに任意の液溜まりの位置に到達するようにして、断熱材の均一で充分な充填を可能にする断熱箱体の製造方法を提供するものである。
【0017】
【課題を解決するための手段】
この発明は、断熱箱体の外側を構成する外箱と断熱箱体の内側を構成する内箱との間に真空断熱パネルを配してなる断熱壁と、該断熱壁によって形成される空間を分割するデバイダとを備え、該デバイダの端部が前記断熱壁の間隙に面し、前記断熱壁の間隙に断熱材原料混合液を注入して前記断熱壁を充填する断熱箱体の製造方法において、前記デバイダの端部に凹溝を設け、この凹溝に係合する位置に設けた断熱箱体の背面の注入口から、前記断熱材原料混合液を注入するようにしたものである。
【0018】
また、前記凹溝が、前記断熱箱体の前面のフランジ部へ向かって曲折した構造を備えたデバイダを用いるものである。
【0019】
さらに、前記凹溝が、前記原料混合液を注入するミキシングヘッドのノズルよりも大きな溝幅を備え、かつ前記ノズルから注入された前記原料混合液を前記フランジ部に流入させる長さを備えたデバイダを用いるものである。
【0020】
【発明の実施の形態】
この発明では、断熱箱体内部の室の仕切に供するものであって、その端部が外箱、内箱、及び真空断熱パネルを備えた断熱壁の間隙に面して、発泡ウレタンの原料混合液の好適な注入にも供するデバイダを使用する。図1にそのデバイダの外観を示す。デバイダ18は、板状部材で、左右の端面にはそれぞれ凹溝19が一端面から他端面まで形成されている。
次に、このデバイダおよび真空断熱パネルを備えた断熱箱体を、冷蔵庫として製造する方法を、図2の工程図に基づき説明する。
【0021】
[断熱箱体の製造方法]
まず、塗装または着色した樹脂シートを貼り付けた意匠性のある鋼板を折曲げ加工によって成形した外箱の内面に、両面テープなどを用いて、真空断熱パネルを貼り付ける(S−11)。
他方、発泡ポリスチレンの成型品から成る図1の概念図で示したデバイダ18を、ABS樹脂シートの真空成型品である内箱の同一成型品内に備えた冷凍室と冷蔵室を隔てる仕切部に挿入しておく(S−12)。この内箱は、前記外箱に挿入して外殻として一体化させた後(S−13)、外殻外側にあって底部を構成するボトムパン、外殻外側にあって背面部分を構成する背面板を規程の位置に取り付けることによって、箱体を完成させる(S−14)。
【0022】
次に、この箱体の外殻内の空隙に断熱材である発泡ウレタンを充填するが、この時、発泡ウレタンの発泡を伴う流動時に発生する圧力によって箱体が変形しないように箱体を治具に挿入して固定すると共に、好適な流動を得るために、治具の温度を40〜50℃に保つ。発泡ウレタンの注入は、任意の位置に設けられた注入口から、高圧発泡機などの定量混合装置を用いて所定の原料混合液を注入後、直ちに注入口を閉塞すれば良く、注入から数秒で発泡を開始、1分以内で充填を完了した後、約5分から7分後に硬化が完了して断熱層を形成するので、そこで治具から取り出せばよい(S−15)。得られた断熱箱体には、内装部品や冷媒回路部品を装着する製品組立を行い(S−16)、使用可能な状態にした後、冷却試験などの品質を確認する製品検査行って(S−17)、冷蔵庫が完成する(S−18)。
【0023】
ここで、図3に基づき本発明による断熱箱体の断熱壁への発泡ウレタンの原料混合液の充填方法を説明する。なお、(a)は本発明の断熱箱体の側壁及び背面部の拡大図、(b)は本発明の断熱箱体の断熱壁を背面方向から見た概略図である。
本発明のデバイダ18には、左右両端部に凹溝19が形成されており、このデバイダ18が断熱箱体の所定の位置、例えば図3(b)に示す冷凍室と冷蔵室の区切り部に配置されたとき、その箱体の背面を構成する背面板23の凹溝19と係合する位置に、発泡ウレタンの原料混合液21の注入口24を設ける。このようにすることで、注入口24から発泡ウレタンの原料混合液21を注入する時、原料混合液21の断熱壁内への落下がこの凹溝19を通って行なわれ、その落下は凹溝19の深さに応じて真空断熱パネル12から遠ざかって箱体の中心方向に移動する。
【0024】
このため、発泡ウレタンの原料混合液21がミキシングヘッド20からの注入速度に応じた特定の広がりを有して落下したとしても、原料混合液21の落下位置と真空断熱パネル12の配設位置がほとんど干渉せず、注入した発泡ウレタンの原料混合液21が真空断熱パネル12の上端部及び側面部に衝突および付着することなしに、下方に位置するフランジ部22の任意の液溜まり位置に流れ込むことになる。液溜まり位置は、その後の発泡ウレタンの発泡を伴う流動に際し、外殻内を充填するのに要する距離が最も短くてすむ位置として設定されるものであるから、充填に要する発泡ウレタンの量および発泡圧による製品の部分的な変形への負荷を少なくし、発泡ウレタンの特性分布を良好にするという利点を得ることが出来る。
【0025】
また、フランジ部22における原料混合液の流入位置が、デバイダ18の配設位置の都合によって好適な位置を選択できない場合には、好適とする方向に適度な曲折を備えた構造を有して構成すれば良い。つまり、デバイダ18に、好適な位置に向かうような曲折を有した凹溝19を形成すれば、原料混合液21の流入位置はそれに沿って移動し、任意の液溜まり位置に流れ込ませることが出来る。
【0026】
さらに、デバイダ18が複数設けられる場合には、当然、複数の注入口の設定が可能となるので、原料混合液21の流入位置をフランジ部のより広範囲に渡って分散することが可能となり、従って、それは大型の断熱壁を有する、例えば背の高い冷蔵庫などの断熱箱体への好ましい注入形態を得るうえで好都合である。
【0027】
[適用の評価方法とその結果]
本発明の有効性を確認するため、上述した本発明によるデバイダを用い、側壁および天井部に真空断熱パネルを配設し、背面を上にして発泡ウレタンを注入することによって外殻(断熱壁)を充填して製作した230Lの内容積を有する冷蔵庫を用い、以下の評価を行った。
なお、以下において、実施例とは図1に示したような本発明のデバイダを用いたものであり、比較例とは従来の凹溝を持たないデバイダを用いたものである。
【0028】
(1)発泡ウレタンの充填量
デバイダを挿入した内箱と、厚さが20mmの真空断熱パネル12を図4の断熱箱体に示す位置に来るように配設した外箱とにより外殻を構成した後、この外殻内の空隙容量と発泡ウレタンの予想密度から算出した充填量よりもわずかに少ない注入量を、45℃に保温した治具に挿入して発泡時の圧力による変形を防止する措置を施した外殻内に注入して充填させる。その後、未充填部分を調査して約50cc±30ccの空隙を有する状態のものを得るまで、充填を繰り返す。適正な未充填状態となった断熱箱体への注入量に対して、安定した成形状態を確保する為の15%の過剰充填量を追加した注入量を、充填量とした。
(2)発泡ウレタンの特性分布
本発明による冷蔵庫を解体して、図5に示す任意の場所から採取した発泡ウレタンの圧縮強度を測定することによって、発泡ウレタンの分布状態を評価した。圧縮強度は、採取した発泡ウレタンのほぼ中央付近から、50×50×10mmの大きさの試料を裁断によって得て、これを10mm/min の速度で10%の歪みを付与して圧縮したときにおける最大応力として求めた。
(3)外観意匠性
本発明の断熱壁について、真空断熱パネルの貼付に供さない冷蔵庫内の内箱側壁の平滑性について目視観察を行い、真空断熱パネルを用いずに発泡ウレタンのみで構成した断熱壁を利用した冷蔵庫の断熱壁との比較によって、3段階で評価した。
これら(1)〜(3)の各結果を表1に示す。
【0029】
【表1】

Figure 0003921580
【0030】
表1中、「天」は冷蔵庫の天井51、「F」は冷凍室左面52と右面53の平均値、「R」は冷蔵室左面54と右面55の平均値、「底」は冷蔵庫の底面58、「背」は冷蔵庫の背面で冷凍室56と冷蔵室57の背面の平均値である(図5参照)。
また、外観の評価は、○が優れる、△が同等、×が劣る、を表している。
【0031】
表1から、本発明による断熱箱体の場合には、充填量が低下するとともに、発泡ウレタンの特性分布と外観意匠性に優れることが確認できた。圧縮強度を測定するために行った冷蔵庫の解体時に、注入口近傍における発泡ウレタンの泡の付着状態から原料混合液の飛散状態を判断すると、従来のデバイダを用いた比較例では真空断熱パネルの上端部に原料混合液が衝突して飛散し発泡ウレタンの充填に支障を来したのに対し、本発明によるデバイダを用いた実施例においてはそのような飛散の跡が見られず、原料混合液が円滑にフランジ部分にある好ましい液溜まりの位置に流入したと推測される。すなわち、本発明の場合、発泡ウレタンの流動過程において障害物がなくなって、原料混合液が短い距離を流動したと考えられる。
【0032】
さらに、デバイダに設ける凹溝を、フランジの任意の方向、つまり天井方向または底面方向の何れかに捻れたり曲げたりするように曲折した構造とすることによって、フランジに原料混合液が流れ込む方向を調整することができる。例えば、凹溝のフランジ側位置を注入口直下よりも底面方向に曲折されることによって、原料混合液を底面方向に多く調整して液溜まりの中心位置を注入口直下よりも底面方向にずらすことができ、その後の発泡ウレタンの流動距離や方向を調整することが可能となる。
【0033】
一方、比較例においては、付着した原料混合液が発泡した部分および近傍の内箱表面が、他の部位よりも平滑性が損なわれて小さな凹部を生み、外観意匠性に悪影響を来していることが確認された。
【0034】
なお、実施の形態で述べたデバイダの凹溝形状に対して、デバイダに孔を設けて、注入した発泡ウレタンを最も好ましい位置に案内する方法もあるが、この場合には、前記孔の内壁に付着した発泡ウレタンの原料混合液が発泡したことに伴う孔の内外との圧力差に応じた部分的な充填挙動の乱れを来し、外観挙動に好ましくない影響を及ぼす可能性がある。
【0035】
以上に述べた如く、本発明によれば、外殻を構成する外箱内壁に真空断熱パネルを配設した断熱箱体の製造方法において、端部に凹溝を備えた断熱箱体内仕切り用のデバイダを用いることによって、凹溝と真空断熱パネルの間隙に発泡ウレタンの原料混合液が注入されても原料混合液が接触しない空隙を形成し、かつ、その空隙が最も好ましい位置に原料混合液を導くようにすることで、原料混合液の充填量を低下させ、しかも、発泡ウレタンの特性分布と外観意匠性に優れる断熱箱体を得ることが出来た。
【0036】
以上、ここでは冷蔵庫を例に説明したが、本発明はこれに限定されるものではなく、断熱材が発泡ウレタンのみの構成であっても、例えば車載用小型冷蔵庫やプレハブ式簡易冷蔵庫、保冷車やパイプや建築物の保温材など、保温および保冷用製品の発泡ウレタン注入に応用することも可能であり、その要旨を脱し得ない範囲で種々変形して実施することができる。
【0037】
【発明の効果】
この発明は、断熱箱体の外側を構成する外箱と断熱箱体の内側を構成する内箱との間に真空断熱パネルを配してなる断熱壁と、該断熱壁によって形成される空間を分割するデバイダとを備え、該デバイダの端部が断熱壁の間隙に面し、この断熱壁の間隙に断熱材原料混合液を注入して充填する断熱箱体の製造方法において、デバイダの端部に凹溝を設け、この凹溝に係合する位置に設けた断熱箱体の背面の注入口から、断熱材原料混合液を注入するようにしたので、原料混合液が真空断熱パネルの上端部や側壁部に付着してその後の充填に供する挙動を阻害することがなくなり、従って、断熱材の均一な充填が行われて、断熱性能及び外観意匠に優れた断熱箱体を得ることが出来る。
【0038】
また、凹溝が断熱箱体の前面の液溜まりであるフランジ部へ向かって曲折した構造を備えたデバイダを用いることで、原料混合液を最も充填の距離が短くなる位置に供給することができ、少ない注入量で均一でしかも充分な充填を確保することが出来る。
【0039】
さらに、凹溝が原料混合液を注入するミキシングヘッドのノズルよりも大きな溝幅を備え、かつノズルから注入された原料混合液をフランジ部に流入させる長さ備えたデバイダを用いることで、原料混合液が真空断熱パネル表面に過剰な付着をすることなしに容易にフランジ部に到達でき、したがって、フランジ部における原料混合液の安定した拡散や、その後の泡状での充填を円滑に行うことが可能となる。
【図面の簡単な説明】
【図1】 本発明で使用するデバイダの一例を示す外観図である。
【図2】 断熱箱体の製造方法を示す工程図である。
【図3】 (a)は本発明による断熱壁への発泡ウレタンの原料混合液の充填方法を示す部分拡大図、(b)は本発明の断熱壁を背面方向から見た概略図である。
【図4】 冷蔵庫における真空断熱パネルの配設位置を示す斜視図である。
【図5】 発泡ウレタンを採取した位置を示す冷蔵庫を構成する各面の展開図である。
【図6】 断熱材の性能比較図である。
【図7】 真空断熱パネルの包装材の構成を示す断面図である。
【図8】 真空断熱パネルの製造方法を示す工程図である。
【図9】 真空断熱パネルの内部構造を示す断面図である。
【図10】 冷蔵庫を構成する断熱壁における真空断熱パネルの配設状態を示す断面図である。
【図11】 従来の断熱壁への発泡ウレタンの原料混合液の充填方法を示す説明図である。
【符号の説明】
12 真空断熱パネル、15 外箱、16 内箱、17 発泡ウレタン、
18 デバイダ、19 デバイダの凹溝、21 発泡ウレタンの原料混合液、
22 フランジ部、23 背面板、24 注入口。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a heat insulating box such as a refrigerator, and more specifically, in forming a heat insulating wall including a vacuum heat insulating panel constituting the heat insulating box so that a foam heat insulating material can be injected into a desired position. For the method.
[0002]
[Prior art]
Conventionally, the wall surface of a heat insulator such as a refrigerator is formed of a metal thin plate such as an iron plate on the outer side and a resin molded product on the inner side, and the gap is filled by injecting and foaming urethane foam having excellent heat insulating properties. Things have been used.
[0003]
The foaming agent for urethane foam, which is a heat insulating material, replaces 1,1-dichloro-1-fluoroethane, which is a hydrochlorofluorocarbon that provides excellent heat insulation properties, with chlorine that causes ozone layer destruction in the molecule. Hydrofluorocarbons and hydrocarbons not included in the above are being used. For example, JP-A-2-235882 discloses 1,1,2,2,3-pentafluoropropane (hereinafter referred to as HFC-245fa) and 1,1,1,4,4,4-hexafluorobutane (hereinafter referred to as HFC-245fa). , HFC-356mff)), and JP-A-3-152160 describes a method for producing urethane foam, in which a combustible material such as cyclopentane is applied to a foaming agent. However, the heat insulation performance of these urethane foams applied to refrigerators and the like generally remains at 17 to 20 mw / mK.
[0004]
In refrigerators that are required to reduce power consumption, the thermal insulation performance of foamed urethane, which is a foamed heat insulating material that does not use a substance that causes ozone layer destruction, is at the limit. Therefore, as shown in the comparison diagram of FIG. A technique for applying a vacuum heat insulation panel that can obtain heat insulation performance more than twice has been proposed.
[0005]
In order to ensure the heat insulation performance of this vacuum insulation panel, use a substance that does not easily transfer heat to the constituent material, reduce the amount of heat that is transmitted through the substance by reducing the contact area between the materials, It is effective to suppress the radiant heat transfer by reducing.
[0006]
Further, the vacuum insulation panel includes a packaging material constituting an outer shell in order to prevent gas such as air and water vapor from entering from the outside, and the packaging material is a base material as shown in a cross-sectional view shown in FIG. The surface layer 2 and the gas barrier layer 3 which are the outermost layer portions are provided on both surfaces of 1, and the adhesive layer 4 which is the innermost layer portion is further provided on the surface of the gas barrier layer 3. For example, Japanese Patent Application Laid-Open No. 58-145488 uses a laminate sheet in which a plastic film is laminated on both sides of a metal foil. There has been proposed a vacuum heat insulation panel in which a core material is packaged by heat sealing. Further, in Japanese Patent Laid-Open No. 5-57105, high-density polyethylene is used for the adhesive layer to suppress the intrusion of moisture, and in Japanese Patent Laid-Open No. 8-303685, the adhesive layer is reduced to 50 to 150 in order to reduce heat transfer. Proposals have been made to obtain an appropriate thickness of micron.
[0007]
However, air (oxygen and nitrogen) or water vapor that enters from the outside over time through pinholes or edge seal parts composed of various resins of the metal thin film that is the gas barrier layer 3, and various components, especially The degree of vacuum deteriorates due to causes such as sorption water possessed by the adhesive layer 4, unreacted raw materials, by-product carbon dioxide gas, and various low-molecular organic substances are scattered in a vacuum. For this reason, it is also important to adsorb these permeated or internally generated gases to prevent a reduction in the degree of vacuum, and the inside of the vacuum heat insulation panel is referred to as a “getter agent” having an adsorption function for these gases. Adsorbed material is inserted and used.
[0008]
As the “getter agent”, for example, JP-A-59-225275 discloses a substance that adsorbs moisture such as calcium oxide, zeolite, silica gel, and JP-B-7-89004 discloses activated carbon as a substance that adsorbs an organic gas. A substance in which sodium hydroxide is adsorbed as a substance that adsorbs carbon dioxide and a calcium salt is admixed as a substance that adsorbs moisture has been proposed. Furthermore, in JP-A-8-159377, a getter agent having a chemical adsorption mechanism that does not reliably adsorb and re-release almost all substances even under high temperature and high vacuum conditions. There is a proposal for a barium-lithium alloy.
[0009]
The vacuum heat insulation panel having the above-described configuration is manufactured by a method as shown in the process diagram of FIG. That is, first, the core material 7 is inserted into the packaging material 6 formed into a bag shape by heat-sealing the three directions of the laminate sheet having the cross-sectional structure of FIG. 7 (S-1). Next, the packaging material 6 with the core material 7 inserted is mounted on the vacuum packaging machine 8 so that the open end 9 of the packaging material 6 comes to the fusion heater 11 of the seal pressurizing device 10 (S-2). ). Subsequently, after evacuating the inside of the chamber of the vacuum packaging machine 8 to form an atmosphere having a predetermined degree of vacuum, one direction which is the end side 9 of the packaging material 6 is heat-sealed (S-3), and the structure of FIG. A vacuum heat insulation panel 12 having the following is obtained (S-4).
[0010]
As shown in FIG. 9, a getter agent 13 is provided inside the vacuum heat insulation panel 12 in such a manner that it is press-fitted into a porous body such as urethane foam having continuous pores as the core material 7, and the outside thereof is an atmosphere. Since it is covered with the packaging material 6 that prevents the intrusion of air and the like inside, the internal vacuum can be maintained at a lower level, and the core material 7 is prevented from being deformed by the compressive stress caused by the atmospheric pressure. Furthermore, since the outermost layer of the packaging material 6 is suitably made of a resin such as nylon or polyethylene terephthalate which has resistance to scratches and is easily bonded to a foamed resin such as urethane foam, it is difficult to break. Also have.
[0011]
The vacuum heat insulation panel configured as described above has a plate shape with a thickness of 10 to 30 mm. As shown in the cross-sectional view of FIG. 10, the outer box 15 which is a bent product such as a coated steel plate and the ABS resin. It is arrange | positioned in the clearance gap between the inner boxes 16 which are thermoformed goods, such as, and it is used in the state with which the urethane foam 17 which is a heat insulating material was filled there.
Here, in order to hold various parts for food storage and to secure the box strength necessary for transportation and use, the vacuum heat insulation panel is firmly fixed to the surface of the outer box 15 having many planar shapes. It is important that the inner box 16 and the surface of the vacuum heat insulation panel 12 are integrated with the filled urethane foam in a bonded state.
[0012]
When filling the insulation wall by injecting the raw material mixture of urethane foam between the outer box 15 and the inner box 16, the vacuum insulation panel is placed on the outer box 15 surface at the center of the side wall of the heat insulation box where the injection port is located. 11, the gap between the inner box 16 and the vacuum heat insulation panel 12 was significantly narrower than the gap in the portion where the vacuum heat insulation panel was not provided, as shown in FIG. 11. Therefore, if the urethane foam raw material mixture 21 discharged from the mixing head 20 provided in the high-pressure foaming machine or the like is injected in the conventional inlet position located directly above the side wall, even if the space in the heat insulating box is obtained. Even if the position of the end portion of the divider 18 that divides the chamber into a predetermined room is avoided, the raw material mixture 21 falls with a specific spread according to the injection speed, so that it collides with the upper end portion of the vacuum heat insulation panel 12. Thus, foaming started at an inadvertent position, and the flow of urethane foam that had flowed in an appropriate foaming state thereafter was hindered.
[0013]
[Problems to be solved by the invention]
As described above, arranging a vacuum heat insulation panel having a thickness of 10 to 30 mm inside the heat insulation wall makes it impossible to secure a corresponding gap required when injecting the raw material mixture of urethane foam. The liquid thus attached adheres to the wall surface and foams, making it easy to block the course of fluid bubbles used for filling the wall. As a result, the amount of urethane foam filled becomes excessive, or in some cases, the unfilled voids remain, causing problems such as deteriorating heat insulation performance and appearance design. Become.
[0014]
In order to cope with such problems, the injection position and direction of the urethane foam and the arrangement position of the vacuum heat insulation panel should not interfere with each other, or the raw material mixture of the urethane foam can be placed at the position of the liquid reservoir accompanying the original injection. It is necessary to take measures such as providing an injection port. For example, in Japanese Patent Application Laid-Open No. 64-14584 and Japanese Patent Application Laid-Open No. 5-288461, a vacuum heat insulating panel is provided at a position where it does not interfere with a foam heat insulating material such as urethane foam discharged from an inlet provided on the back surface of the heat insulating box. In addition, in Japanese Patent Laid-Open No. 8-61837, there is a liquid reservoir of the desired foamed urethane raw material mixture so that the foamed thermal insulation material mixture discharged from the inlet does not interfere with the vacuum thermal insulation panel. Each of them is shown by branching the flow path by providing an inlet at a position.
[0015]
However, according to these methods, it is necessary to take measures such as dividing or eliminating the position where the vacuum heat insulating panel is disposed. It becomes difficult to ensure the performance, or the number of vacuum heat insulation panels more than the original number of arrangements is required with the division, resulting in an increase in manufacturing man-hours and costs. Further, in the method of providing the inlet at the position of the liquid reservoir, since the liquid reservoir is at the lower part of the outer shell of the heat insulating box, the raw material mixed solution is discharged upward, and thus the raw material mixed solution is discharged. This method also causes problems such as an increase in manufacturing man-hours and costs, such as provision of a jig that does not leak at the position.
[0016]
The present invention has been made to solve the above problems, and without changing the shape of the vacuum heat insulation panel and the position of the vacuum heat insulation panel, the injected urethane foam raw material mixture adheres in the middle of the heat insulation wall surface. It is possible to provide a method for manufacturing a heat insulating box that allows uniform and sufficient filling of a heat insulating material by reaching an arbitrary liquid reservoir position without any problem.
[0017]
[Means for Solving the Problems]
The present invention provides a heat insulating wall in which a vacuum heat insulating panel is arranged between an outer box that forms the outside of the heat insulating box and an inner box that forms the inside of the heat insulating box, and a space formed by the heat insulating wall. In the method of manufacturing a heat insulation box, the divider is divided, the end of the divider faces the gap between the heat insulation walls, and the heat insulation material mixture is injected into the gap between the heat insulation walls to fill the heat insulation wall. A concave groove is provided at the end of the divider, and the heat insulating material mixed liquid is injected from an inlet on the back surface of the heat insulating box provided at a position engaging with the concave groove.
[0018]
Further, a divider having a structure in which the concave groove is bent toward the flange portion on the front surface of the heat insulating box is used.
[0019]
Further, the divider has a groove width larger than that of the nozzle of the mixing head for injecting the raw material mixed solution, and a length for allowing the raw material mixed solution injected from the nozzle to flow into the flange portion. Is used.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
In this invention, it is used for partitioning the chamber inside the heat insulation box, and its end faces the gap between the heat insulation wall provided with the outer box, the inner box, and the vacuum heat insulation panel, and the raw material mixing of urethane foam A divider is also used which also serves for suitable injection of liquid. FIG. 1 shows the appearance of the divider. The divider 18 is a plate-like member, and a concave groove 19 is formed on each of the left and right end surfaces from one end surface to the other end surface.
Next, a method for manufacturing the heat insulation box provided with the divider and the vacuum heat insulation panel as a refrigerator will be described based on the process diagram of FIG.
[0021]
[Method of manufacturing heat insulation box]
First, a vacuum heat insulation panel is affixed to the inner surface of the outer box formed by bending a steel sheet having a design property to which a painted or colored resin sheet is affixed (S-11).
On the other hand, the divider 18 shown in the conceptual diagram of FIG. 1 made of a molded product of expanded polystyrene is provided in a partition that separates the freezer compartment and the refrigerator compartment provided in the same molded product of the inner box, which is a vacuum molded product of the ABS resin sheet. Insert it (S-12). After the inner box is inserted into the outer box and integrated as an outer shell (S-13), a bottom pan that is outside the outer shell and forms the bottom, and a back that is outside the outer shell and forms the back portion. The box is completed by attaching the face plate to the specified position (S-14).
[0022]
Next, the void in the outer shell of the box is filled with foamed urethane, which is a heat insulating material. At this time, the box is cured so that the box is not deformed by the pressure generated during the flow accompanied by foaming of the foamed urethane. The jig temperature is kept at 40-50 ° C. in order to obtain a suitable flow while being inserted and fixed in the tool. For the injection of urethane foam, the injection port can be closed immediately after injecting a predetermined raw material mixture from an injection port provided at an arbitrary position using a quantitative mixing device such as a high-pressure foaming machine. After foaming is started, the filling is completed within 1 minute, and after about 5 to 7 minutes, the curing is completed and a heat insulating layer is formed, so that it can be taken out from the jig (S-15). The obtained heat insulation box is assembled with products to which interior parts and refrigerant circuit components are mounted (S-16), and after making it usable, product inspection is performed to check the quality such as a cooling test (S -17) and the refrigerator is completed (S-18).
[0023]
Here, based on FIG. 3, the filling method of the raw material liquid mixture of urethane foam to the heat insulation wall of the heat insulation box by this invention is demonstrated. In addition, (a) is the enlarged view of the side wall and back part of the heat insulation box of this invention, (b) is the schematic which looked at the heat insulation wall of the heat insulation box of this invention from the back direction.
The divider 18 according to the present invention is formed with concave grooves 19 at both left and right ends, and the divider 18 is provided at a predetermined position of the heat insulating box, for example, at the partition between the freezer compartment and the refrigerator compartment shown in FIG. When arranged, an inlet 24 for the foamed urethane raw material mixture 21 is provided at a position that engages with the concave groove 19 of the back plate 23 constituting the back of the box. In this way, when the raw material mixture 21 of urethane foam is injected from the inlet 24, the raw material mixture 21 is dropped into the heat insulating wall through the concave groove 19, and the drop is the concave groove. According to the depth of 19, it moves away from the vacuum heat insulation panel 12 and moves toward the center of the box.
[0024]
For this reason, even if the raw material mixture 21 of foamed urethane falls with a specific spread according to the injection speed from the mixing head 20, the dropping position of the raw material mixture 21 and the arrangement position of the vacuum heat insulation panel 12 are Almost no interference, and the injected urethane foam raw material mixture 21 flows into an arbitrary liquid pool position of the flange portion 22 positioned below without colliding and adhering to the upper end portion and the side surface portion of the vacuum heat insulating panel 12. become. The liquid pool position is set as the position where the distance required for filling the inside of the outer shell is the shortest during the flow accompanied by foaming of the foamed urethane, and the amount of foamed urethane required for filling and foaming. It is possible to obtain the advantages of reducing the load on partial deformation of the product due to pressure and improving the characteristic distribution of urethane foam.
[0025]
In addition, when the inflow position of the raw material mixed liquid in the flange portion 22 cannot be selected at a suitable position due to the convenience of the arrangement position of the divider 18, it has a structure with appropriate bending in a suitable direction. Just do it. In other words, if the concave groove 19 having a bend toward a suitable position is formed in the divider 18, the inflow position of the raw material mixed liquid 21 moves along it, and can flow into any liquid pool position. .
[0026]
Further, when a plurality of dividers 18 are provided, it is naturally possible to set a plurality of injection ports, so that the inflow position of the raw material mixture 21 can be dispersed over a wider range of the flange portion, and accordingly. It is advantageous in obtaining a preferred form of pouring into an insulated box with a large insulated wall, for example a tall refrigerator.
[0027]
[Application evaluation method and results]
In order to confirm the effectiveness of the present invention, the above-described divider according to the present invention is used, vacuum insulation panels are arranged on the side walls and the ceiling, and urethane foam is injected with the back face up, so that the outer shell (heat insulation wall). The following evaluation was performed using a refrigerator having an internal volume of 230 L manufactured by filling
In the following, the examples are those using the divider of the present invention as shown in FIG. 1, and the comparative examples are those using a conventional divider having no concave grooves.
[0028]
(1) The outer shell is composed of an inner box in which a foamed urethane divider is inserted, and an outer box in which a vacuum heat insulation panel 12 having a thickness of 20 mm is disposed at the position shown in the heat insulation box of FIG. After that, an injection amount slightly smaller than the filling amount calculated from the void volume in the outer shell and the expected density of the urethane foam is inserted into a jig kept at 45 ° C. to prevent deformation due to pressure during foaming. Inject and fill the outer shell of the measure. Thereafter, filling is repeated until the unfilled portion is investigated to obtain a state having a gap of about 50 cc ± 30 cc. The filling amount was determined by adding an excess filling amount of 15% for ensuring a stable molding state with respect to the filling amount into the heat insulation box that was in an appropriate unfilled state.
(2) Characteristic distribution of urethane foam The refrigerator according to the present invention was disassembled, and the distribution state of urethane foam was evaluated by measuring the compressive strength of urethane foam collected from an arbitrary location shown in FIG. The compressive strength was obtained by cutting a sample of 50 × 50 × 10 mm from approximately the center of the collected foamed urethane by cutting and compressing it by applying 10% strain at a speed of 10 mm / min. The maximum stress was obtained.
(3) Appearance design property About the heat insulation wall of this invention, it visually observed about the smoothness of the inner-box side wall in the refrigerator which does not use for sticking of a vacuum heat insulation panel, and comprised only foaming urethane, without using a vacuum heat insulation panel. Evaluation was made in three stages by comparison with the heat insulation wall of the refrigerator using the heat insulation wall.
Table 1 shows the results of (1) to (3).
[0029]
[Table 1]
Figure 0003921580
[0030]
In Table 1, “heaven” is the refrigerator ceiling 51, “F” is the average value of the freezer left side 52 and right side 53, “R” is the average value of the refrigerator left side 54 and right side 55, and “bottom” is the bottom of the refrigerator 58 and "back" are the average values of the back surface of the freezer compartment 56 and the refrigerator compartment 57 on the back surface of the refrigerator (see FIG. 5).
In addition, the evaluation of the appearance represents that ◯ is excellent, Δ is equivalent, and X is inferior.
[0031]
From Table 1, in the case of the heat insulation box by this invention, while the filling amount fell, it has confirmed that it was excellent in the characteristic distribution and external appearance design property of foaming urethane. When disassembling the refrigerator performed to measure the compressive strength, judging the scattering state of the raw material mixture from the foamed urethane foam adhering state in the vicinity of the inlet, in the comparative example using a conventional divider, the upper end of the vacuum heat insulation panel In the embodiment using the divider according to the present invention, there was no trace of such scattering, and the raw material mixed liquid was not scattered. It is presumed that the liquid smoothly flowed into the preferred liquid pool position in the flange portion. That is, in the case of the present invention, it is considered that obstacles disappeared in the flow process of the urethane foam, and the raw material mixture flowed for a short distance.
[0032]
In addition, the concave groove provided in the divider is bent so that it is twisted or bent in any direction of the flange, that is, in the ceiling direction or the bottom direction, thereby adjusting the direction in which the raw material mixture flows into the flange. can do. For example, the flange side position of the concave groove is bent in the bottom direction rather than just below the inlet, so that the raw material mixture is adjusted more in the bottom direction and the center position of the liquid pool is shifted toward the bottom than directly under the inlet. It is possible to adjust the flow distance and direction of the foamed urethane thereafter.
[0033]
On the other hand, in the comparative example, the foamed portion of the adhering raw material mixture and the surface of the inner box in the vicinity are less smooth than the other portions, resulting in a small recess, which adversely affects the appearance design. It was confirmed.
[0034]
In addition, there is a method in which a hole is provided in the divider and the injected urethane foam is guided to the most preferable position with respect to the concave groove shape of the divider described in the embodiment, but in this case, on the inner wall of the hole, The adhering urethane raw material mixture may be partially disturbed in the filling behavior according to the pressure difference between the inside and outside of the hole due to foaming, which may adversely affect the appearance behavior.
[0035]
As described above, according to the present invention, in the method for manufacturing a heat insulating box having a vacuum heat insulating panel disposed on the inner wall of the outer box constituting the outer shell, for the partition in the heat insulating box having a recessed groove at the end. By using a divider, a gap where the raw material mixture does not come into contact with the gap between the groove and the vacuum insulation panel is formed, and the raw material mixture is placed at a position where the gap is most preferable. As a result, it was possible to reduce the filling amount of the raw material mixture, and to obtain a heat insulating box body excellent in the characteristic distribution and appearance design of urethane foam.
[0036]
As described above, the refrigerator has been described as an example. However, the present invention is not limited to this. For example, even if the heat insulating material is composed of only urethane foam, for example, an in-vehicle small refrigerator, a prefabricated simple refrigerator, and a cold car. It can also be applied to urethane foam injection for heat insulation and cold insulation products such as heat insulation materials for pipes and buildings, and various modifications can be made without departing from the scope of the invention.
[0037]
【The invention's effect】
The present invention provides a heat insulating wall in which a vacuum heat insulating panel is arranged between an outer box that forms the outside of the heat insulating box and an inner box that forms the inside of the heat insulating box, and a space formed by the heat insulating wall. In a method for manufacturing a heat insulating box, the end of the divider is provided with a divider to be divided, the end of the divider faces the gap of the heat insulating wall, and the heat insulating material mixture is injected and filled into the gap of the heat insulating wall. Since the heat insulating material mixture liquid is injected from the inlet of the back surface of the heat insulation box provided at a position where it engages with the groove, the raw material mixture is the upper end of the vacuum heat insulation panel. Therefore, it is possible to obtain a heat insulating box that is excellent in heat insulating performance and appearance design by being uniformly filled with a heat insulating material.
[0038]
In addition, by using a divider with a structure in which the concave groove is bent toward the flange that is the liquid pool on the front surface of the heat insulation box, the raw material mixture can be supplied to the position where the filling distance is shortest. A uniform and sufficient filling can be ensured with a small injection amount.
[0039]
Furthermore, by using a divider that has a groove with a groove width larger than that of the nozzle of the mixing head that injects the raw material mixture, and a length that allows the raw material mixture injected from the nozzle to flow into the flange portion, the raw material mixing is performed. The liquid can easily reach the flange part without excessively adhering to the surface of the vacuum heat insulation panel. Therefore, stable diffusion of the raw material mixture in the flange part and subsequent filling with foam can be performed smoothly. It becomes possible.
[Brief description of the drawings]
FIG. 1 is an external view showing an example of a divider used in the present invention.
FIG. 2 is a process diagram showing a method for manufacturing a heat insulating box.
FIG. 3A is a partially enlarged view showing a method of filling a foamed urethane raw material mixture into a heat insulation wall according to the present invention, and FIG. 3B is a schematic view of the heat insulation wall according to the present invention as viewed from the back side.
FIG. 4 is a perspective view showing an arrangement position of a vacuum heat insulation panel in a refrigerator.
FIG. 5 is a development view of each surface constituting the refrigerator showing the position where the urethane foam is collected.
FIG. 6 is a performance comparison diagram of heat insulating materials.
FIG. 7 is a cross-sectional view showing a configuration of a vacuum insulating panel packaging material.
FIG. 8 is a process diagram showing a method for manufacturing a vacuum heat insulating panel.
FIG. 9 is a cross-sectional view showing the internal structure of the vacuum heat insulating panel.
FIG. 10 is a cross-sectional view showing a state in which a vacuum heat insulation panel is disposed on a heat insulation wall constituting the refrigerator.
FIG. 11 is an explanatory view showing a conventional method for filling a foamed urethane raw material mixture into a heat insulating wall.
[Explanation of symbols]
12 vacuum insulation panel, 15 outer box, 16 inner box, 17 urethane foam,
18 Divider, 19 Divider groove of Divider, 21 Raw material mixture of urethane foam,
22 flanges, 23 back plate, 24 inlets.

Claims (3)

断熱箱体の外側を構成する外箱と断熱箱体の内側を構成する内箱との間に真空断熱パネルを配してなる断熱壁と、該断熱壁によって形成される空間を分割するデバイダとを備え、該デバイダの端部が前記断熱壁の間隙に面し、前記断熱壁の間隙に断熱材原料混合液を注入して前記断熱壁を充填する断熱箱体の製造方法において、
前記デバイダの端部に凹溝を設け、この凹溝に係合する位置に設けた断熱箱体の背面の注入口から、前記断熱材原料混合液を注入することを特徴とする断熱箱体の製造方法。
A heat insulating wall in which a vacuum heat insulating panel is arranged between an outer box that forms the outside of the heat insulating box and an inner box that forms the inside of the heat insulating box, and a divider that divides the space formed by the heat insulating wall; In the manufacturing method of the heat insulation box body, the end of the divider faces the gap between the heat insulation walls, and the heat insulation material mixture is injected into the gap between the heat insulation walls to fill the heat insulation wall.
A heat insulating box body is characterized in that a concave groove is provided at an end portion of the divider, and the heat insulating material mixture is injected from an inlet on the back surface of the heat insulating box body provided at a position engaging with the concave groove. Production method.
前記凹溝が、前記断熱箱体の前面のフランジ部へ向かって曲折した構造を備えたデバイダを用いることを特徴とする請求項1記載の断熱箱体の製造方法。The method for manufacturing a heat insulation box according to claim 1, wherein a divider having a structure in which the concave groove is bent toward a flange portion on a front surface of the heat insulation box is used. 前記凹溝が、前記原料混合液を注入するミキシングヘッドのノズルよりも大きな溝幅を備え、かつ前記ノズルから注入された前記原料混合液を前記フランジ部に流入させる長さを備えたデバイダを用いることを特徴とする請求項1又は2記載の断熱箱体の製造方法。A divider having a groove width larger than the nozzle of the mixing head for injecting the raw material mixture and a length for allowing the raw material mixture injected from the nozzle to flow into the flange portion is used. The manufacturing method of the heat insulation box of Claim 1 or 2 characterized by the above-mentioned.
JP30379398A 1998-10-26 1998-10-26 Manufacturing method of heat insulation box Expired - Lifetime JP3921580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30379398A JP3921580B2 (en) 1998-10-26 1998-10-26 Manufacturing method of heat insulation box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30379398A JP3921580B2 (en) 1998-10-26 1998-10-26 Manufacturing method of heat insulation box

Publications (2)

Publication Number Publication Date
JP2000128256A JP2000128256A (en) 2000-05-09
JP3921580B2 true JP3921580B2 (en) 2007-05-30

Family

ID=17925372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30379398A Expired - Lifetime JP3921580B2 (en) 1998-10-26 1998-10-26 Manufacturing method of heat insulation box

Country Status (1)

Country Link
JP (1) JP3921580B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105953509A (en) * 2016-05-03 2016-09-21 青岛海尔股份有限公司 Refrigerator and shell assembly used for refrigerator

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6598283B2 (en) 2001-12-21 2003-07-29 Cabot Corporation Method of preparing aerogel-containing insulation article
KR100533397B1 (en) * 2002-02-22 2005-12-02 대우조선해양 주식회사 A manufacturing process of a thermal insulation box for a LNG ship
JP5661175B2 (en) * 2011-08-31 2015-01-28 パナソニックIpマネジメント株式会社 Refrigerator and vacuum insulation for refrigerator
JP2014219172A (en) * 2013-05-10 2014-11-20 株式会社東芝 Refrigerator
JP6093656B2 (en) * 2013-06-11 2017-03-08 日立アプライアンス株式会社 refrigerator
JP2019207102A (en) * 2019-09-04 2019-12-05 東芝ライフスタイル株式会社 Heat insulation box body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105953509A (en) * 2016-05-03 2016-09-21 青岛海尔股份有限公司 Refrigerator and shell assembly used for refrigerator
CN105953509B (en) * 2016-05-03 2018-07-13 青岛海尔股份有限公司 Refrigerator and casing assembly for refrigerator

Also Published As

Publication number Publication date
JP2000128256A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
US20170268715A1 (en) Heat-insulating wall, heat-insulating box and method for producing the same
US6464313B2 (en) Full vacuum heat insulation box body and method for producing and disassembling the same
EP1510747B1 (en) Vacuum thermal insulating material, process for producing the same and refrigerator including the same
KR100620025B1 (en) Adiabatic structure of refrigerator cabinet using micro hollow sphere
CN104662355B (en) Pressure vessel and production method therefor
US8881398B2 (en) Method and apparatus for insulating a refrigeration appliance
JP2011196644A (en) Heat insulation box, method of manufacturing heat insulation box, and refrigerator-freezer
JP3921580B2 (en) Manufacturing method of heat insulation box
JPH0814733A (en) Refrigerator
WO2007037125A1 (en) Casing structure of refrigerating device and sealing method for the casing
JP2011241988A (en) Heat insulation box and refrigerator
JP2013249973A (en) Refrigerator
CN109863343A (en) Vacuum heat insulator and the heat-insulated container and thermal wall for using it
JP2000304428A (en) Heat insulation box body
JP3820538B2 (en) Manufacturing method of heat insulation box
JP3874046B2 (en) Heat insulation box
JP4273466B2 (en) Vacuum insulation panel, method for manufacturing the same, and refrigerator using this vacuum insulation panel
JP3890718B2 (en) Vacuum heat insulating panel, vacuum heat insulating panel manufacturing method, heat insulating box, heat insulating box manufacturing method, and refrigerator
JP2020020431A (en) Vacuum heat insulating body, and heat insulating container and heat insulating wall using the same
JPH11304082A (en) Heat insulating box and its manufacture
JP4782166B2 (en) Manufacturing method of heat insulation box
JPS6117343Y2 (en)
WO2019117061A1 (en) Refrigerator and method for manufacturing same
EP3284995A1 (en) Vacuum heat insulator, and heat-insulating container and heat-insulating wall using same
JP2000283643A (en) Vacuum heat insulation panel and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term