JP3820538B2 - Manufacturing method of heat insulation box - Google Patents

Manufacturing method of heat insulation box Download PDF

Info

Publication number
JP3820538B2
JP3820538B2 JP30379298A JP30379298A JP3820538B2 JP 3820538 B2 JP3820538 B2 JP 3820538B2 JP 30379298 A JP30379298 A JP 30379298A JP 30379298 A JP30379298 A JP 30379298A JP 3820538 B2 JP3820538 B2 JP 3820538B2
Authority
JP
Japan
Prior art keywords
heat insulation
outer shell
insulation panel
heat insulating
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30379298A
Other languages
Japanese (ja)
Other versions
JP2000130922A (en
Inventor
芳夫 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP30379298A priority Critical patent/JP3820538B2/en
Publication of JP2000130922A publication Critical patent/JP2000130922A/en
Application granted granted Critical
Publication of JP3820538B2 publication Critical patent/JP3820538B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、冷蔵庫などの断熱箱体に係り、さらに詳しくは、壁面が金属製薄板や樹脂成型品などで構成される外殻内に、内部に構造材を有して真空が維持されて成る真空断熱パネルを備えた断熱壁の成形方法に関するものである。
【0002】
【従来の技術】
消費電力の低減が求められている冷蔵庫などでは、断熱材である発泡ウレタンに対する断熱性能向上が限界にあることから、図8の比較図で示す如く、発泡ウレタンの2倍以上の断熱性能が得られる真空断熱パネルを応用する技術が提案されている。例えば、特開昭60−243471号公報ではPUF粉砕品を合成樹脂袋に投入してボード状に真空パックしたものを壁内に配設した断熱箱体が、また、特開昭60−60483号公報では側板のフランジ側にPUFが流動する隙間を設けた真空断熱パネルを冷蔵庫の側壁に設置することが、それぞれ提案されている。
【0003】
以上の提案をはじめとする真空断熱パネルは、図9に示す構造を有して成る。
つまり、繊維や粒子の集合物または連続気泡を有する発泡体などの多孔質な構造を有する芯材2を袋状の包装材3に挿入して、内部は優れた断熱性を発現させるために高真空状態を確保している。このとき、真空断熱パネル1の内部に外気からのガス侵入を遮断または抑制して断熱性を維持する目的のために、包装材3には金属薄膜層を併用し、また挿入口を完全に封止するために優れた溶着性を有する材料をシール層に用い、さらに冷蔵庫の箱体では壁の曲げ強度を確保する為に発泡ウレタンとの接着を安定して確保できる材料を表面層に用いている。この結果、包装材3として満足する特性を得るためにはこれらの異なった材料を積層した多層シートが用いられている。
また、包装材3のピンホールなどの欠陥部や端辺に露出して構成されて成るシール層などから、わずかずつ侵入する空気などのガスについては、それらガスを吸着するゲッター剤4を内部に配して高真空状態が維持できるように構成されている。
【0004】
一方、真空断熱パネルの断熱性能に最も大きく影響する芯材2には、熱が伝達し難い物質を用いること、材料間の接触面積を少なくすることによって物質内を伝達する熱量を抑制すること、更に空隙を小さくすることによって輻射伝熱を抑制することが有効である。この様な条件を満たす物質として、樹脂やガラスなどの多孔体が多く用いられ、特に、ガラス繊維のマットや連続気泡を有する樹脂発泡体のボード、あるいは樹脂や無機物の微粒子の成型品を適用することが好ましい。例えば、特開昭60−71881号公報ではパーライト粉末、特開昭60−243471号公報ではPUF粉砕品を、各々、合成樹脂袋に投入してボード状に真空パックしたものが提案されている。この他、特開昭60−205164号公報では連通気泡の硬質ウレタンフォームを、特開平4−218540号公報では熱可塑性ウレタン樹脂の粉体を焼結させた板状成形品を、さらに特開平7−96580号公報ではガラスの長繊維を無機微粉末にフィビリル化した樹脂繊維により固化保持したボードを、各々、真空断熱パネルのコア材として応用することが提案されている。
【0005】
これらに開示された方法による真空断熱パネルの形状は平板状で、図10に示すような工程により製造される。まず、一枚のシートを中央で折り曲げて合わせた左右側辺部をシールするか、または二枚のシートを重ねて三方をシールをして袋状に成形した包装材3に芯材2を挿入する(S−1)。続いて、この芯材2が挿入された包装材3を、真空包装機5にあるシール用加圧装置6の先端にある融着ヒータ7間に、残りの開口部である端辺8を挟み込むようにして固定する(S−2)。次に、真空包装機5の内部を1torr以下、好ましくは10-2torr以下の真空状態を維持しつつ、熱板を閉じ加熱することによって包装材3の合わせ面である内装を構成する高密度ポリエチレンなどの熱可塑性樹脂を溶融、溶着して、端辺8のシールを行う(Sー3)。最後に、真空包装機5の真空状態を解除して、真空断熱パネル1を取り出す(Sー4)。
【0006】
次に、この真空断熱パネルを用いた断熱箱体の製造方法を、図11に示した工程図に基づいて説明する。まず、断熱箱体の外側を構成する外箱の任意の位置に両面テープなどを用いて真空断熱パネルを固定配設する(S−11)。続いて、この外箱に、断熱箱体の内側を構成する内箱を挿入して勘合させることによって、断熱箱体の外殻箱体を完成させる(S−12)。外殻箱体には、その他必要な部材が組み込まれる(Sー13)。次に、この外殻箱体を、その背面が上側にある状態で発泡ウレタンの発泡圧による変形防止を目的として治具に固定し、上になった背面板上にあって外殻箱体の左右の側壁上に位置する注入口から、外殻箱体の前面にある開口部の左右側壁面のフランジ部分に向かって発泡ウレタンの原料液を落下させて注入する。発泡ウレタンは数秒後に発泡を開始して泡状で外殻内の間隙内を流動し、間隙を充填する。発泡ウレタンを構成する樹脂の硬化が完了したならば、断熱層が形成されているので、これを治具から取り出して、断熱箱体を得る(S−14)。
【0007】
取り出した断熱箱体に、棚や意匠パネルなどの内装部品および冷却器などの冷媒回路部品を装着する製品組立を行い(S−15)、さらに、規程の冷却性能の発現を確認するなどの製品検査を行って(S−16)、製品として断熱箱体を完成させる(S−17)。
【0008】
以上の如くの提案をはじめとする真空断熱パネルの形状は、厚さが10〜30mmの板状であり、冷蔵庫の壁に組み込んだ状態で用いられる。つまり、真空断熱パネルを貼り付けた外箱に内箱を挿入して合体させた後、発泡ウレタンなどの発泡樹脂の原料混合液を注入して発泡成型させることによって断熱壁を形成する。このため、冷蔵庫の場合、変形などにより意匠性を損なうことがないように、真空断熱パネルを配設した外殻内の空隙を埋める発泡ウレタンを隙間なく充填する際に、真空断熱パネルは棚受けなどの凹凸を有する内箱に配設するよりも、外箱面に接着剤などを用いて固定する方法が多く用いられている。
【0009】
しかし、発泡ウレタンなどの発泡樹脂を、真空断熱パネルを配設した外殻内の狭い間隙内に発泡しながら流動させることによって完全に充填させることは、非常に困難を伴い、発泡に寄与するガスが膨張するときに高い圧力を発現させる条件下で発泡させることが必要となる。従って、発泡に寄与するガスの量を多くすることによって、発泡時の高いガス膨張圧力は得られる。しかし、この一般的な手段によって発泡樹脂の完全な充填を達成するには、過剰な発泡樹脂の原料混合液または発泡ガスが外殻内に投入されることになるので、外殻から発泡樹脂が洩れたり、発泡治具から脱型したときに外殻の変形量が大きくなるなどの問題が生じる。
【0010】
さらに、真空断熱パネルを備えたことにより、外殻内の間隙が非常に狭くなるため、背面を上にして外殻内の空隙に発泡ウレタンの原料混合液を落下させて注入する方法では、外箱面または真空断熱パネル表面に原料混合液が付着することが避けられない。このことは、その後に、断熱壁のフランジ面に滞留した原料混合液が発泡を伴って上昇しながら充填するとき、上方の側壁に付着して発泡した発泡ウレタンによってその充填が阻害されて適正な充填形態を確保できないばかりか、ボイドなどの空隙を断熱壁内に残す場合もある。
【0011】
この為、特開昭59−9482号公報や特開平8−61837号公報において、冷蔵庫などの薄い断熱壁に発泡ウレタンを充填する方法として、断熱箱体の前面開口部側と対向する背面を下にして、断熱箱体の背面または側面や底面などの外周面から発泡ウレタンの原料混合液を注入する方法が提案されている。
特開昭59−9482号公報によれば、図12に示すように、内箱9と外箱10で構成された断熱箱体の外殻における底部に設けた注入口11に発泡ウレタン12の原料混合機であるスプレーノズル13から原料混合液14をスプレー状に散布することにより、背面外周にある断熱壁を充填するだけなので発泡の距離が短くでき、発泡ウレタン12の充填を容易に出来る。
一方、特開平8−61837号公報によれば、図13に示すように、真空断熱パネル1を配設した外箱10下部にある背面板15との空隙内に原液分岐部材16を備えた注入口11を設けることで、原液を各方向に良好に流すことができ、ひいては残りの空隙への発泡ウレタン12の充填に要する距離を短くできて、充填性に優れる。
【0012】
【発明が解決しようとする課題】
しかし、これらの発泡方法を、少なくとも真空断熱パネルが背面に搭載して成る断熱箱体に応用するには問題がある。例えば、スプレー状に背面に発泡ウレタンの原料混合液を散布するのは、背面を上にして上方から原料混合液を落下させた場合と同様、背面の壁内に原料混合液が付着して均一に散布できず、その後の発泡に伴う流動において、経路の途中に原料混合液の付着物の発泡途中または完了したものの形成物によって適正な充填を阻害するという問題を発生させる。
【0013】
また、原液分岐部材を備えた注入口から原料混合液を背面と外周面の交差線上に向けて吐出する方法を応用すれば、ある程度の勢いを持って吐出された場合には原料混合液の先端部分での滞留が多くなり、そこを起点とした広がりを有して充填されるが、勢いが無く吐出された場合には注入口近傍に多くの原料混合液が滞留する。つまり、多くの場合、左右の側壁直下の背面部から上下の2方向に向かって吐出された4点に多くの原料混合液が滞留するので、その対向する交点に発泡ウレタンの充填に伴う広がりが合流すると、壁内の空気が逃げ場の無い状態で残留して空気溜りを発生して密封され、それが未充填部分を形成するという不具合を発生させる。
【0014】
一方、背面板に配設された真空断熱パネルは、背面板との間にわずかながらも隙間を有することがあり、その場合には原料混合液がその隙間に侵入した後、真空断熱パネルを剥離するように発泡して膨張するので、発泡ウレタンの充填が完了した断熱箱体の外観には、発泡ウレタンが侵入した境界部分に線上の痕跡が現れて、意匠性を損なうという不具合を生ずることもある。
【0015】
本発明は上記課題を解決するためになされたものであり、真空断熱パネルを配設して狭くなった断熱箱体の断熱壁に対し、壁内の充填を阻害する不用意な原料混合液の付着部を形成すること無く、しかも流動の距離を短くして充填が容易な発泡断熱材原料混合液の注入方法を提供することを目的とする。
【0016】
【課題を解決するための手段】
この発明に係る断熱箱体の製造方法は、断熱壁を構成する外殻の内部の空隙に発泡断熱材の原料混合液を注入して前記空隙を充填する断熱箱体の製造方法において、前記外殻の背面にある背面板に真空断熱パネルを固定し、前記真空断熱パネルの厚み面部と、前記外殻の側部にある前記外殻の外側板と、前記背面板とにより構成される溝に、前記背面を下側にした状態で、前記発泡断熱材の原料混合液を前記背面側から前記外殻内へ注入するようにしたものである。
【0017】
また、真空断熱パネルの厚み面部と前記外側板との間隙が、前記外殻による側壁の直下に位置するようにしたものである。
【0018】
また、真空断熱パネルの厚み面部と前記外側板との間隙が、前記外殻による側壁の厚さに相当する幅を有するようにしたものである。
【0019】
また、前記発泡断熱材の原料混合液の注入部を、前記断熱箱体の室内を分割するデバイダに設けるようにしたものである。
【0020】
また、注入された原料混合液を前記溝の走る方向と前記真空断熱パネルの表面上とに吐出する複数の吐出口を前記デバイダに設けるようにしたものである。
【0021】
さらに、前記デバイダを、前記真空断熱パネルの端辺を押圧して該真空断熱パネルを前記背面板に固定するように配設したものである。
【0022】
【発明の実施の形態】
実施の形態1.
本発明の好ましい態様を、図1〜図5を基に詳細を説明する。
【0023】
図1は、本発明による断熱箱体の側壁内部を示す斜視図である。断熱箱体30はその周囲が断熱壁を構成する外殻31で囲まれており、外殻31はその外側を構成する金属製薄板などからなる外箱32と、ABS樹脂などの樹脂成型品からなる内箱33とから構成される。そして、外殻31背面の背面板15と、外殻31の左右側部を構成する外箱32の側板17には、真空断熱パネル1が固定されている。また、背面板15の中央付近には、内箱33を冷凍室34と冷蔵室35とに区画するデバイダ19が挿入され、その一部によって真空断熱パネル1の端辺20が押圧されて背面板15に密着させられている。このとき、背面板15に配設した真空断熱パネル1は、密着性を高める点から背面板15に対して凸状のわずかなソリを有していることが好ましい。
図2には、側板17及び背面板15の近傍におけるデバイダ19の端部(図1のA部)断面図を示した。デバイダ19の端部は、発泡ウレタンの原料混合液を外殻31内部に注入するための注入部21を兼ねるように形成されている。すなわち、背面板15に設けられた注入口15aからミキシングヘッド22のノズル23が挿入されて、発泡ウレタンの原料混合液が噴射されると、その混合液は注入部21に設けた箱体高さ方向へ向いた吐出口24aと箱体幅方向へ向いた吐出口24bを介して、断熱箱体の垂直と水平方向に送られる。
【0024】
発泡ウレタンの原料混合液は、イソシアネート液とプレミックス液が混合されたものである。イソシアネート液とプレミックス液は個別のタンクに納められており、個々のタンクからは個別の高圧ポンプと経路を経てミキシングヘッド22に送液される。ミキシングヘッド22にはニードルバルブに近接したオリフィスが備えられており、このオリフィスを経て両液が対向して高圧で衝突することによって瞬時に混合できる。この混合方法によれば、常温でガス状を呈する発泡剤を含んでいても、短時間の気化に伴う微小気泡が生成するよりも短い時間でノズル内に滞留するから、微小気泡を破壊するのを防止できる。さらに、均一で良好な混合状態を得るにはオリフィスから吐出する高圧が必要であるが、80kg/cm 2 以上、好ましくは120〜140kg/cm 2 の吐出圧力を発生させる、例えばピストンシリンダーやアキシャルプランジャー型の定量ポンプを用いれば問題はない。この高圧での衝突混合方法は、吐出の方向が如何にあっても、混合の程度に影響することがないので、好適に用いることができる。
【0025】
デバイダ19に形成された注入部21には、図2の断面図に示すように、発泡ウレタンの原料混合液の吐出口24a、24bが複数の方向に向かって開口している。図3の断熱箱体背面部の構成図に示す如く、最も外側にあって互いに反対方向を向いている左右の注入部21については、真空断熱パネル1の端辺20と側板17の間隙に原料混合液を流出させる役割を担うように吐出口24aの開口方向が調整されている。残りの複数箇所にある吐出口24bは、背面板15上に配設された真空断熱パネル1の表面上に原料混合液を流出させる役割を担うように開口方向が調整されている。
【0026】
次に、図4に示す冷蔵庫としての断熱箱体に関する縦断面図、および図5の外殻の側部及び背面部付近の概念図に基づいて、発泡ウレタン12の充填過程を詳述する。
原料混合液は、デバイダ19の注入部21にある吐出口24aから真空断熱パネル1の厚み面部1a、側板17、および背面板15で構成される溝26の中に吐出された後、冷蔵庫の高さ方向に走るこの溝26に沿って広がる。一方、残りの複数箇所にある吐出口24bから背面板15の上に配設した真空断熱パネル1の表面上1bにある背面部の中央付近を中心とする比較的広い面積に広がる。その後、発泡が開始されて、外殻31内の残りの空隙を充填することになるが、このとき、背面にある真空断熱パネル1の表面上1bに散布された原料混合液が背面部の中央付近から外側に泡となって広がるが、高さ方向への空隙を残した早い時点での状態にあるから、壁内の空気が逃げ場の無い状態には至らずに、一体となって外周方向へと広がっていく。以上のようにして、発泡ウレタン12は外殻31内の残りの空隙を充填する。このとき、一方の側板17に沿って形成された溝26内に広がった泡が主に上方へと伸びるのに対して、背面部に散布されて充填しつつある泡との合流は、天井部または底部に近い位置で流動の方向が一致しているために、これも壁内の空気が逃げ場の無い状態に陥ることがなく、従ってボイドなどの空隙を発生させることがない。
【0027】
ここで、側板17に沿って流入した原料混合液が、外殻31により構成される左右の断熱壁内部の空隙を充填するとき、その充填に必要な原料混合液の量は、真空断熱パネル1の端辺20上を含む厚み面部1aと側板17と背面板15とにより構成された溝に納められて、側壁直下から他の領域に流出すること無しに拡散する。つまり、注入された原料混合液が拡散した後の泡状体で流動する距離は、基本的に、背面部では背面板15に配設された真空断熱パネル1上を、側板17に沿って流入したものは側壁を流れ、これら両液の合流点にある冷蔵庫の上下方向では、天井部と底部に各々が最短の流動距離を経て外殻内を充填することになるので、原料混合液は容易に狭い間隙をも通過することができる。
【0028】
【実施例】
本発明による断熱箱体への充填性と外観の意匠性についての向上効果を確認するために、実機における発泡ウレタンの充填量、および外殻壁面の平滑性に基づく意匠性について、本発明の実施例を用いて評価した。内容積が230Lの冷凍冷蔵庫で、断熱壁の厚さが約45mmである断熱箱体の背面板および側板に、厚さが20mmの真空断熱パネルを幅が10mmの両面テープで固定して配設した外殻を形成し、その背面を下にして50℃に保温した発泡治具に格納して固定した後、発泡ウレタンの原料混合液を注入し充填させ断熱箱体を製作した。このときの真空断熱パネルの配設条件は、側板と真空断熱パネルとの間隙量(特に、側板と真空断熱パネルの厚み面部との間の間隙量)およびデバイダによる押圧の有無であり、本実施例は、以下の表1に示したように、本発明に規定する内容に基づいて製作したものである。
【0029】
[比較例]
先の実施例と同様、内容積が230Lの冷凍冷蔵庫であり、断熱箱体の背面板および側板に真空断熱パネルを両面テープで固定して配設したものを用い、断熱箱体の背面を下にした状態で発泡治具内に収納して固定後、発泡ウレタンを充填して断熱箱体を製作した。このときの真空断熱パネルを配設条件としては、側板と真空断熱パネルとの間に間隙を設けないもの(比較例1)、その間隙を幅の広い状態で設けたもの(比較例2)、デバイダで真空断熱パネルの端辺を押圧しないもの(比較例3)の3つであり、これらの条件による比較例1〜3の詳細を、表1に実施例と併記して示した。
【0030】
【表1】

Figure 0003820538
【0031】
次に、評価方法について説明する。
(1)断熱箱体への充填性
本実施例および比較例に供した冷蔵庫における発泡ウレタンの最少充填量を求めた。これらの断熱箱体の製造は図10に示す工程図に従って行ったが、原料混合液の注入量は、真空断熱パネルを配設した外殻内の空隙容積と発泡ウレタンの予想密度から算出した注入量を投入して充填状況の過不足を調整し、必要に応じて再度の注入による充填状況の確認を繰り返しながら、10〜50ccのわずかな空隙が残る程度の充填状況に達した注入量を基準として求めた。
【0032】
(2)外観の意匠性
本実施例および比較例に供した冷蔵庫について、外殻壁面の平滑性に基づく意匠性を評価した。具体的には、背面部分を中心とする断熱箱体の外箱の平滑性を、目視にて評価した。背面に発泡ウレタンのみを断熱材として用いている従来の冷蔵庫の外観と比較して、劣っている場合には×、同等の場合には△、優れている場合には○にて示した。
上記(1)、(2)の評価結果は、以下の表2に示した。
【0033】
【表2】
Figure 0003820538
【0034】
(3)発泡ウレタンの特性分布
実施例および比較例の各冷蔵庫を解体して、図6に示す冷蔵庫の任意の場所から採取した発泡ウレタンのコア部分における見掛けの密度を測定することによって、その分布状態を評価した。密度は、採取した発泡ウレタンのほぼ中央付近から、50×50×10mmの大きさに裁断した試料の重量を求め、さらに、その各辺の寸法をノギスを用いて測定して求めた見掛けの体積で除することによって求めた。その評価結果は、以下の表3に示した。
【0035】
【表3】
Figure 0003820538
【0036】
なお、表3中の「天」は図6の天井51、「F」は図6の冷凍室左面52と右面53の平均値、「R」は図6の冷蔵室左面54と右面55の平均値、「底」は図6の底面58、「背」は図6の冷凍室背面56と冷蔵室背面57の平均値を示す。
【0037】
表2によれば、本発明による断熱箱体である実施例における発泡ウレタンの最少充填量が4. 7kgであったのに対し、外殻の側板と真空断熱パネルの間隙を設けない比較例1では5. 2kg、側板と真空断熱パネルとの間隙をかなり広く設けた比較例2では5. 5kg、真空断熱パネルをデバイダで押圧しない比較例3では5. 3kgと、発泡ウレタンの流入量は何れの比較例も本実施例より多く必要であった。これらの断熱箱体における密度分布の測定結果を比較すれば、本発明による実施例に対し、何れの比較例においても分布量の差が大きく、最大と最少の差異は表3から読みとれるように、実施例1では1. 2kg/ m3 であるのに対し、比較例1では2. 4kg/ m3 、比較例2では2. 9kg/ m3 であった。
【0038】
また、表3に示すように、冷蔵庫を構成する各壁面の密度分布は、本実施例に比べて比較例1、2で高くなった。これは、比較例1では注入部周辺にある背面中央部に発泡ウレタンの原料混合液が滞留したこと、比較例2では外殻の側板と真空断熱パネルの間隙が広すぎることによって箱体の高さ方向への原料混合液の充分な拡散が得られなかったことに起因して発泡による充填のための流動距離が長くなりすぎて背面部分に発泡時の圧力が上昇するとともに、最終充填部分の密度が上昇したことによる。これに対し、実施例では、発泡ウレタンの原料混合液を注入した後の発泡ウレタンが外殻内を充填する態様として、最短の流動距離を有して発泡時に局部的な圧力を受けることが無いので、均一な密度分布を得て、より少ない注入量で充填できるものと推測できる。
【0039】
また、表2に示すように、外殻壁面の平滑性に基づく意匠性は、本実施例では従来のものに比べ優れていたのに対して、比較例1〜3では従来のものと同等かそれより劣る結果となった。
発泡ウレタンの成形金型から脱型した直後の発泡圧力の開放挙動、温度変化や発泡ガスの飛散に伴う内圧変化などに応答してもたらされる膨張または収縮量は、断熱壁の密度分布に基づいた差異を有して分布する。この膨張または収縮量が凹凸となって外殻壁面の意匠性を損なうことになるので、表3にて示した密度の分布に対応して、従来の注入方法である比較例に比べて密度分布が小さい本実施例の意匠性が優れた結果になったと推測する。
【0040】
また、本発明の実施例に対して、デバイダで真空断熱パネルを押圧しない比較例3の最少充填量が増加したことに関しては、背面板と真空断熱パネルの間隙に多くの発泡ウレタンの流入が確認できたことから、背面板から真空断熱パネルが剥離して浮き上がり、そこに発泡ウレタンが流入した結果、外観の悪化と充填量の増加を来したものと思われる。
【0041】
本実施例では、背面板に設けた真空断熱パネルの端辺をデバイダで押圧して、背面板と真空断熱パネルの間に発泡ウレタンの流入を防止した態様のみを述べたが、側壁面に配設した真空断熱パネルについても同様に対処することができる。例えば、図7に示すように、背面板15と側板17とのそれぞれに固定された真空断熱パネル1の端辺を、デバイダ19の注入部21で押圧することは、背面板15や側板17と真空断熱パネル1との接触面間に発泡ウレタンの流入を防止するために、特に有効である。
【0042】
以上、ここでは冷蔵庫を例に説明したが、本発明はこれに限定されるものではなく、例えば、車載用小型冷蔵庫やプレハブ式簡易冷蔵庫、保冷車やパイプや建築物の保温材など、保温および保冷用製品の断熱用部品としての応用も可能であり、その要旨を脱し得ない範囲で種々変形して実施することができる。
【0043】
【発明の効果】
この発明の第1の態様に係る断熱箱体の製造方法によれば、断熱壁を構成する外殻の内部の空隙に発泡断熱材の原料混合液を注入して空隙を充填する断熱箱体の製造方法において、外殻の背面にある背面板に真空断熱パネルを固定し、真空断熱パネルの厚み面部と、外殻の側部にある外殻の外側板と、背面板とにより構成される溝に、背面を下側にした状態で、発泡断熱材の原料混合液を背面側から外殻内へ注入するため、注入した発泡断熱材の原料混合液が溝に沿って効率よく流動して拡散でき、その後の発泡を伴う充填に要する距離が短縮されて、均一な充填が達成される。
【0044】
この発明の第2の態様に係る断熱箱体の製造方法によれば、真空断熱パネルの厚み面部と外側板との間隙が、外殻により構成される側壁の直下に位置するため、注入した発泡断熱材の原料混合液の拡散位置が充填の端部である側壁直下になり、外殻内への発泡断熱材の充填を容易に行うことが出来る。
【0045】
この発明の第3の態様に係る断熱箱体の製造方法によれば、真空断熱パネルの厚み面部と外側板との間隙が、外殻により構成される側壁の厚さに相当する幅を有するため、間隙内に滞留した発泡断熱材の原料混合液が速やかに流れて効率よく拡散することが出来る。
【0046】
この発明の第4の態様に係る断熱箱体の製造方法によれば、発泡断熱材の原料混合液の注入部を、断熱箱体の室内を分割するデバイダに設けたので、別途部品を設けることなしに、効率よく発泡断熱材の原料混合液を滞留させることがことが出来る。
【0047】
この発明の第5の態様に係る断熱箱体の製造方法によれば、注入された原料混合液を溝の走る方向と真空断熱パネルの表面上とに吐出する複数の吐出口をデバイダに設けたので、効率よく所望する位置に発泡断熱材の原料混合液を送ることが出来る。
【0048】
この発明の第6の態様に係る断熱箱体の製造方法によれば、デバイダが真空断熱パネルの端辺を押圧して背面板に固定するようにしたので、注入した発泡断熱材の原料混合液が外殻面と真空断熱パネルの間隙に流入するのを抑制するとともに、たとえ流入しても発泡による凸状の変形を抑止でき、外観意匠性に優れた断熱箱体を得ることが可能となる。
【図面の簡単な説明】
【図1】 本発明による断熱箱体の側壁内部を示す斜視図である。
【図2】 本発明による側板及び背面板の近傍におけるデバイダの端部断面図である。
【図3】 本発明による断熱箱体の背面部の構成図である。
【図4】 本発明による断熱箱体の断熱壁構造を示す断面図である。
【図5】 本発明による溝を示す外殻の側部及び背面部付近の概念図である。
【図6】 発泡ウレタンを採取した位置を示す冷蔵庫を構成する各面の展開図である。
【図7】 真空断熱パネルとデバイダの配置関係を示す概念図である。
【図8】 断熱材の性能比較図である。
【図9】 真空断熱パネルの内部構造を示す断面図である。
【図10】 真空断熱パネルの製造方法を示す工程図である。
【図11】 断熱箱体の製造方法を示す工程図である。
【図12】 発泡断熱材の原料混合液を背面から注入する従来方法を示す断面図である。
【図13】 発泡断熱材の原料混合液を背面から注入する別の従来方法を示す断面図である。
【符号の説明】
1 真空断熱パネル、12 発泡ウレタン、15 背面板、17 側板、19デバイダ、21 注入部、24a、24b 吐出口、26 溝、30 断熱箱体、31 外殻、32 外箱、33 内箱。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat insulating box such as a refrigerator. More specifically, the inner wall has a structural material inside a shell formed of a metal thin plate or a resin molded product, and a vacuum is maintained. The present invention relates to a method for forming a heat insulating wall provided with a vacuum heat insulating panel.
[0002]
[Prior art]
In refrigerators and the like where reduction of power consumption is required, since the improvement of heat insulation performance with respect to foamed urethane, which is a heat insulating material, is the limit, as shown in the comparison diagram of FIG. A technique for applying a vacuum insulation panel is proposed. For example, in Japanese Patent Laid-Open No. 60-243471, a heat insulating box body in which a PUF pulverized product is put into a synthetic resin bag and vacuum-packed in a board shape is disposed in a wall, or Japanese Patent Laid-Open No. 60-60483. In the gazette, it is proposed that a vacuum heat insulation panel provided with a gap through which the PUF flows on the flange side of the side plate is installed on the side wall of the refrigerator.
[0003]
The vacuum insulation panel including the above proposal has a structure shown in FIG.
That is, the core material 2 having a porous structure such as an aggregate of fibers and particles or a foam having open cells is inserted into the bag-shaped packaging material 3, and the inside is high in order to exhibit excellent heat insulation. A vacuum state is secured. At this time, a metal thin film layer is used in the packaging material 3 and the insertion port is completely sealed for the purpose of maintaining heat insulation by blocking or suppressing gas intrusion from outside air into the vacuum heat insulation panel 1. In order to secure the bending strength of the wall in the refrigerator box, a material that can stably secure adhesion with urethane foam is used for the surface layer. Yes. As a result, in order to obtain satisfactory characteristics as the packaging material 3, a multilayer sheet in which these different materials are laminated is used.
In addition, with respect to gases such as air that invade little by little from defective parts such as pinholes of the packaging material 3 and exposed end edges, the getter agent 4 that adsorbs these gases is placed inside. Arranged so that a high vacuum state can be maintained.
[0004]
On the other hand, the core material 2 that has the greatest influence on the heat insulation performance of the vacuum heat insulation panel uses a substance that is difficult to transfer heat, and suppresses the amount of heat transmitted through the substance by reducing the contact area between the materials. Further, it is effective to suppress radiant heat transfer by reducing the gap. A porous material such as a resin or glass is often used as a material satisfying such conditions, and in particular, a glass fiber mat, a resin foam board having open cells, or a molded product of resin or inorganic fine particles is applied. It is preferable. For example, Japanese Laid-Open Patent Publication No. 60-71881 proposes a pearlite powder, and Japanese Laid-Open Patent Publication No. 60-243471, in which a PUF pulverized product is put into a synthetic resin bag and vacuum packed into a board shape. In addition, JP-A-60-205164 discloses an open-cell rigid urethane foam, JP-A-4-218540 discloses a plate-like molded product obtained by sintering a powder of thermoplastic urethane resin, In -96580, it is proposed to apply a board in which glass long fibers are solidified and held by resin fibers fibrillated into inorganic fine powders, respectively, as a core material of a vacuum heat insulating panel.
[0005]
The shape of the vacuum heat insulation panel by the method disclosed by these is flat form, and is manufactured by the process as shown in FIG. First, the core 2 is inserted into a packaging material 3 that is formed by folding one sheet at the center and sealing the left and right sides or by stacking two sheets and sealing three sides to form a bag. (S-1). Subsequently, the packaging material 3 in which the core material 2 is inserted is sandwiched between the fusion heater 7 at the tip of the sealing pressurizing device 6 in the vacuum packaging machine 5 and the edge 8 serving as the remaining opening. (S-2). Next, the inside of the vacuum packaging machine 5 is 1 torr or less, preferably 10 -2 While maintaining the vacuum state below torr, the heat plate is closed and heated to melt and weld a thermoplastic resin such as high-density polyethylene constituting the interior which is the mating surface of the packaging material 3 to seal the edge 8 (S-3). Finally, the vacuum state of the vacuum packaging machine 5 is released, and the vacuum heat insulation panel 1 is taken out (S-4).
[0006]
Next, the manufacturing method of the heat insulation box using this vacuum heat insulation panel is demonstrated based on the process drawing shown in FIG. First, a vacuum heat insulation panel is fixedly disposed using a double-sided tape or the like at an arbitrary position of the outer box constituting the outside of the heat insulation box (S-11). Then, the outer shell box body of a heat insulation box body is completed by inserting and fitting the inner box which comprises the inner side of a heat insulation box body in this outer box (S-12). Other necessary members are incorporated in the outer shell box (S-13). Next, this outer shell box is fixed to a jig for the purpose of preventing deformation due to the foaming pressure of urethane foam with the back surface on the upper side. From the injection ports located on the left and right side walls, the urethane foam raw material liquid is dropped and injected toward the flange portions of the left and right side wall surfaces of the opening on the front surface of the outer shell box. The foamed urethane begins to foam after a few seconds, and foams and flows in the gap in the outer shell to fill the gap. When the curing of the resin constituting the urethane foam is completed, the heat insulating layer is formed, so this is taken out from the jig to obtain a heat insulating box (S-14).
[0007]
Product assembly in which interior parts such as shelves and design panels and refrigerant circuit parts such as coolers are mounted on the heat insulation box that has been taken out (S-15), and further confirmation of regulatory cooling performance Inspection is performed (S-16), and a heat insulation box is completed as a product (S-17).
[0008]
The shape of the vacuum heat insulation panel including the proposal as described above is a plate shape having a thickness of 10 to 30 mm, and is used in a state of being incorporated in the wall of the refrigerator. That is, after the inner box is inserted into the outer box to which the vacuum heat insulating panel is attached and joined together, the raw material mixed solution of foamed resin such as urethane foam is injected and foamed to form the heat insulating wall. For this reason, in the case of a refrigerator, when filling foamed urethane filling the voids in the outer shell in which the vacuum heat insulation panel is disposed without gaps, the vacuum heat insulation panel is placed on a shelf holder so that the design is not impaired due to deformation or the like. A method of fixing to the outer box surface with an adhesive or the like is more used than arranging in an inner box having irregularities such as.
[0009]
However, it is very difficult to completely fill a foamed resin such as urethane foam by flowing while foaming in a narrow gap in the outer shell where the vacuum insulation panel is installed. It is necessary to foam under conditions that develop a high pressure when it expands. Therefore, by increasing the amount of gas that contributes to foaming, a high gas expansion pressure during foaming can be obtained. However, in order to achieve complete filling of the foamed resin by this general means, an excessive raw material mixture of foamed resin or foamed gas is introduced into the outer shell. Problems such as leakage or an increase in the amount of deformation of the outer shell occur when the mold is removed from the foaming jig.
[0010]
Furthermore, since the gap in the outer shell becomes very narrow due to the provision of the vacuum insulation panel, the method of injecting the raw material mixture of urethane foam by dropping it into the gap in the outer shell with the back side up, It is inevitable that the raw material mixture adheres to the box surface or the vacuum heat insulation panel surface. After that, when the raw material mixed liquid staying on the flange surface of the heat insulating wall is filled while rising with foaming, the filling is hindered by the foamed urethane adhering to the upper side wall and foaming. Not only can the filling form be secured, but voids such as voids may remain in the heat insulating wall.
[0011]
For this reason, in Japanese Patent Application Laid-Open No. 59-9482 and Japanese Patent Application Laid-Open No. 8-61837, as a method of filling foamed urethane into a thin heat insulating wall of a refrigerator or the like, the back surface facing the front opening side of the heat insulating box is down. Thus, a method of injecting a urethane foam raw material mixture from the outer peripheral surface such as the back surface, side surface, or bottom surface of the heat insulating box has been proposed.
According to Japanese Patent Laid-Open No. 59-9482, as shown in FIG. 12, the raw material of the urethane foam 12 is provided at the inlet 11 provided at the bottom of the outer shell of the heat insulating box constituted by the inner box 9 and the outer box 10. By spraying the raw material mixture 14 in a spray form from the spray nozzle 13 which is a mixer, only the heat insulating wall on the outer periphery of the back surface is filled, so that the foaming distance can be shortened and the urethane foam 12 can be easily filled.
On the other hand, according to Japanese Patent Application Laid-Open No. 8-61837, as shown in FIG. 13, the stock solution branching member 16 is provided in the gap with the back plate 15 at the lower part of the outer box 10 in which the vacuum heat insulating panel 1 is disposed. By providing the inlet 11, the stock solution can be satisfactorily flown in each direction, and as a result, the distance required for filling the urethane foam 12 into the remaining voids can be shortened, and the filling property is excellent.
[0012]
[Problems to be solved by the invention]
However, there is a problem in applying these foaming methods to a heat insulating box having at least a vacuum heat insulating panel mounted on the back surface. For example, spraying the raw material mixture of urethane foam on the back surface in a spray form is the same as when the raw material mixture is dropped from above with the back side up and the raw material mixture adheres to the back wall uniformly. In the flow accompanying the subsequent foaming, a problem occurs in that the proper filling is hindered by the formation of the material mixture in the course of foaming or the completion of foaming in the middle of the path.
[0013]
In addition, if the method of discharging the raw material mixture from the inlet equipped with the stock solution branching member toward the crossing line between the back surface and the outer peripheral surface is applied, the tip of the raw material mixture is discharged when it is discharged with a certain degree of momentum. Retention is increased at the portion, and filling is performed with a spread starting from the portion, but when the material is discharged without vigor, a large amount of the raw material mixture remains in the vicinity of the injection port. That is, in many cases, a large amount of the raw material mixed liquid stays at the four points discharged in the two upper and lower directions from the back surfaces immediately below the left and right side walls. When they merge, the air in the walls remains without any escape space, creating an air pocket and being sealed, which causes a problem of forming an unfilled portion.
[0014]
On the other hand, the vacuum heat insulation panel disposed on the back plate may have a slight gap between it and the back plate. In that case, after the raw material mixture has entered the gap, the vacuum heat insulation panel is peeled off. As the foam expands, the appearance of the heat insulation box that has been filled with the urethane foam may cause a defect that the trace of the line appears at the boundary portion where the urethane foam has entered, impairing the design. is there.
[0015]
The present invention has been made in order to solve the above-mentioned problems, and an inadvertent raw material mixed solution that obstructs filling in a wall against a heat insulating wall of a heat insulating box that is narrowed by disposing a vacuum heat insulating panel. It is an object of the present invention to provide a method for injecting a foamed heat insulating material mixture, which does not form an adhering portion and is easy to fill by shortening the flow distance.
[0016]
[Means for Solving the Problems]
The method for manufacturing a heat insulating box according to the present invention is the method for manufacturing a heat insulating box in which a raw material mixed liquid of foam heat insulating material is injected into a space inside an outer shell constituting a heat insulating wall to fill the space. A vacuum heat insulation panel is fixed to a back plate on the back of the shell, and a groove constituted by a thickness surface portion of the vacuum heat insulation panel, an outer plate of the outer shell on a side portion of the outer shell, and the back plate. The raw material mixture of the foam heat insulating material is poured into the outer shell from the back side with the back side facing down.
[0017]
Further, the gap between the thickness surface portion of the vacuum heat insulating panel and the outer side plate is located immediately below the side wall by the outer shell.
[0018]
The gap between the thickness surface portion of the vacuum heat insulating panel and the outer plate has a width corresponding to the thickness of the side wall by the outer shell.
[0019]
Moreover, the injection part of the raw material mixed solution of the foam heat insulating material is provided in a divider that divides the interior of the heat insulating box.
[0020]
The divider is provided with a plurality of discharge ports for discharging the injected raw material mixture into the groove running direction and on the surface of the vacuum heat insulation panel.
[0021]
Further, the divider is disposed so as to fix the vacuum heat insulation panel to the back plate by pressing an edge of the vacuum heat insulation panel.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
A preferred embodiment of the present invention will be described in detail with reference to FIGS.
[0023]
FIG. 1 is a perspective view showing the inside of a side wall of a heat insulating box according to the present invention. The heat insulation box 30 is surrounded by an outer shell 31 that constitutes a heat insulation wall. The outer shell 31 is composed of an outer box 32 made of a thin metal plate and the like, and a resin molded product such as ABS resin. And an inner box 33. The vacuum heat insulating panel 1 is fixed to the back plate 15 on the back surface of the outer shell 31 and the side plates 17 of the outer box 32 constituting the left and right sides of the outer shell 31. In addition, a divider 19 that divides the inner box 33 into a freezer compartment 34 and a refrigerator compartment 35 is inserted near the center of the back plate 15, and the edge 20 of the vacuum heat insulation panel 1 is pressed by a part of the divider 19. 15 is closely attached. At this time, it is preferable that the vacuum heat insulation panel 1 arrange | positioned at the backplate 15 has a convex slight warp with respect to the backplate 15 from the point which improves adhesiveness.
FIG. 2 shows a cross-sectional view of an end portion (A portion in FIG. 1) of the divider 19 in the vicinity of the side plate 17 and the back plate 15. The end portion of the divider 19 is formed so as to also serve as an injection portion 21 for injecting a raw material mixture of urethane foam into the outer shell 31. That is, when the nozzle 23 of the mixing head 22 is inserted from the injection port 15 a provided in the back plate 15 and the raw material mixed liquid of urethane foam is jetted, the mixed liquid becomes the height of the box provided in the injection part 21. It is sent in the vertical and horizontal directions of the heat insulation box through the discharge port 24a directed in the direction and the discharge port 24b directed in the box width direction.
[0024]
The foamed urethane raw material mixture is a mixture of an isocyanate liquid and a premix liquid. The isocyanate liquid and the premix liquid are stored in separate tanks, and are sent from each tank to the mixing head 22 via individual high-pressure pumps and paths. The mixing head 22 is provided with an orifice close to the needle valve, and the two liquids face each other through this orifice and collide with each other at a high pressure, and can be mixed instantaneously. According to this mixing method, even if a foaming agent that exhibits a gaseous state at normal temperature is contained, the microbubbles stay in the nozzle in a shorter time than the generation of microbubbles due to short-time vaporization. Can be prevented. Furthermore, in order to obtain a uniform and good mixing state, a high pressure discharged from the orifice is necessary, but 80 kg / cm. 2 Or more, preferably 120-140 kg / cm 2 For example, if a piston cylinder or an axial plunger type metering pump is used to generate the discharge pressure, there is no problem. This collision mixing method at a high pressure can be suitably used because it does not affect the degree of mixing regardless of the direction of discharge.
[0025]
As shown in the cross-sectional view of FIG. 2, the injection port 21 formed in the divider 19 has discharge ports 24 a and 24 b for the foamed urethane raw material mixture opening in a plurality of directions. As shown in the configuration diagram of the rear surface of the heat insulation box in FIG. 3, the left and right injection portions 21 that are on the outermost sides and face in opposite directions are raw materials in the gap between the end 20 and the side plate 17 of the vacuum heat insulation panel 1. The opening direction of the discharge port 24a is adjusted so as to play the role of causing the mixed liquid to flow out. The opening direction of the discharge ports 24b at the remaining plurality of locations is adjusted so as to play a role of causing the raw material mixture to flow out onto the surface of the vacuum heat insulation panel 1 disposed on the back plate 15.
[0026]
Next, the filling process of the urethane foam 12 will be described in detail based on a longitudinal sectional view of a heat insulating box as a refrigerator shown in FIG. 4 and a conceptual diagram in the vicinity of the side portion and the back portion of the outer shell in FIG.
The raw material mixed liquid is discharged from the discharge port 24a in the injection portion 21 of the divider 19 into the groove 26 formed by the thickness surface portion 1a, the side plate 17, and the back plate 15 of the vacuum heat insulating panel 1, and then the height of the refrigerator It spreads along this groove 26 running in the vertical direction. On the other hand, it spreads over a relatively wide area centering around the center of the back surface portion on the surface 1b of the vacuum heat insulation panel 1 disposed on the back plate 15 from the discharge ports 24b at the remaining plurality of locations. Thereafter, foaming is started and the remaining space in the outer shell 31 is filled. At this time, the raw material mixture sprayed on the surface 1b of the vacuum heat insulating panel 1 on the back surface is the center of the back surface portion. Although it spreads as a bubble from the outside to the outside, it is in the state at an early time leaving a gap in the height direction, so the air in the wall does not reach the state of no escape, it is integrated in the outer peripheral direction It spreads out. As described above, the urethane foam 12 fills the remaining space in the outer shell 31. At this time, the foam spreading in the groove 26 formed along the one side plate 17 mainly extends upward, whereas the merging with the foam that is being scattered and filled in the back part is the ceiling part. Alternatively, since the flow directions coincide with each other at a position close to the bottom, the air in the wall does not fall into a state where there is no escape space, and therefore voids such as voids are not generated.
[0027]
Here, when the raw material mixture that has flowed in along the side plate 17 fills the gaps in the left and right heat insulation walls constituted by the outer shells 31, the amount of the raw material mixture required for the filling is the vacuum heat insulation panel 1. Is accommodated in a groove formed by the thickness surface portion 1a including the end side 20 of the first side plate 20, the side plate 17, and the back plate 15 and diffuses without flowing out from the region immediately below the side wall to another region. In other words, the distance that the injected raw material mixture liquid flows in the foam after diffusing basically flows along the side plate 17 on the vacuum heat insulating panel 1 disposed on the back plate 15 at the back portion. The product flows through the side wall, and in the up and down direction of the refrigerator at the confluence of these two liquids, the ceiling and the bottom are each filled into the outer shell through the shortest flow distance, so the raw material mixture is easy Even a narrow gap can pass through.
[0028]
【Example】
In order to confirm the improvement effect on the fillability to the heat insulation box and the design of the appearance according to the present invention, the implementation of the present invention is carried out on the design based on the amount of urethane foam filled in the actual machine and the smoothness of the outer shell wall surface. Evaluation was made using examples. A 230-liter refrigerator-freezer with a heat insulation wall thickness of about 45 mm and a heat insulation box back plate and side plates fixed with a 20 mm thick vacuum insulation panel with double-sided tape with a width of 10 mm. The outer shell was formed and stored in a foaming jig kept at 50 ° C. with the back side down, and then a foamed urethane raw material mixture was poured and filled to produce a heat insulating box. The vacuum insulation panel arrangement conditions at this time are the amount of gap between the side plate and the vacuum insulation panel (particularly, the amount of gap between the side plate and the thickness surface portion of the vacuum insulation panel) and the presence or absence of pressing by the divider. As shown in Table 1 below, the examples are manufactured based on the contents defined in the present invention.
[0029]
[Comparative example]
As in the previous embodiment, the refrigerator is a refrigerator with an internal volume of 230 L, and a vacuum insulation panel is fixed to the back plate and side plate of the heat insulation box with double-sided tape. After being housed in a foaming jig in a state of being fixed and fixed, foamed urethane was filled to produce a heat insulating box. As a condition for disposing the vacuum heat insulating panel at this time, a gap is not provided between the side plate and the vacuum heat insulating panel (Comparative Example 1), a gap is provided in a wide state (Comparative Example 2), Details of Comparative Examples 1 to 3 according to these conditions are shown in Table 1 together with the examples.
[0030]
[Table 1]
Figure 0003820538
[0031]
Next, the evaluation method will be described.
(1) Fillability into heat insulation box
The minimum filling amount of urethane foam in the refrigerators provided for the examples and comparative examples was determined. The production of these heat insulation boxes was performed according to the process diagram shown in FIG. 10, but the injection amount of the raw material mixture was injected from the void volume in the outer shell provided with the vacuum heat insulation panel and the expected density of urethane foam. Adjust the filling status by filling the amount, and check the filling status to the extent that a slight gap of 10-50cc remains while repeating the confirmation of the filling status by re-injection as necessary. As sought.
[0032]
(2) Appearance design
About the refrigerator used for the present Example and the comparative example, the designability based on the smoothness of an outer shell wall surface was evaluated. Specifically, the smoothness of the outer box of the heat insulation box centering on the back portion was visually evaluated. In comparison with the appearance of a conventional refrigerator using only urethane foam as a heat insulating material on the back, it is indicated as x when it is inferior, Δ when it is equivalent, and ○ when it is excellent.
The evaluation results of the above (1) and (2) are shown in Table 2 below.
[0033]
[Table 2]
Figure 0003820538
[0034]
(3) Characteristic distribution of urethane foam
Each refrigerator of the example and the comparative example was disassembled, and the distribution state was evaluated by measuring the apparent density in the core portion of urethane foam taken from an arbitrary place of the refrigerator shown in FIG. The apparent volume obtained by measuring the weight of a sample cut into a size of 50 × 50 × 10 mm from the vicinity of the center of the collected urethane foam, and measuring the dimensions of each side with a caliper. Calculated by dividing by. The evaluation results are shown in Table 3 below.
[0035]
[Table 3]
Figure 0003820538
[0036]
In Table 3, “heaven” is the ceiling 51 of FIG. 6, “F” is the average value of the left side 52 and right side 53 of FIG. 6, and “R” is the average of the left side 54 and right side 55 of FIG. The value “bottom” indicates the average value of the bottom surface 58 of FIG. 6, and the “back” indicates the average value of the freezer compartment back surface 56 and the refrigerator compartment back surface 57 of FIG. 6.
[0037]
According to Table 2, the minimum filling amount of the urethane foam in the example which is the heat insulation box according to the present invention was 4.7 kg, whereas the gap between the side plate of the outer shell and the vacuum heat insulation panel was not provided. 5.2 kg, 5.5 kg in Comparative Example 2 in which the gap between the side plate and the vacuum insulation panel is set to be quite wide, 5.3 kg in Comparative Example 3 in which the vacuum insulation panel is not pressed with a divider, This comparative example was also required more than this example. Comparing the measurement results of density distribution in these heat insulation boxes, the difference in distribution amount is large in any of the comparative examples with respect to the examples according to the present invention, and the maximum and minimum differences can be read from Table 3. In Example 1, 1.2 kg / m Three On the other hand, in Comparative Example 1, 2.4 kg / m Three In Comparative Example 2, 2.9 kg / m Three Met.
[0038]
Moreover, as shown in Table 3, the density distribution of each wall surface which comprises a refrigerator became high in the comparative examples 1 and 2 compared with the present Example. This is because, in Comparative Example 1, the raw material mixture of urethane foam stayed in the center of the back surface around the injection part, and in Comparative Example 2, the gap between the outer shell side plate and the vacuum heat insulation panel was too wide. Due to the insufficient diffusion of the raw material mixture in the vertical direction, the flow distance for filling by foaming becomes too long, the pressure at the time of foaming rises on the back part, and the final filling part This is due to the increased density. On the other hand, in the embodiment, the urethane foam after injecting the raw material mixture of urethane foam has the shortest flow distance and does not receive local pressure at the time of foaming as an aspect in which the inside of the outer shell is filled. Therefore, it can be estimated that a uniform density distribution can be obtained and filling can be performed with a smaller injection amount.
[0039]
Moreover, as shown in Table 2, the design property based on the smoothness of the outer shell wall surface was superior to the conventional one in this example, whereas in Comparative Examples 1 to 3, is it equivalent to the conventional one? The result was inferior.
The amount of expansion or contraction that occurs in response to changes in the pressure of foaming immediately after removal from the molding die of urethane foam, changes in temperature, or changes in internal pressure due to splashing of foaming gas, etc., was based on the density distribution of the heat insulating wall. Distributed with differences. Since this expansion or contraction amount becomes uneven and impairs the design of the outer shell wall surface, the density distribution corresponds to the density distribution shown in Table 3 as compared with the comparative example which is a conventional injection method. It is presumed that the design property of this example with a small value was excellent.
[0040]
In addition, with respect to the embodiment of the present invention, regarding the increase in the minimum filling amount of Comparative Example 3 in which the vacuum insulation panel is not pressed with a divider, it was confirmed that a large amount of urethane foam entered the gap between the back plate and the vacuum insulation panel. As a result, the vacuum heat insulation panel peeled off from the back plate and floated, and as a result of the urethane foam flowing into the panel, the appearance deteriorated and the filling amount increased.
[0041]
In this embodiment, only the mode in which the edge of the vacuum heat insulation panel provided on the back plate is pressed with a divider to prevent the inflow of urethane foam between the back plate and the vacuum heat insulation panel has been described. The same can be dealt with for the vacuum insulation panel provided. For example, as shown in FIG. 7, pressing the end sides of the vacuum heat insulation panel 1 fixed to the back plate 15 and the side plate 17 with the injection portion 21 of the divider 19 means that the back plate 15 and the side plate 17 This is particularly effective for preventing the urethane foam from flowing between the contact surfaces with the vacuum heat insulation panel 1.
[0042]
As described above, the refrigerator has been described as an example here, but the present invention is not limited to this, and for example, a small vehicle-mounted refrigerator, a prefabricated simple refrigerator, a cold car, a pipe, a heat insulating material for a building, and the like. Application as a heat insulation part of a product for cold insulation is also possible, and various modifications can be made without departing from the gist of the product.
[0043]
【The invention's effect】
According to the manufacturing method of the heat insulation box which concerns on the 1st aspect of this invention, the raw material mixed liquid of a foam heat insulating material is inject | poured into the space | gap inside the outer shell which comprises a heat insulation wall, and the heat insulation box body which fills a space | gap In the manufacturing method, a vacuum heat insulation panel is fixed to a back plate on the back surface of the outer shell, and a groove constituted by a thickness surface portion of the vacuum heat insulation panel, an outer plate of the outer shell on a side portion of the outer shell, and the back plate. In addition, since the raw material mixture of foam insulation is injected from the back side into the outer shell with the back side down, the injected foam insulation material mixture efficiently flows and diffuses along the groove. And the distance required for subsequent filling with foaming is reduced and uniform filling is achieved.
[0044]
According to the method for manufacturing a heat insulation box according to the second aspect of the present invention, since the gap between the thickness surface portion of the vacuum heat insulation panel and the outer plate is located directly below the side wall constituted by the outer shell, the injected foam The diffusion position of the raw material mixture of the heat insulating material is directly under the side wall that is the end of the filling, and the foamed heat insulating material can be easily filled into the outer shell.
[0045]
According to the method for manufacturing a heat insulation box according to the third aspect of the present invention, the gap between the thickness surface portion of the vacuum heat insulation panel and the outer plate has a width corresponding to the thickness of the side wall constituted by the outer shell. The raw material mixed liquid of the foam heat insulating material staying in the gap can flow quickly and diffuse efficiently.
[0046]
According to the method for manufacturing a heat insulating box according to the fourth aspect of the present invention, the injection part for the raw material mixture of the foam heat insulating material is provided in the divider that divides the interior of the heat insulating box, so that separate parts are provided. Without being able to efficiently retain the raw material mixture of the foam heat insulating material.
[0047]
According to the method for manufacturing the heat insulation box according to the fifth aspect of the present invention, the divider is provided with a plurality of discharge ports for discharging the injected raw material mixture into the groove running direction and the surface of the vacuum heat insulation panel. Therefore, the raw material mixture of the foam heat insulating material can be efficiently sent to a desired position.
[0048]
According to the method for manufacturing a heat insulation box according to the sixth aspect of the present invention, the divider presses the edge of the vacuum heat insulation panel so as to fix it to the back plate. Can be prevented from flowing into the gap between the outer shell surface and the vacuum heat insulation panel, and even if it flows in, convex deformation due to foaming can be suppressed, and a heat insulation box with excellent appearance design can be obtained. .
[Brief description of the drawings]
FIG. 1 is a perspective view showing the inside of a side wall of a heat insulating box according to the present invention.
FIG. 2 is a sectional end view of a divider in the vicinity of a side plate and a back plate according to the present invention.
FIG. 3 is a configuration diagram of a back surface portion of a heat insulating box according to the present invention.
FIG. 4 is a cross-sectional view showing a heat insulating wall structure of a heat insulating box according to the present invention.
FIG. 5 is a conceptual view of the vicinity of a side portion and a back portion of an outer shell showing a groove according to the present invention.
FIG. 6 is a development view of each surface constituting the refrigerator showing the position where the urethane foam is collected.
FIG. 7 is a conceptual diagram showing an arrangement relationship between a vacuum heat insulation panel and a divider.
FIG. 8 is a performance comparison diagram of heat insulating materials.
FIG. 9 is a cross-sectional view showing the internal structure of the vacuum heat insulating panel.
FIG. 10 is a process diagram showing a method for manufacturing a vacuum heat insulating panel.
FIG. 11 is a process diagram showing a method for manufacturing a heat insulating box.
FIG. 12 is a cross-sectional view showing a conventional method of injecting a raw material mixture of foam insulation from the back side.
FIG. 13 is a cross-sectional view showing another conventional method for injecting a raw material mixture of foam insulation from the back side.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vacuum heat insulation panel, 12 Foam urethane, 15 Back plate, 17 Side plate, 19 Divider, 21 Injection part, 24a, 24b Discharge port, 26 Groove, 30 Heat insulation box, 31 Outer shell, 32 Outer box, 33 Inner box.

Claims (6)

断熱壁を構成する外殻の内部の空隙に発泡断熱材の原料混合液を注入して前記空隙を充填する断熱箱体の製造方法において、
前記外殻の背面にある背面板に真空断熱パネルを固定し、
前記真空断熱パネルの厚み面部と、前記外殻の側部にある前記外殻の外側板と、前記背面板とにより構成される溝に、前記背面を下側にした状態で、前記発泡断熱材の原料混合液を前記背面側から前記外殻内へ注入することを特徴とする断熱箱体の製造方法。
In the method for manufacturing a heat insulating box body in which a raw material mixed liquid of foam heat insulating material is injected into a gap inside the outer shell constituting the heat insulation wall and filled with the gap,
Fix the vacuum insulation panel to the back plate on the back of the outer shell,
In the state where the back surface is on the lower side in the groove formed by the thickness surface portion of the vacuum heat insulation panel, the outer plate of the outer shell on the side portion of the outer shell, and the back plate, the foam heat insulating material The raw material mixed solution is poured into the outer shell from the back side.
真空断熱パネルの厚み面部と前記外側板との間隙が、前記外殻による側壁の直下に位置することを特徴とする請求項1に記載の断熱箱体の製造方法。The method for manufacturing a heat insulation box according to claim 1, wherein a gap between the thickness surface portion of the vacuum heat insulation panel and the outer plate is located immediately below the side wall by the outer shell. 真空断熱パネルの厚み面部と前記外側板との間隙が、前記外殻による側壁の厚さに相当する幅を有することを特徴とする請求項1又は請求項2に記載の断熱箱体の製造方法。The method for manufacturing a heat insulation box according to claim 1 or 2, wherein a gap between a thickness surface portion of the vacuum heat insulation panel and the outer plate has a width corresponding to a thickness of a side wall by the outer shell. . 前記発泡断熱材の原料混合液の注入部を、前記断熱箱体の室内を分割するデバイダに設けることを特徴とする請求項1から3の何れかに記載の断熱箱体の製造方法。The method for manufacturing a heat insulation box according to any one of claims 1 to 3, wherein an injection portion for the raw material mixture of the foam heat insulating material is provided in a divider that divides the interior of the heat insulation box. 注入された原料混合液を前記溝の走る方向と前記真空断熱パネルの表面上とに吐出する複数の吐出口を前記デバイダに設けたことを特徴とする請求項4に記載の断熱箱体の製造方法。The manufacturing method of the heat insulation box of Claim 4 which provided the several discharge port which discharges the inject | poured raw material liquid mixture to the running direction of the said groove | channel, and on the surface of the said vacuum heat insulation panel in the said divider. Method. 前記デバイダを、前記真空断熱パネルの端辺を押圧して該真空断熱パネルを前記背面板に固定するように配設することを特徴とする請求項4又は5に記載の断熱箱体の製造方法。The method of manufacturing a heat insulation box according to claim 4 or 5, wherein the divider is disposed so as to fix the vacuum heat insulation panel to the back plate by pressing an edge of the vacuum heat insulation panel. .
JP30379298A 1998-10-26 1998-10-26 Manufacturing method of heat insulation box Expired - Lifetime JP3820538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30379298A JP3820538B2 (en) 1998-10-26 1998-10-26 Manufacturing method of heat insulation box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30379298A JP3820538B2 (en) 1998-10-26 1998-10-26 Manufacturing method of heat insulation box

Publications (2)

Publication Number Publication Date
JP2000130922A JP2000130922A (en) 2000-05-12
JP3820538B2 true JP3820538B2 (en) 2006-09-13

Family

ID=17925359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30379298A Expired - Lifetime JP3820538B2 (en) 1998-10-26 1998-10-26 Manufacturing method of heat insulation box

Country Status (1)

Country Link
JP (1) JP3820538B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102455106A (en) * 2010-10-15 2012-05-16 株式会社东芝 Refrigerator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140015395A1 (en) * 2012-07-12 2014-01-16 Whirlpool Corporation Refrigerator with platform for improved foam discharge
JP6342133B2 (en) * 2013-09-18 2018-06-13 東芝ライフスタイル株式会社 refrigerator
CN107347845B (en) * 2017-07-14 2023-05-23 江苏宝源机械有限公司 Self-propelled boom sprayer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5468558A (en) * 1977-11-11 1979-06-01 Hitachi Ltd Manufacruring of casing of refrigerator
JPS599482A (en) * 1982-07-09 1984-01-18 株式会社日立製作所 Manufacture of heat-insulating box body
JPH02197787A (en) * 1989-01-27 1990-08-06 Matsushita Refrig Co Ltd Heat insulating box body
JPH0682153A (en) * 1992-09-03 1994-03-22 Toshiba Corp Thermal insulating box
JPH07269779A (en) * 1994-03-28 1995-10-20 Toshiba Corp Manufacture of heat insulating container and vacuum heat insulating panel
JP3438948B2 (en) * 1994-06-27 2003-08-18 株式会社日立製作所 refrigerator
JPH0861837A (en) * 1994-08-26 1996-03-08 Toshiba Corp Heat insulation box
JPH09303949A (en) * 1996-05-17 1997-11-28 Sanyo Electric Co Ltd Heat insulating box

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102455106A (en) * 2010-10-15 2012-05-16 株式会社东芝 Refrigerator

Also Published As

Publication number Publication date
JP2000130922A (en) 2000-05-12

Similar Documents

Publication Publication Date Title
US6375292B2 (en) Full vacuum heat insulation box body and method for producing and disassembling the same
KR0136956B1 (en) Vacuum insulator casing and method of making vacuum insulator panel
KR101758277B1 (en) Refrigerater
JP2010536007A (en) Method and apparatus for a product dispenser having increased thermal insulation properties
CN101952677B (en) Refrigerating appliance, method and device for the production thereof
WO2007037125A1 (en) Casing structure of refrigerating device and sealing method for the casing
JP3820538B2 (en) Manufacturing method of heat insulation box
JP3391731B2 (en) Thermal insulation box and method of manufacturing thermal insulation box
JP3852537B2 (en) Heat insulation box
JP3921580B2 (en) Manufacturing method of heat insulation box
JP4354543B2 (en) Heat insulation box
JPH04221616A (en) Degassing method and heat insulation box body manufactured by use of same
JPH0861837A (en) Heat insulation box
CN206113493U (en) A panel, refrigerator box and refrigerator for forming refrigerator box
JP2013245918A (en) Heat insulating box body, method of manufacturing the same, and refrigerator
JP4782166B2 (en) Manufacturing method of heat insulation box
CN111981750B (en) Refrigerator and method of manufacturing the same
JPS62279909A (en) Manufacture of sandwich-panel
JP2010266089A (en) Heat insulating case, refrigerator including the same and method of manufacturing heat insulating case
JPH0814457B2 (en) Insulated box
JP7297616B2 (en) Heat-insulating box, refrigerator, and method for manufacturing heat-insulating box
CN214120510U (en) Refrigeration box and refrigeration equipment
JP6984843B2 (en) A method for manufacturing a foam molded product made of different types of foam molded resin members.
JPH11201627A (en) Vacuum heat-insulating panel, its manufacture and manufacture of heat insulation case using the panel
CN105987510B (en) Heat accumulation water pot unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term