WO2013011773A1 - Polyurethane foam panel and method for producing same - Google Patents

Polyurethane foam panel and method for producing same Download PDF

Info

Publication number
WO2013011773A1
WO2013011773A1 PCT/JP2012/064977 JP2012064977W WO2013011773A1 WO 2013011773 A1 WO2013011773 A1 WO 2013011773A1 JP 2012064977 W JP2012064977 W JP 2012064977W WO 2013011773 A1 WO2013011773 A1 WO 2013011773A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
polyol
polyurethane foam
parts
foam panel
Prior art date
Application number
PCT/JP2012/064977
Other languages
French (fr)
Japanese (ja)
Inventor
渡邊 二夫
潤 赤井
Original Assignee
東洋ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012021047A external-priority patent/JP5314167B2/en
Priority claimed from JP2012051994A external-priority patent/JP5314169B2/en
Application filed by 東洋ゴム工業株式会社 filed Critical 東洋ゴム工業株式会社
Priority to KR1020137034586A priority Critical patent/KR20140015592A/en
Priority to US14/232,164 priority patent/US20140148524A1/en
Priority to CA2842051A priority patent/CA2842051A1/en
Publication of WO2013011773A1 publication Critical patent/WO2013011773A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/001Producing wall or panel-like structures, e.g. for hulls, fuselages, or buildings
    • B29D99/0021Producing wall or panel-like structures, e.g. for hulls, fuselages, or buildings provided with plain or filled structures, e.g. cores, placed between two or more plates or sheets, e.g. in a matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0025Foam properties rigid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent

Definitions

  • the invention described in the above-mentioned patent document is merely focused on only the blending of the polyol composition.
  • the invention improves the heat insulation of the foam. Was not done.
  • the resin strength becomes insufficient at the foaming stage of the foam, and the foaming gas in the foam Many omissions occur and foam shrinkage tends to occur. As a result, the density of the foam tends to be insufficient.
  • the polyol composition contains the high-molecular-weight polyether polyol (A) and the short glycol (B) having a molecular weight of less than 250, the speed of thickening (resinization speed) is high at the early stage of foam foaming. Become.
  • the polyurethane foam panel according to the present invention has a low density, and the cells in the foam are individually substantially elliptical, with a plurality of cells communicating, a high open cell ratio, and a constant foaming direction.
  • the heat transfer in the thickness direction can be suppressed. Therefore, when a polyurethane foam panel is disposed in a building such as a detached house, the heat insulation performance in the thickness direction is particularly enhanced.
  • Another polyurethane foam panel according to the present invention is a polyurethane foam panel obtained by mixing and reacting a polyol composition and a polyol composition containing water as a foaming agent and a polyisocyanate component, wherein the polyol
  • the compound has an average functional group number of 2 to 4, a weight average molecular weight of 3000 to 8000, a polyether polyol (A) which is a polymer of alkylene oxide, and a short glycol (B) having a molecular weight of less than 250, 20 to 100 parts by weight of water with respect to 100 parts by weight of the polyol compound, and an isocyanate index when mixing and reacting the polyol composition and the polyisocyanate component is 30 or less It is characterized by.
  • the thickness direction of the polyurethane foam panel and the foaming direction of the cells in the foam are substantially perpendicular.
  • the polyurethane foam panel according to the present invention has a low density, the cells in the foam are individually substantially elliptical, and a plurality of cells communicate with each other, and the open cell ratio is high. Furthermore, when the thickness direction of the polyurethane foam panel and the foaming direction of the cells in the foam are substantially perpendicular, heat transfer in the thickness direction can be suppressed. Therefore, when a polyurethane foam panel is disposed in a building such as a detached house, the heat insulation performance in the thickness direction is particularly enhanced.
  • the polyol compound further includes a polyether polyol (C) having an average functional group number of 2 to 4, a weight average molecular weight of 3000 to 5000, and a propylene oxide polymer.
  • a polyether polyol (C) having an average functional group number of 2 to 4, a weight average molecular weight of 3000 to 5000, and a propylene oxide polymer.
  • the polyurethane foam panel having excellent heat insulation performance in the thickness direction can be efficiently produced because the thickness direction of the polyurethane foam panel and the foaming direction of the cells in the foam are substantially perpendicular.
  • the polyether polyol (A) and 10 to 60 parts by weight of the short glycol (B) are contained in 100 parts by weight of the polyol compound. .
  • the polyol compound further comprises a polyether polyol (C) having an average functional group number of 2 to 4 and a weight average molecular weight of 3000 to 5000, which is a polymer of propylene oxide. It is preferable to contain.
  • C polyether polyol
  • the molecular weight of the short glycol (B) is preferably 62 to 200 mgKOH / g, and more preferably 90 to 150 mgKOH / g.
  • a polyether polyol (C) which is a polymer of propylene oxide having an average number of functional groups of 2 to 4 and a weight average molecular weight of 3000 to 5000 as a polyol compound. It is preferable to contain.
  • the polyether polyol (C) is a polyoxyalkylene polyol obtained by ring-opening addition polymerization of propylene oxide alone to an initiator having 2 to 4 active hydrogen atoms.
  • the initiator include the aliphatic polyhydric alcohols, aliphatic amines, and aromatic amines described above, and are not particularly limited.
  • glycerol is particularly preferable.
  • a flame retardant, a catalyst, and a foam stabilizer are further added to the polyol composition.
  • the flame retardant examples include metal compounds such as organophosphates, halogen-containing compounds, and aluminum hydroxide. Particularly, organophosphates are preferable because they have an effect of reducing the viscosity of the polyol composition.
  • organophosphates are preferable because they have an effect of reducing the viscosity of the polyol composition.
  • organic phosphate ester examples include halogenated alkyl ester of phosphoric acid, alkyl phosphate ester, aryl phosphate ester, and phosphonate ester.
  • the blending amount of the flame retardant is preferably 10 to 50 parts by weight, more preferably 15 to 40 parts by weight with respect to 100 parts by weight of the polyol compound.
  • a normal tertiary amine catalyst can also be used, and as such a tertiary amine catalyst, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′— Examples thereof include tetramethylhexamethylenediamine, N, N, N ′, N ′, N ′′ -pentamethyldiethylenetriamine, diazabicycloundecene, N, N-dimethylcyclohexylamine, triethylenediamine, and N-methylmorpholine.
  • the compounding amount of the catalyst is preferably 2 to 10 parts by weight, more preferably 3 to 8 parts by weight with respect to 100 parts by weight of the polyol compound.
  • polyisocyanate component that forms a polyurethane foam panel by mixing and reacting with the above polyol composition
  • various polyisocyanate compounds such as aromatic, alicyclic, and aliphatic groups having two or more isocyanate groups are used.
  • liquid diphenylmethane diisocyanate (MDI) is used because it is easy to handle, fast in reaction, excellent in physical properties of the resulting polyurethane foam, and low in cost.
  • Liquid MDIs include Crude MDI (c-MDI) (44V-10, 44V-20, etc.
  • the isocyanate index (NCO Index) when the polyol composition and the polyisocyanate component are mixed and reacted is preferably set to 30 or less, more preferably less than 30.
  • an isocyanate index 20 is mentioned, for example.
  • the isocyanate index is the percentage equivalent of the isocyanate group of the polyisocyanate component to all active hydrogen groups contained in the polyol composition (calculated using water as a blowing agent as a bifunctional active hydrogen compound). (Equivalent ratio of isocyanate groups to 100 equivalents of active hydrogen groups).
  • the thickness direction of the polyurethane foam panel and the foaming direction of the cells in the foam are preferably substantially perpendicular.
  • substantially vertical specifically means 90 ° ⁇ 15 °, and particularly 90 ° ⁇ 10 °.
  • the “foaming direction of the cells in the foam” means the major axis direction when each cell shape is regarded as an ellipse. In particular, the center part in the width direction (from the width direction center to both sides, the width direction length). The direction when measured in a portion of about 10%).
  • the polyurethane foam panel according to the present invention has the following production method: A method for producing a polyurethane foam panel obtained by using a raw material foam composition containing a polyol composition and a polyol composition containing water as a foaming agent and a polyisocyanate component, wherein the longitudinal direction, the width direction and the thickness direction are An injection step of injecting the foamed stock solution composition with a side surface extending in the longitudinal direction and the thickness direction as a bottom surface, and a reaction step of reacting the foamed stock solution composition after the injection step,
  • the polyol compound has a polyether polyol (A) which is an alkylene oxide polymer having an average functional group number of 2 to 4 and a weight average molecular weight of 3000 to 8000, and a short glycol (B) having a molecular weight of less than 250. And 20 to 1 of the water with respect to 100 parts by weight of the polyol compound.
  • the isocyanate index (NCO Index) when the polyol composition and the polyisocyanate component are mixed and reacted is preferably 30 to 100, more preferably 40 to 70.
  • the isocyanate index is the percentage equivalent of the isocyanate group of the polyisocyanate component to all active hydrogen groups contained in the polyol composition (calculated using water as a blowing agent as a bifunctional active hydrogen compound). (Equivalent ratio of isocyanate groups to 100 equivalents of active hydrogen groups).
  • the polyurethane foam panel obtained by the production method preferably has a closed cell ratio of 15% or less, more preferably 0 to 10%.
  • the closed cell ratio is a value measured according to ASTM D2856.
  • the polyurethane foam panel obtained by the production method preferably has a thermal conductivity ⁇ of ⁇ ⁇ 0.04 W / m ⁇ K. In this case, even if the polyurethane foam has a reduced density, sufficient heat insulating performance can be exhibited.
  • the thermal conductivity is a value measured according to JIS A1412-2.
  • another polyurethane foam panel has the following production method: A process for producing a polyurethane foam panel obtained from a foamed stock solution composition comprising a polyol compound and a polyol composition containing water as a foaming agent and a polyisocyanate component, wherein the polyol compound has an average number of functional groups of 2 Polyether polyol (A) having a weight average molecular weight of 3000 to 8000, a polymer of alkylene oxide, and short glycol (B) having a molecular weight of less than 250, and having a polyol compound of 100 weight It can be produced by a method for producing a polyurethane foam panel containing 20 to 100 parts by weight of water with respect to parts, and having an isocyanate index of less than 30 when the polyol composition and the polyisocyanate component are mixed and reacted.
  • A Polyether polyol
  • B short glycol
  • the mold In order to produce a polyurethane foam panel in which the thickness direction of the polyurethane foam panel and the foaming direction of the cells in the foam are substantially perpendicular, in the longitudinal direction and the thickness direction, the mold has a longitudinal direction, a width direction and a thickness direction.
  • a production method comprising an injection step of injecting the foamed stock solution composition with the extending side surface as a bottom surface and a reaction step of reacting the foamed stock solution composition after the injection step is preferable.
  • the polyurethane foam panel obtained by the production method preferably has a closed cell ratio of 15% or less, more preferably 0 to 10%.
  • the closed cell ratio is a value measured according to ASTM D2856.
  • the polyurethane foam panel obtained by the production method preferably has a thermal conductivity ⁇ of ⁇ ⁇ 0.04 W / m ⁇ K. In this case, even if the polyurethane foam has a reduced density, sufficient heat insulating performance can be exhibited.
  • the thermal conductivity is a value measured according to JIS A1412-2.
  • a polyol composition and a polyisocyanate component are contained on the surface material 3 from the mixing head 1 while being unwound and supplied from the raw material.
  • the foaming stock solution composition to be injected is injected (injection step).
  • the foamed stock solution composition is reacted while the foamed stock solution composition is covered with another surface material (back surface material) 4 (reaction step).
  • back surface material another surface material
  • the mold 2 having the longitudinal direction a, the width direction b, and the thickness direction c is preferably arranged in the longitudinal direction a and the thickness direction c.
  • a foaming stock solution composition containing a polyol composition and a polyisocyanate component is injected from the mixing head 1 (injection step).
  • the foamed stock solution composition reacts and forms a foam while foaming (swelling) in the width direction b (reaction process).
  • the mold may be heated as a whole or locally as necessary.
  • Polyol compound Polyether polyol (A) -1; trade name “Excenol-820” (manufactured by Asahi Glass Co., Ltd.), polyether polyol obtained by addition polymerization of ethylene oxide and propylene oxide using glycerol as an initiator ( Weight average molecular weight 4900, hydroxyl value (OHV) 34 mgKOH / g)
  • Polyether polyol (A) -2; trade name “Excenol-230” (manufactured by Asahi Glass Co., Ltd.), polyether polyol obtained by addition polymerization of ethylene oxide and propylene oxide using glycerol as an initiator (weight average molecular weight 3000, Hydroxyl value (OHV) 56 mgKOH / g)
  • TCPP flame retardant: Trade name “TMCPP” (manufactured by Daihachi Chemical Co., Ltd.) (3) Foam stabilizer Foam stabilizer-1; silicone-based nonionic surfactant, trade name “SF-2938F” (manufactured by Toray Dow Corning Silicone) (4) Catalyst Catalyst-1; Tertiary amine catalyst, trade name “TOYOCAT-ET” (manufactured by Tosoh Corporation) Catalyst-2; N, N-dimethylaminoethoxyethanol, trade name “Kaoh No. 26” (manufactured by Kao Corporation)
  • Example 1-2 Using a polyol composition and a polyisocyanate component (c-MDI (“Sumijour 44V-10” manufactured by Sumika Bayer Urethane Co., Ltd., NCO%: 31%) adjusted with the formulation shown in Table 1), an isocyanate index (NCO Index) 1 is mixed on the bottom surface X of the mold (longitudinal direction a length 1820 mm, width direction b length 400 mm, thickness direction c length 100 mm) shown in FIG. Injected from.
  • c-MDI Sud 44V-10” manufactured by Sumika Bayer Urethane Co., Ltd., NCO%: 31%) adjusted with the formulation shown in Table 1
  • Comparative Example 1 Instead of the polyol composition used in Example 1, a polyurethane foam panel was produced in the same manner as in Example 1 except that the polyol composition described in Table 1 was used. The thickness direction of the panel and the foaming direction of the cells in the foam were the same as in Example 1 (substantially vertical (90 °)). The results are shown in Table 1.
  • the weight average molecular weight was measured by GPC (gel permeation chromatography) and converted by standard polystyrene.
  • GPC device manufactured by Shimadzu Corporation, LC-10A Column: Polymer Laboratories, (PLgel, 5 ⁇ m, 500 ⁇ ), (PLgel, 5 ⁇ m, 100 ⁇ ⁇ ), and (PLgel, 5 ⁇ m, 50 ⁇ ) are connected and used.
  • Flow rate 1.0 ml / min
  • Concentration 1.0 g / l
  • Injection volume 40 ⁇ l
  • Eluent Tetrahydrofuran
  • the foam density was determined according to JIS K 7222.
  • Thermal conductivity Based on JIS A9526 (Blowing rigid urethane foam for thermal insulation of buildings), it conforms to JIS A1412-2 (Measurement method of thermal resistance and thermal conductivity of thermal insulation materials-Part 2: Heat flow meter method) (HFM method). The thermal conductivity in the thickness direction of the panel was measured.
  • the polyurethane foam panel of Example 1-2 has a low density, low brittleness, and excellent heat insulation performance in the thickness direction.
  • the polyurethane foam panel of the comparative example 2 was manufactured using the same polyol composition as a raw material, the heat insulation performance in the thickness direction was deteriorated as compared with the example 1.
  • a 5 cm square foam sample was produced from the polyurethane foam produced using the polyol composition according to Example 1 as a raw material, and the foam sample was produced in the T direction (parallel to the foam cell foaming direction) and the W direction (foam cell foaming). The sample was compressed until it became 90% shape (perpendicular to the direction) (compressed 10%), and the restoration rate was measured. The results were restored to 99.0% shape in the T direction and 98.2% shape in the W direction. Therefore, it can be seen that the polyurethane foam panel according to the present invention has a high restoration rate and excellent flexibility.
  • a polyol composition was prepared with the formulation described in Table 2 below. Details of each component in Table 2 are as follows.
  • TCPP flame retardant: Trade name “TMCPP” (manufactured by Daihachi Chemical Co., Ltd.) (3) Foam stabilizer Foam stabilizer-1; silicone-based nonionic surfactant, trade name “SF-2938F” (manufactured by Toray Dow Corning Silicone) (4) Catalyst Catalyst-1; Tertiary amine catalyst, trade name “TOYOCAT-ET” (manufactured by Tosoh Corporation) Catalyst-2; N, N-dimethylaminoethoxyethanol, trade name “Kaoh No. 26” (manufactured by Kao Corporation)
  • Example 3-5 Using a polyol composition and a polyisocyanate component (c-MDI (“Sumijour 44V-10” manufactured by Sumika Bayer Urethane Co., Ltd., NCO%: 31%) adjusted with the formulation shown in Table 2), an isocyanate index (NCO Index) 1 is mixed on the bottom surface X of the mold (longitudinal direction a length 1820 mm, width direction b length 400 mm, thickness direction c length 100 mm) shown in FIG. Injected from.
  • c-MDI Sud 44V-10” manufactured by Sumika Bayer Urethane Co., Ltd., NCO%: 31%) adjusted with the formulation shown in Table 2
  • NCO Index isocyanate index
  • the foamed stock solution composition was reacted to produce a polyurethane foam panel having substantially the same shape as the space in the mold and having the thickness direction of the panel and the foaming direction of the cells in the foam being substantially perpendicular (90 °).
  • the results are shown in Table 2.
  • the measuring method of a weight average molecular weight, foam density, and thermal conductivity is as above-mentioned.
  • the polyurethane foam panel of Example 3-5 has low density, low brittleness, and excellent heat insulation performance in the thickness direction. Moreover, since it has the outstanding softness

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Provided is a polyurethane foam panel obtained by mixing and reacting a polyol composition comprising a polyol compound and water as the foaming agent and a polyisocyanate component, wherein the starting material is a polyol compound comprising a polyether polyol (A) that is a polymer of alkylene oxide and has an average of between two and four functional groups and a weight-average molecular weight between 3,000 and 8,000 and a short glycol (B) having a molecular weight of 250 or less, the water content of the polyol composition is between 20 and 100 parts by weight per 100 parts by weight of polyol compound, and the direction of thickness of the panel and the direction of foaming of the cells in the foam are adjusted to become virtually perpendicular. Moreover, the invention provides a polyurethane foam panel that uses the above-mentioned polyol compound and the above-mentioned water content, wherein the isocyanate index of the polyol composition and polyisocyanate component is 30 or less.

Description

ポリウレタンフォームパネルおよびその製造方法Polyurethane foam panel and manufacturing method thereof
 本発明は、ポリオール化合物、発泡剤である水を含有するポリオール組成物とポリイソシアネート成分とを含有する発泡原液組成物を原料として使用し、低密度かつ優れた断熱性能を備えるポリウレタンフォームパネルおよびその製造方法に関するものである。 The present invention relates to a polyurethane foam panel having a low density and excellent heat insulation performance using a foaming stock solution composition containing a polyol compound and a polyol composition containing water as a foaming agent and a polyisocyanate component as raw materials. It relates to a manufacturing method.
 従来から、戸建て住宅などの建築物の断熱材として、グラスウールが広く使用されている。グラスウールは、その断熱性能は必ずしも十分ではないが、安価であることが広く使用される理由であると考えられる。一方、ポリウレタンフォームパネルは、その断熱性能はグラスウールよりも優れる反面、価格が高価なために、グラスウールほど広く使用されていない。 Conventionally, glass wool has been widely used as a heat insulating material for buildings such as detached houses. Glass wool is not necessarily sufficient in its heat insulation performance, but it is considered that it is a reason why it is widely used because it is inexpensive. On the other hand, polyurethane foam panels are superior in heat insulation performance to glass wool, but are not as widely used as glass wool because of their high price.
 ポリウレタンフォームパネルの価格を下げる方法として、フォームパネルの断熱性能を維持しつつ、その密度を低密度化することが考えられる。下記特許文献1では、数平均分子量が2000~9000であるポリオキシアルキレンポリエーテルポリオールおよび数平均分子量が250~750であるポリオキシアルキレンポリエーテルポリオールからなるポリオール組成物を原料とし、吹き付け工法によって、コア密度が2kg/m以上20kg/m以下である低密度ポリウレタンフォームを製造する点が記載されている。しかしながら、かかる文献に記載のポリオール組成物を原料とした場合、セル荒れ(フォームの外観不良)、脆性(フォームのバサつき)などを考慮すると、フォームの低密度化には限界がある。また、かかる文献に記載のポリウレタンフォームは、吹き付け用途を想定しているため、低復元率であることが重要であり、フォームの柔軟性に劣る。 As a method of reducing the price of the polyurethane foam panel, it is conceivable to reduce the density while maintaining the heat insulating performance of the foam panel. In the following Patent Document 1, a polyol composition consisting of a polyoxyalkylene polyether polyol having a number average molecular weight of 2000 to 9000 and a polyoxyalkylene polyether polyol having a number average molecular weight of 250 to 750 is used as a raw material. It describes that a low density polyurethane foam having a core density of 2 kg / m 3 or more and 20 kg / m 3 or less is produced. However, when the polyol composition described in this document is used as a raw material, there is a limit to reducing the density of the foam in consideration of cell roughness (foam appearance failure), brittleness (fogging of the foam), and the like. Moreover, since the polyurethane foam described in this document assumes a spraying application, it is important that the restoration rate is low, and the flexibility of the foam is inferior.
 下記特許文献2では、平均官能基数2.5~4、水酸基価200~300mgKOH/gのポリエーテルポリオールと、平均官能基数4~6、水酸基価400~900mgKOH/gのポリエーテルポリオールと、平均官能基数2.5~3.5、水酸基価20~60mgKOH/gのポリエーテルポリオールと、ポリオール組成物を原料とし、連続スラブ発泡によって、コア密度が5kg/m以上14kg/m以下である低密度ポリウレタンフォームを製造する点が記載されている。しかしながら、かかる文献に記載のポリウレタンフォームでも、セル荒れ(フォームの外観不良)、脆性(フォームのバサつき)などを考慮すると、やはりフォームの低密度化には限界がある。 In the following Patent Document 2, a polyether polyol having an average functional group number of 2.5 to 4 and a hydroxyl value of 200 to 300 mgKOH / g, a polyether polyol having an average functional group number of 4 to 6 and a hydroxyl value of 400 to 900 mgKOH / g, and an average functionality A polyether polyol having a base number of 2.5 to 3.5 and a hydroxyl value of 20 to 60 mgKOH / g and a polyol composition as a raw material, and having a core density of 5 kg / m 3 or more and 14 kg / m 3 or less by continuous slab foaming. The point of producing a density polyurethane foam is described. However, even in the polyurethane foam described in this document, there is a limit to reducing the density of the foam in consideration of cell roughness (foam appearance defect), brittleness (foaming of the foam), and the like.
 下記特許文献3では、(a) 官能基数2~3.5、水酸基価28~90mgKOH/gおよびポリオキシエチレン単位含有量が5重量%以下であるポリオキシアルキレンポリオール、 (b) 官能基数3~6および水酸基価150~500mgKOH/gであるポリオキシアルキレンポリオール、および(c) 官能基数2~3および水酸基価450~840mgKOH/gであるポリオールの混合物と、上記ポリオールの混合物100重量部に対して、発泡剤としての水6~12重量部とを用いた連続気泡ポリウレタンフオームの製造方法が記載されている。しかしながら、かかる製造方法では、フォーム強度の面からフォーム密度の下限を定めており、フォームの低密度化に限界がある。 In the following Patent Document 3, (a) a polyoxyalkylene polyol having a functional group number of 2 to 3.5, a hydroxyl value of 28 to 90 mgKOH / g and a polyoxyethylene unit content of 5% by weight or less, (b) a functional group number of 3 to 6 and a polyoxyalkylene polyol having a hydroxyl value of 150 to 500 mg KOH / g, and (c) a mixture of a polyol having 2 to 3 functional groups and a hydroxyl value of 450 to 840 mg KOH / g, and 100 parts by weight of the mixture of the above polyols And a process for producing an open-cell polyurethane foam using 6 to 12 parts by weight of water as a blowing agent. However, in such a manufacturing method, the lower limit of the foam density is determined from the viewpoint of foam strength, and there is a limit to reducing the density of the foam.
 ところで、ポリウレタンフォームパネルの低密度化を図る場合、フォームのセルの独立気泡率を下げ、連続気泡の比率を高めることが重要となる。しかしながら、上記の特許文献に記載の発明は、単にポリオール組成物の配合のみに着目されたものに過ぎず、例えば低密度ポリウレタンフォームパネルの形状や、製造工程などにおいて、フォームの断熱性を高める工夫がなされたわけではない。 By the way, when reducing the density of polyurethane foam panels, it is important to reduce the closed cell ratio of the foam cells and increase the ratio of open cells. However, the invention described in the above-mentioned patent document is merely focused on only the blending of the polyol composition. For example, in the form of a low density polyurethane foam panel or a manufacturing process, the invention improves the heat insulation of the foam. Was not done.
特開2002-293868号公報JP 2002-293868 A 特許第4079254号公報Japanese Patent No. 4079254 特開平06-25375号公報Japanese Patent Laid-Open No. 06-25375
 本発明は上記実情に鑑みてなされたものであり、その目的は、低密度であって、かつ優れた断熱性能を備え、戸建て住宅などの建築物用の断熱材として有用なポリウレタンフォームパネルおよびその製造方法を提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is a polyurethane foam panel having a low density and excellent heat insulation performance, and useful as a heat insulating material for buildings such as detached houses and the like. It is to provide a manufacturing method.
 上記課題を解決するため、本発明者らは原料となるポリオール組成物の配合に関して鋭意検討すると共に、ポリウレタンフォームパネルの厚み方向とセルの発泡方向とを略垂直に設定することで、断熱材として使用したときに、その断熱性能を最も効率良く高めることができる点を見出した。 In order to solve the above-mentioned problems, the present inventors diligently studied the blending of the polyol composition as a raw material, and set the thickness direction of the polyurethane foam panel and the foaming direction of the cells to be approximately perpendicular to each other as a heat insulating material. It has been found that the thermal insulation performance can be improved most efficiently when used.
 さらに上記課題の解決方法に関して鋭意検討した結果、本発明者らは、原料となるポリオール組成物の配合およびポリオール組成物とポリイソシアネート成分とを混合、反応させる際のイソシアネート指数(NCO Index)を工夫することで、低密度でありながらフォームのバサつき(脆性)が無く、かつ優れた柔軟性および断熱性能を有するポリウレタンフォームパネルが得られることを見出した。さらに、ポリウレタンフォームパネルの厚み方向とセルの発泡方向とを略垂直に設定することで、断熱材として使用したときに、その断熱性能を最も効率良く高めることができる点を見出した。本発明は上記知見に基づき成し遂げられたものであり、下記の如き構成される。 Furthermore, as a result of diligent investigation regarding the solution to the above problems, the present inventors have devised the composition of the polyol composition as a raw material and the isocyanate index (NCO Index) when mixing and reacting the polyol composition and the polyisocyanate component. By doing so, it was found that a polyurethane foam panel having low density but having no foam brittleness and having excellent flexibility and heat insulation performance can be obtained. Furthermore, it has been found that by setting the thickness direction of the polyurethane foam panel and the foaming direction of the cells substantially perpendicular to each other, the heat insulation performance can be enhanced most efficiently when used as a heat insulating material. The present invention has been accomplished based on the above findings, and is configured as follows.
 上記目的は、下記の如き本発明により達成できる。即ち、本発明に係るポリウレタンフォームパネルは、ポリオール化合物、発泡剤である水を含有するポリオール組成物とポリイソシアネート成分とを混合、反応させて得られたポリウレタンフォームパネルであって、前記ポリオール化合物が、平均官能基数が2~4、重量平均分子量が3000~8000であって、アルキレンオキサイドの重合体であるポリエーテルポリオール(A)と、分子量が250未満であるショートグリコール(B)と、を含有し、前記ポリオール化合物100重量部に対して、前記水を20~100重量部含有し、前記ポリウレタンフォームパネルの厚み方向と、フォーム内セルの発泡方向とが略垂直であることを特徴とする。 The above object can be achieved by the present invention as described below. That is, the polyurethane foam panel according to the present invention is a polyurethane foam panel obtained by mixing and reacting a polyol composition and a polyol composition containing water as a foaming agent and a polyisocyanate component, wherein the polyol compound is And polyether polyol (A), which is an alkylene oxide polymer having an average functional group number of 2 to 4 and a weight average molecular weight of 3000 to 8000, and a short glycol (B) having a molecular weight of less than 250 The water content is 20 to 100 parts by weight with respect to 100 parts by weight of the polyol compound, and the thickness direction of the polyurethane foam panel and the foaming direction of the cells in the foam are substantially perpendicular.
 上記ポリオール組成物は、発泡剤としての水を20~100重量部含有する。このため、かかるポリオール組成物を原料として使用した場合、低密度のポリウレタンフォームパネルを製造することができる。 The above polyol composition contains 20 to 100 parts by weight of water as a foaming agent. For this reason, when this polyol composition is used as a raw material, a low-density polyurethane foam panel can be produced.
 ところで、ポリオール化合物として高分子量のポリエーテルポリオールのみを含有する場合であって、ポリオール組成物中の水の配合量を増やすと、フォームの発泡段階で樹脂強度が不十分となり、フォーム内の発泡ガス抜けが多く発生し、フォームの収縮が発生し易くなる。その結果、フォームの低密度化が不十分となる傾向がある。しかしながら、上記ポリオール組成物では、高分子量のポリエーテルポリオール(A)と共に分子量が250未満であるショートグリコール(B)を含有するため、フォームの発泡初期段階で増粘速度(樹脂化速度)が早くなる。これにより、高分子量のポリエーテルポリオール(A)に起因して、フォームの復元率が高まると共に、低分子量のショートグリコール(B)に起因して、フォームの発泡初期から樹脂強度が高まる。その結果、低密度であって、かつ柔軟性に優れたポリウレタンフォームパネルを製造することができる。 By the way, when only a high molecular weight polyether polyol is contained as a polyol compound and the blending amount of water in the polyol composition is increased, the resin strength becomes insufficient at the foaming stage of the foam, and the foaming gas in the foam Many omissions occur and foam shrinkage tends to occur. As a result, the density of the foam tends to be insufficient. However, since the polyol composition contains the high-molecular-weight polyether polyol (A) and the short glycol (B) having a molecular weight of less than 250, the speed of thickening (resinization speed) is high at the early stage of foam foaming. Become. Thereby, the restoration rate of the foam is increased due to the high molecular weight polyether polyol (A), and the resin strength is increased from the early stage of foam foaming due to the low molecular weight short glycol (B). As a result, a polyurethane foam panel having low density and excellent flexibility can be produced.
 さらに、ポリオール組成物中に高分子量のポリエーテルポリオール(A)と低分子量のショートグリコール(B)とを含有するため、フォームを低密度化しても、フォームのセル径が小さくなる。その結果、フォームのセル荒れ(フォームの外観不良)を防止し、かつフォームのバサつきを抑えて脆性を小さくすることができる。 Furthermore, since the polyol composition contains the high molecular weight polyether polyol (A) and the low molecular weight short glycol (B), the cell diameter of the foam is reduced even if the density of the foam is reduced. As a result, foam cell roughness (foam appearance defect) can be prevented, and foam brittleness can be suppressed and brittleness can be reduced.
 上記のとおり、本発明に係るポリウレタンフォームパネルは低密度であり、フォーム内のセルは個々には略楕円形状であって、複数のセルが連通し、連続気泡率が高く、一定の発泡方向を有する。かかるポリウレタンフォームパネルは、その厚み方向と、フォーム内セルの発泡方向とが略垂直であるため、厚み方向での熱の移動を抑制することができる。そのため、戸建て住宅などの建築物にポリウレタンフォームパネルを配設した場合、特に厚み方向での断熱性能が高まる。 As described above, the polyurethane foam panel according to the present invention has a low density, and the cells in the foam are individually substantially elliptical, with a plurality of cells communicating, a high open cell ratio, and a constant foaming direction. Have. In such a polyurethane foam panel, since the thickness direction and the foaming direction of the cells in the foam are substantially perpendicular, the heat transfer in the thickness direction can be suppressed. Therefore, when a polyurethane foam panel is disposed in a building such as a detached house, the heat insulation performance in the thickness direction is particularly enhanced.
 また、別の本発明に係るポリウレタンフォームパネルは、ポリオール化合物、発泡剤である水を含有するポリオール組成物とポリイソシアネート成分とを混合、反応させて得られたポリウレタンフォームパネルであって、前記ポリオール化合物が、平均官能基数が2~4、重量平均分子量が3000~8000であって、アルキレンオキサイドの重合体であるポリエーテルポリオール(A)と、分子量が250未満であるショートグリコール(B)と、を含有し、前記ポリオール化合物100重量部に対して、前記水を20~100重量部含有し、前記ポリオール組成物と前記ポリイソシアネート成分とを混合、反応させる際のイソシアネート指数が30以下であることを特徴とする。 Another polyurethane foam panel according to the present invention is a polyurethane foam panel obtained by mixing and reacting a polyol composition and a polyol composition containing water as a foaming agent and a polyisocyanate component, wherein the polyol The compound has an average functional group number of 2 to 4, a weight average molecular weight of 3000 to 8000, a polyether polyol (A) which is a polymer of alkylene oxide, and a short glycol (B) having a molecular weight of less than 250, 20 to 100 parts by weight of water with respect to 100 parts by weight of the polyol compound, and an isocyanate index when mixing and reacting the polyol composition and the polyisocyanate component is 30 or less It is characterized by.
 上記ポリオール組成物は、発泡剤としての水を20~100重量部含有する。このため、かかるポリオール組成物を原料として使用した場合、低密度のポリウレタンフォームパネルを製造することができる。 The above polyol composition contains 20 to 100 parts by weight of water as a foaming agent. For this reason, when this polyol composition is used as a raw material, a low-density polyurethane foam panel can be produced.
 ところで、ポリオール化合物として高分子量のポリエーテルポリオールのみを含有する場合であって、ポリオール組成物中の水の配合量を増やすと、フォームの発泡段階で樹脂強度が不十分となり、フォーム内の発泡ガス抜けが多く発生し、フォームの収縮が発生し易くなる。その結果、フォームの低密度化が不十分となる傾向がある。しかしながら、上記ポリオール組成物では、高分子量のポリエーテルポリオール(A)と共に分子量が250未満であるショートグリコール(B)を含有するため、フォームの発泡初期段階で増粘速度(樹脂化速度)が早くなる。これにより、高分子量のポリエーテルポリオール(A)に起因して、フォームの復元率が高まると共に、低分子量のショートグリコール(B)に起因して、フォームの発泡初期から樹脂強度が高まる。その結果、低密度であって、かつ柔軟性に優れたポリウレタンフォームパネルを製造することができる。 By the way, when only a high molecular weight polyether polyol is contained as a polyol compound and the blending amount of water in the polyol composition is increased, the resin strength becomes insufficient at the foaming stage of the foam, and the foaming gas in the foam Many omissions occur and foam shrinkage tends to occur. As a result, the density of the foam tends to be insufficient. However, since the polyol composition contains the high-molecular-weight polyether polyol (A) and the short glycol (B) having a molecular weight of less than 250, the speed of thickening (resinization speed) is high at the early stage of foam foaming. Become. Thereby, the restoration rate of the foam is increased due to the high molecular weight polyether polyol (A), and the resin strength is increased from the early stage of foam foaming due to the low molecular weight short glycol (B). As a result, a polyurethane foam panel having low density and excellent flexibility can be produced.
 さらに、ポリオール組成物中に高分子量のポリエーテルポリオール(A)と低分子量のショートグリコール(B)とを含有するため、フォームを低密度化しても、フォームのセル径が小さくなる。その結果、フォームのセル荒れ(フォームの外観不良)を防止し、かつフォームのバサつきを抑えて脆性を小さくすることができる。 Furthermore, since the polyol composition contains the high molecular weight polyether polyol (A) and the low molecular weight short glycol (B), the cell diameter of the foam is reduced even if the density of the foam is reduced. As a result, foam cell roughness (foam appearance defect) can be prevented, and foam brittleness can be suppressed and brittleness can be reduced.
 本発明に係るポリウレタンフォームパネルは、特定のポリオール組成物を使用し、かつポリオール組成物とポリイソシアネート成分とを混合、反応させる際のイソシアネート指数が30以下であるため、優れた柔軟性を有する。このため、ポリウレタンフォームパネルを例えば、柱-柱間の所定の形状などに嵌め込み作業を行う際、嵌め込み易く、ポリウレタンフォームパネルの嵌め込み作業性に優れる。 The polyurethane foam panel according to the present invention has excellent flexibility because it uses a specific polyol composition and has an isocyanate index of 30 or less when the polyol composition and the polyisocyanate component are mixed and reacted. For this reason, when the polyurethane foam panel is fitted into, for example, a predetermined shape between pillars, it is easy to fit, and the polyurethane foam panel is easily fitted.
 上記ポリウレタンフォームパネルにおいて、前記ポリウレタンフォームパネルの厚み方向と、フォーム内セルの発泡方向とが略垂直であることが好ましい。上記のとおり、本発明に係るポリウレタンフォームパネルは低密度であり、フォーム内のセルは個々には略楕円形状であって、複数のセルが連通し、連続気泡率が高い。さらに、ポリウレタンフォームパネルの厚み方向と、フォーム内セルの発泡方向とが略垂直である場合、厚み方向での熱の移動を抑制することができる。そのため、戸建て住宅などの建築物にポリウレタンフォームパネルを配設した場合、特に厚み方向での断熱性能が高まる。 In the polyurethane foam panel, it is preferable that the thickness direction of the polyurethane foam panel and the foaming direction of the cells in the foam are substantially perpendicular. As described above, the polyurethane foam panel according to the present invention has a low density, the cells in the foam are individually substantially elliptical, and a plurality of cells communicate with each other, and the open cell ratio is high. Furthermore, when the thickness direction of the polyurethane foam panel and the foaming direction of the cells in the foam are substantially perpendicular, heat transfer in the thickness direction can be suppressed. Therefore, when a polyurethane foam panel is disposed in a building such as a detached house, the heat insulation performance in the thickness direction is particularly enhanced.
 上記ポリウレタンフォームパネルにおいて、前記ポリオール化合物100重量部中、前記ポリエーテルポリオール(A)を10~80重量部含有し、前記ショートグリコール(B)を10~60重量部含有することが好ましい。かかる構成によれば、フォームの樹脂強度を高めつつ、フォームの復元率を高め、かつフォームのセル径を小さくすることができる。その結果、ポリウレタンフォームパネルを低密度化しつつ、脆性および柔軟性をさらにバランス良く向上することができる。 The polyurethane foam panel preferably contains 10 to 80 parts by weight of the polyether polyol (A) and 10 to 60 parts by weight of the short glycol (B) in 100 parts by weight of the polyol compound. According to such a configuration, it is possible to increase the foam recovery rate and reduce the foam cell diameter while increasing the resin strength of the foam. As a result, the brittleness and flexibility can be further improved in a balanced manner while reducing the density of the polyurethane foam panel.
 上記ポリウレタンフォームパネルにおいて、前記ポリオール化合物が、さらに平均官能基数が2~4、重量平均分子量が3000~5000であって、プロピレンオキサイドの重合体であるポリエーテルポリオール(C)を含有することが好ましい。ポリオール化合物として、プロピレンオキサイドの重合体である高分子量ポリエーテルポリオール(C)を含有する場合、フォームの発泡段階末期でフォームのセル膜が破れ、連続気泡ポリウレタンフォームパネルに成り易い。その結果、フォームの収縮などを抑えつつ、より確実にフォームを低密度化することができる。 In the polyurethane foam panel, it is preferable that the polyol compound further includes a polyether polyol (C) having an average functional group number of 2 to 4, a weight average molecular weight of 3000 to 5000, and a propylene oxide polymer. . When the high molecular weight polyether polyol (C), which is a propylene oxide polymer, is contained as the polyol compound, the cell membrane of the foam is broken at the end of the foaming stage of the foam, and an open-cell polyurethane foam panel tends to be formed. As a result, the density of the foam can be reduced more reliably while suppressing shrinkage of the foam.
 本発明に係るポリウレタンフォームパネルの製造方法は、ポリオール化合物、発泡剤である水を含有するポリオール組成物とポリイソシアネート成分とを含有する発泡原液組成物を原料として得られるポリウレタンフォームパネルの製造方法であって、長手方向、幅方向および厚み方向を有するモールドに対し、前記長手方向および前記厚み方向に延びる側面を底面として、前記発泡原液組成物を注入する注入工程と、前記注入工程後に前記発泡原液組成物を反応させる反応工程と、を備え、前記ポリオール化合物が、平均官能基数が2~4、重量平均分子量が3000~8000であって、アルキレンオキサイドの重合体であるポリエーテルポリオール(A)と、分子量が250未満であるショートグリコール(B)と、を含有し、前記ポリオール化合物100重量部に対して、前記水を20~100重量部含有することを特徴とする。かかる製造方法によれば、ポリウレタンフォームパネルの厚み方向と、フォーム内セルの発泡方向とが略垂直であり、厚み方向での断熱性能に優れたポリウレタンフォームパネルを効率良く製造することができる。 The method for producing a polyurethane foam panel according to the present invention is a method for producing a polyurethane foam panel obtained by using as a raw material a foamed stock solution composition containing a polyol compound and a polyol composition containing water as a foaming agent and a polyisocyanate component. An injection step of injecting the foaming stock solution composition into a mold having a longitudinal direction, a width direction, and a thickness direction with a side surface extending in the longitudinal direction and the thickness direction as a bottom surface, and the foaming stock solution after the injection step A reaction step of reacting the composition, wherein the polyol compound has an average functional group number of 2 to 4, a weight average molecular weight of 3000 to 8000, and a polyether polyol (A) which is a polymer of an alkylene oxide. Short glycol (B) having a molecular weight of less than 250, Relative triol compound 100 parts by weight, the water, characterized in that it contains 20 to 100 parts by weight. According to this production method, the polyurethane foam panel having excellent heat insulation performance in the thickness direction can be efficiently produced because the thickness direction of the polyurethane foam panel and the foaming direction of the cells in the foam are substantially perpendicular.
 また、別の本発明に係るポリウレタンフォームパネルの製造方法は、ポリオール化合物、発泡剤である水を含有するポリオール組成物とポリイソシアネート成分とを含有する発泡原液組成物を原料として得られるポリウレタンフォームパネルの製造方法であって、前記ポリオール化合物が、平均官能基数が2~4、重量平均分子量が3000~8000であって、アルキレンオキサイドの重合体であるポリエーテルポリオール(A)と、分子量が250未満であるショートグリコール(B)と、を含有し、前記ポリオール化合物100重量部に対して、前記水を20~100重量部含有し、前記ポリオール組成物と前記ポリイソシアネート成分とを混合、反応させる際のイソシアネート指数が30以下であることを特徴とする。かかる製造方法によれば、低密度であって、かつ優れた柔軟性および断熱性能を備えたポリウレタンフォームパネルを製造することができる。 Another method for producing a polyurethane foam panel according to the present invention is a polyurethane foam panel obtained by using a foamed stock solution composition containing a polyol compound and a polyol composition containing water as a foaming agent and a polyisocyanate component as raw materials. The polyol compound has an average number of functional groups of 2 to 4, a weight average molecular weight of 3000 to 8000, and a polyether polyol (A) that is a polymer of alkylene oxide, and a molecular weight of less than 250. When the polyol composition and the polyisocyanate component are mixed and reacted with each other, the short glycol (B) and the polyol compound are contained in an amount of 20 to 100 parts by weight per 100 parts by weight of the polyol compound. The isocyanate index is 30 or less. According to this manufacturing method, it is possible to manufacture a polyurethane foam panel having a low density and having excellent flexibility and heat insulation performance.
 上記ポリウレタンフォームパネルの製造方法において、長手方向、幅方向および厚み方向を有するモールドに対し、前記長手方向および前記厚み方向に延びる側面を底面として、前記発泡原液組成物を注入する注入工程と、前記注入工程後に前記発泡原液組成物を反応させる反応工程と、を備えることが好ましい。かかる製造方法によれば、ポリウレタンフォームパネルの厚み方向と、フォーム内セルの発泡方向とが略垂直であり、厚み方向での断熱性能に優れたポリウレタンフォームパネルを効率良く製造することができる。 In the method for producing a polyurethane foam panel, an injection step of injecting the foamed stock solution composition with a side surface extending in the longitudinal direction and the thickness direction as a bottom surface for a mold having a longitudinal direction, a width direction, and a thickness direction; And a reaction step of reacting the foamed stock solution composition after the injection step. According to this production method, the polyurethane foam panel having excellent heat insulation performance in the thickness direction can be efficiently produced because the thickness direction of the polyurethane foam panel and the foaming direction of the cells in the foam are substantially perpendicular.
 上記ポリウレタンフォームパネルの製造方法において、前記ポリオール化合物100重量部中、前記ポリエーテルポリオール(A)を10~80重量部含有し、前記ショートグリコール(B)を10~60重量部含有することが好ましい。 In the method for producing a polyurethane foam panel, it is preferable that 10 to 80 parts by weight of the polyether polyol (A) and 10 to 60 parts by weight of the short glycol (B) are contained in 100 parts by weight of the polyol compound. .
 また、上記ポリウレタンフォームパネルの製造方法において、前記ポリオール化合物が、さらに平均官能基数が2~4、重量平均分子量が3000~5000であって、プロピレンオキサイドの重合体であるポリエーテルポリオール(C)を含有することが好ましい。 In the method for producing a polyurethane foam panel, the polyol compound further comprises a polyether polyol (C) having an average functional group number of 2 to 4 and a weight average molecular weight of 3000 to 5000, which is a polymer of propylene oxide. It is preferable to contain.
従来のポリウレタンフォームパネルの製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of the conventional polyurethane foam panel. 本発明のポリウレタンフォームパネルの製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of the polyurethane foam panel of this invention.
 本発明に係るポリウレタンフォームパネルの原料となるポリオール組成物は、ポリオール化合物として、平均官能基数が2~4、重量平均分子量が3000~8000であって、アルキレンオキサイドの重合体であるポリエーテルポリオール(A)と、分子量が250未満であるショートグリコール(B)と、を含有する。 The polyol composition used as a raw material for the polyurethane foam panel according to the present invention is a polyether polyol (polyol polyol) having an average number of functional groups of 2 to 4 and a weight average molecular weight of 3000 to 8000 as a polyol compound, which is an alkylene oxide polymer. A) and short glycol (B) having a molecular weight of less than 250.
 ポリエーテルポリオール(A)は、2~4個の活性水素原子を有する開始剤に、アルキレンオキサイドを開環付加重合させて得られたポリオキシアルキレンポリオールである。開始剤としては、具体的には例えば、脂肪族多価アルコール(例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、シクロヘキシレングリコール、シクロヘキサンジメタノールなどのグリコール類、トリメチロールプロパン、グリセリンなどのトリオール類、ペンタエリスリトールなどの4官能アルコール類、脂肪族アミン(例えば、エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ヘキサメチレンジアミン、ネオペンチルジアミンなどのアルキレンジアミン、モノエタノールアミン、ジエタノールアミンなどのアルカノールアミン)、芳香族アミン(例えば、2,4-トルエンジアミン、2,6-トルエンジアミン、ジエチルトルエンジアミン、4,4’-ジアミノジフェニルメタン、p-フェニレンジアミン、o-フェニレンジアミン、ナフタレンジアミンなど)などが挙げられ、これらはそれぞれ1種単独で用いても2種以上併用してもよい。開始剤として、脂肪族アルコールを用いることが好ましく、トリオール類を用いることがより好ましく、グリセリンを用いることが特に好ましい。また、ポリエーテルポリオール(A)は、平均官能基数が2~4であり、2.5~3.5であることがより好ましい。さらに、ポリエーテルポリオール(A)は重量平均分子量が3000~5000であることがより好ましい。 The polyether polyol (A) is a polyoxyalkylene polyol obtained by ring-opening addition polymerization of alkylene oxide to an initiator having 2 to 4 active hydrogen atoms. Specific examples of the initiator include aliphatic polyhydric alcohols (for example, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1,4-butanediol, 1,3-butanediol, 1,6-hexane. Diols, neopentyl glycol, cyclohexylene glycol, glycols such as cyclohexanedimethanol, triols such as trimethylolpropane and glycerin, tetrafunctional alcohols such as pentaerythritol, aliphatic amines (eg, ethylenediamine, propylenediamine, butylenediamine) , Alkylene diamines such as hexamethylene diamine and neopentyl diamine, alkanol amines such as monoethanolamine and diethanolamine), aromatic amines (for example, 2, -Toluenediamine, 2,6-toluenediamine, diethyltoluenediamine, 4,4′-diaminodiphenylmethane, p-phenylenediamine, o-phenylenediamine, naphthalenediamine, etc.), each of which is used alone. However, it is preferable to use an aliphatic alcohol as the initiator, more preferably a triol, more preferably glycerin, and the polyether polyol (A) may be used in combination. The average number of functional groups is 2 to 4, more preferably 2.5 to 3.5, and the polyether polyol (A) more preferably has a weight average molecular weight of 3000 to 5000.
 アルキレンオキサイドとしては、エチレンオキサイド、プロピレンオキサイド、1,2-ブチレンオキサイド、2,3-ブチレンオキサイド、スチレンオキサイド、シクロヘキセンオキサイドなどが挙げられる。これらの中でも、エチレンオキサイドおよびプロピレンオキサイドを併用して、前記開始剤に開環付加重合させることが好ましい。その際、エチレンオキサイドの比率((エチレンオキサイド)/(エチレンオキサイド+プロピレンオキサイド))を5%~30%とすることが好ましい。 Examples of the alkylene oxide include ethylene oxide, propylene oxide, 1,2-butylene oxide, 2,3-butylene oxide, styrene oxide, and cyclohexene oxide. Among these, it is preferable to use ethylene oxide and propylene oxide in combination to cause ring-opening addition polymerization to the initiator. At that time, the ratio of ethylene oxide ((ethylene oxide) / (ethylene oxide + propylene oxide)) is preferably 5% to 30%.
 ポリエーテルポリオール(A)の水酸基価は、20~100mgKOH/gであることが好ましく、30~60mgKOH/gであることがより好ましい。この水酸基価が20mgKOH/g未満であると、ポリイソシアネート成分に対するポリオール組成物の粘度比が高くなり、混合時の攪拌不良につながる。逆に、100mgKOH/gを超えると、得られたポリウレタンフォームに適度な靱性を付与することが難しくなる。水酸基価は、JIS K1557-1:2007に準拠して測定される値である。 The hydroxyl value of the polyether polyol (A) is preferably 20 to 100 mgKOH / g, and more preferably 30 to 60 mgKOH / g. When the hydroxyl value is less than 20 mg KOH / g, the viscosity ratio of the polyol composition to the polyisocyanate component increases, leading to poor stirring during mixing. On the other hand, when it exceeds 100 mgKOH / g, it becomes difficult to impart appropriate toughness to the obtained polyurethane foam. The hydroxyl value is a value measured according to JIS K1557-1: 2007.
 分子量が250未満であるショートグリコール(B)は、例えばエチレングリコール(分子量62)、プロピレングリコール(分子量76)、ジエチレングリコール(分子量106)、ジプロピレングリコール(分子量134)、1,4-ブタンジオール(分子量90)、1,3-ブタンジオール(分子量90)、1,6-ヘキサンジオール(分子量118)、グリセリン(分子量92)、トリプロピレングリコール(分子量192)などが挙げられる。これらの中でも、フォームの樹脂強度をより確実に高めるためには、ジエチレングリコール、ジプロピレングリコールおよびグリセリンが好ましく、ジエチレングリコールが特に好ましい。ショートグリコール(B)の分子量は、62~200mgKOH/gであることが好ましく、90~150mgKOH/gであることがより好ましい。 Short glycol (B) having a molecular weight of less than 250 includes, for example, ethylene glycol (molecular weight 62), propylene glycol (molecular weight 76), diethylene glycol (molecular weight 106), dipropylene glycol (molecular weight 134), 1,4-butanediol (molecular weight). 90), 1,3-butanediol (molecular weight 90), 1,6-hexanediol (molecular weight 118), glycerin (molecular weight 92), tripropylene glycol (molecular weight 192), and the like. Among these, diethylene glycol, dipropylene glycol and glycerin are preferable and diethylene glycol is particularly preferable in order to increase the resin strength of the foam more reliably. The molecular weight of the short glycol (B) is preferably 62 to 200 mgKOH / g, and more preferably 90 to 150 mgKOH / g.
 本発明に係るポリウレタンフォーム用ポリオール組成物では、ポリオール化合物として、さらに平均官能基数が2~4、重量平均分子量が3000~5000であって、プロピレンオキサイドの重合体であるポリエーテルポリオール(C)を含有することが好ましい。ポリエーテルポリオール(C)は、2~4個の活性水素原子を有する開始剤に、プロピレンオキサイドのみを開環付加重合させて得られたポリオキシアルキレンポリオールである。開始剤としては、上述した脂肪族多価アルコール、脂肪族アミン、芳香族アミンなどが挙げられ、特に限定されない。開始剤として、特に好ましくはグリセリンである。 In the polyol composition for polyurethane foam according to the present invention, a polyether polyol (C) which is a polymer of propylene oxide having an average number of functional groups of 2 to 4 and a weight average molecular weight of 3000 to 5000 as a polyol compound. It is preferable to contain. The polyether polyol (C) is a polyoxyalkylene polyol obtained by ring-opening addition polymerization of propylene oxide alone to an initiator having 2 to 4 active hydrogen atoms. Examples of the initiator include the aliphatic polyhydric alcohols, aliphatic amines, and aromatic amines described above, and are not particularly limited. As the initiator, glycerol is particularly preferable.
 本発明にて原料として使用するポリオール組成物では、低密度化しつつ断熱性能に優れたポリウレタンフォームパネルを製造するために、ポリオール化合物100重量部中、ポリエーテルポリオール(A)を10~80重量部含有し、ショートグリコール(B)を10~60重量部含有することが好ましく、ポリエーテルポリオール(A)を15~70重量部含有し、ショートグリコール(B)を10~50重量部含有することがより好ましい。また、ポリエーテルポリオール(C)を含有する場合、ポリエーテルポリオール(A)を10~30重量部含有し、ショートグリコール(B)を10~60重量部含有し、かつポリエーテルポリオール(C)30~70重量部含有することが好ましく、ポリエーテルポリオール(A)を15~25重量部含有し、ショートグリコール(B)を10~50重量部含有し、かつポリエーテルポリオール(C)40~60重量部含有することがより好ましい。 In the polyol composition used as a raw material in the present invention, 10 to 80 parts by weight of the polyether polyol (A) in 100 parts by weight of the polyol compound in order to produce a polyurethane foam panel having a low density and excellent heat insulating performance. It is preferable to contain 10 to 60 parts by weight of the short glycol (B), 15 to 70 parts by weight of the polyether polyol (A), and 10 to 50 parts by weight of the short glycol (B). More preferred. When the polyether polyol (C) is contained, the polyether polyol (A) is contained in an amount of 10 to 30 parts by weight, the short glycol (B) is contained in an amount of 10 to 60 parts by weight, and the polyether polyol (C) 30 It is preferable to contain ˜70 parts by weight, the polyether polyol (A) is contained in 15 to 25 parts by weight, the short glycol (B) is contained in 10 to 50 parts by weight, and the polyether polyol (C) is contained in 40 to 60 parts by weight. It is more preferable to contain part.
 上記ポリオール組成物には、発泡剤として水が配合される。発泡剤は水単独であることが好ましく、その配合量は、ポリオール化合物100重量部に対して20~100重量部であり、より好ましくは30~90重量部であり、さらに好ましくは40~80重量部である。このように水を多量に配合することで、ポリウレタンフォームパネルの低密度化を図ることができる。 In the polyol composition, water is blended as a foaming agent. The foaming agent is preferably water alone, and the blending amount thereof is 20 to 100 parts by weight, more preferably 30 to 90 parts by weight, still more preferably 40 to 80 parts by weight based on 100 parts by weight of the polyol compound. Part. Thus, the density of a polyurethane foam panel can be reduced by blending a large amount of water.
 本発明に係るポリウレタンフォームパネルのコア密度は、20kg/m以下であることが好ましく、より好ましくは15kg/m以下であり、更に好ましくは12kg/m以下である。かかるフォーム密度は、例えば、発泡剤としての水の量を、20~100重量部(対ポリオール化合物100重量部)に調整することにより、上記範囲内に設定することができる。ここで、フォーム密度は、JIS K7222に準拠して測定される値である。 The core density of the polyurethane foam panel according to the present invention is preferably 20 kg / m 3 or less, more preferably 15 kg / m 3 or less, and further preferably 12 kg / m 3 or less. Such foam density can be set within the above range by adjusting the amount of water as a foaming agent to 20 to 100 parts by weight (with respect to 100 parts by weight of the polyol compound), for example. Here, the foam density is a value measured according to JIS K7222.
 上記ポリオール組成物には、通常、難燃剤、触媒、および整泡剤が更に配合される。また、着色剤や酸化防止剤など、ポリウレタンフォーム用ポリオール組成物に配合される各種添加剤を更に配合してもよい。 In general, a flame retardant, a catalyst, and a foam stabilizer are further added to the polyol composition. Moreover, you may further mix | blend the various additives mix | blended with the polyol composition for polyurethane foams, such as a coloring agent and antioxidant.
 難燃剤としては、有機リン酸エステル類、ハロゲン含有化合物、水酸化アルミニウムなどの金属化合物が挙げられ、特に、有機リン酸エステル類がポリオール組成物の粘度低下効果を有するので好ましい。有機リン酸エステルとしては、リン酸のハロゲン化アルキルエステル、アルキルリン酸エステルやアリールリン酸エステル、ホスホン酸エステルなどが挙げられる。具体的には、トリス(クロロプロピル)ホスフェート(TMCPP、大八化学製)、トリブトキシエチルホスフェート(TBEP)、トリブチルホスフェート、トリエチルホスフェート、トリメチルホスフェート、クレジルフェニルホスフェートなどが挙げられる。難燃剤の配合量は、ポリオール化合物100重量部に対して10~50重量部であることが好ましく、より好ましくは15~40重量部である。特に、ポリオール組成物中、前記ポリエーテルポリオール(A)および前記ショートグリコール(B)に加えて、ポリオール化合物100重量部に対して難燃剤を20重量部以上含有すると、フォームの脆性悪化を防止することができるため好ましい。 Examples of the flame retardant include metal compounds such as organophosphates, halogen-containing compounds, and aluminum hydroxide. Particularly, organophosphates are preferable because they have an effect of reducing the viscosity of the polyol composition. Examples of the organic phosphate ester include halogenated alkyl ester of phosphoric acid, alkyl phosphate ester, aryl phosphate ester, and phosphonate ester. Specific examples include tris (chloropropyl) phosphate (TMCPP, manufactured by Daihachi Chemical), tributoxyethyl phosphate (TBEP), tributyl phosphate, triethyl phosphate, trimethyl phosphate, cresyl phenyl phosphate, and the like. The blending amount of the flame retardant is preferably 10 to 50 parts by weight, more preferably 15 to 40 parts by weight with respect to 100 parts by weight of the polyol compound. In particular, when the flame retardant is contained in an amount of 20 parts by weight or more with respect to 100 parts by weight of the polyol compound in addition to the polyether polyol (A) and the short glycol (B) in the polyol composition, the brittleness of the foam is prevented. This is preferable.
 触媒としては、ウレタン化反応を促進する触媒であれば特に限定されないが、好ましくは、ポリイソシアネート成分のイソシアネート基と反応することができる反応性のアミン触媒を用いることである。そのような反応性のアミン触媒としては、N,N-ジメチルエタノールアミン、N,N-ジメチルアミノエトキシエタノール、N,N,N’-トリメチルアミノエチルエタノールアミン、N,N,N’,N’-テトラメチル-2-ヒドロキシプロピレンジアミン、N-ヒドロキシエチルモルホリン、N-メチル-N-ヒドロキシエチルピペラジン、N,N-ジメチルプロピレンジアミンなどが挙げられる。 The catalyst is not particularly limited as long as it promotes the urethanization reaction. Preferably, a reactive amine catalyst capable of reacting with the isocyanate group of the polyisocyanate component is used. Such reactive amine catalysts include N, N-dimethylethanolamine, N, N-dimethylaminoethoxyethanol, N, N, N′-trimethylaminoethylethanolamine, N, N, N ′, N ′. -Tetramethyl-2-hydroxypropylenediamine, N-hydroxyethylmorpholine, N-methyl-N-hydroxyethylpiperazine, N, N-dimethylpropylenediamine and the like.
 なお、通常の第3級アミン触媒を用いることもでき、そのような第3級アミン触媒としては、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラメチルヘキサメチレンジアミン、N,N,N’,N’,N”-ペンタメチルジエチレントリアミン、ジアザビシクロウンデセン、N,N-ジメチルシクロヘキシルアミン、トリエチレンジアミン、N-メチルモルホリンなどが挙げられる。 In addition, a normal tertiary amine catalyst can also be used, and as such a tertiary amine catalyst, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′— Examples thereof include tetramethylhexamethylenediamine, N, N, N ′, N ′, N ″ -pentamethyldiethylenetriamine, diazabicycloundecene, N, N-dimethylcyclohexylamine, triethylenediamine, and N-methylmorpholine.
 触媒の配合量は、ポリオール化合物100重量部に対して2~10重量部であることが好ましく、より好ましくは3~8重量部である。 The compounding amount of the catalyst is preferably 2 to 10 parts by weight, more preferably 3 to 8 parts by weight with respect to 100 parts by weight of the polyol compound.
 整泡剤としては、公知のポリウレタンフォーム用の整泡剤の中から、例えば、エチレンオキサイドやプロピレンオキサイドの重合体であるポリオキシアルキレングリコールとポリジメチルシロキサンとのグラフト共重合体が挙げられ、ポリオキシアルキレン中のオキシエチレン基含有率が70~100モル%のシリコーン整泡剤が好ましく用いられ、具体的には、SH-193、SF-2937F、SF-2938F(東レダウコーニングシリコーン社製)、B-8465、B-8467、B-8481(エボニックデグサジャパン社製)、L-6900(モメンティブ社製)などが挙げられる。整泡剤の配合量は、ポリオール化合物100重量部に対して1~10重量部であることが好ましい。 Examples of the foam stabilizer include, among known foam stabilizers for polyurethane foams, a graft copolymer of polyoxyalkylene glycol, which is a polymer of ethylene oxide or propylene oxide, and polydimethylsiloxane. Silicone foam stabilizers having an oxyethylene group content of 70 to 100 mol% in oxyalkylene are preferably used. Specifically, SH-193, SF-2937F, SF-2938F (manufactured by Toray Dow Corning Silicone), B-8465, B-8467, B-8481 (manufactured by Evonik Degussa Japan), L-6900 (manufactured by Momentive) and the like. The blending amount of the foam stabilizer is preferably 1 to 10 parts by weight with respect to 100 parts by weight of the polyol compound.
 上記ポリオール組成物と混合、反応させてポリウレタンフォームパネルを形成するポリイソシアネート成分としては、イソシアネート基を2個以上有する芳香族系、脂環族系、脂肪族系などの各種ポリイソシアネート化合物を用いることができる。好ましくは、取扱の容易さ、反応の速さ、得られるポリウレタンフォームの物理特性が優れていること、および低コストであることなどから、液状ジフェニルメタンジイソシアネート(MDI)を用いることである。液状MDIとしては、クルードMDI(c-MDI)(44V-10,44V-20など(住化バイエルウレタン社製)、ミリオネートMR-200(日本ポリウレタン工業))、ウレトンイミン含有MDI(ミリオネートMTL;日本ポリウレタン工業製)などが挙げられる。液状MDIに加えて、他のポリイソシアネート化合物を併用してもよく、併用するポリイソシアネート化合物としては、ポリウレタンの技術分野において公知のポリイソシアネート化合物は限定なく使用可能である。 As the polyisocyanate component that forms a polyurethane foam panel by mixing and reacting with the above polyol composition, various polyisocyanate compounds such as aromatic, alicyclic, and aliphatic groups having two or more isocyanate groups are used. Can do. Preferably, liquid diphenylmethane diisocyanate (MDI) is used because it is easy to handle, fast in reaction, excellent in physical properties of the resulting polyurethane foam, and low in cost. Liquid MDIs include Crude MDI (c-MDI) (44V-10, 44V-20, etc. (manufactured by Sumika Bayer Urethane Co., Ltd.), Millionate MR-200 (Nippon Polyurethane Industry)), uretonimine-containing MDI (Millionate MTL; Nippon Polyurethane) Industrial)). In addition to liquid MDI, other polyisocyanate compounds may be used in combination. As the polyisocyanate compound to be used in combination, a polyisocyanate compound known in the technical field of polyurethane can be used without limitation.
 本発明に係るポリウレタンフォームパネルでは、ポリオール組成物とポリイソシアネート成分とを混合、反応させる際のイソシアネート指数(NCO Index)を30以下に設定することが好ましく、より好ましくは30未満である。イソシアネート指数の下限としては、例えば20が挙げられる。イソシアネート指数を前記範囲内とすることにより、低密度であって、かつ特に優れた柔軟性および断熱性能を備えたポリウレタンフォームパネルとすることができる。ここで、イソシアネート指数とは、ポリオール組成物に含まれる全ての活性水素基(発泡剤としての水を2官能活性水素化合物として計算)に対するポリイソシアネート成分のイソシアネート基の当量比を百分率で表したもの(活性水素基100当量に対するイソシアネート基の当量比)を意味する。 In the polyurethane foam panel according to the present invention, the isocyanate index (NCO Index) when the polyol composition and the polyisocyanate component are mixed and reacted is preferably set to 30 or less, more preferably less than 30. As a minimum of an isocyanate index, 20 is mentioned, for example. By setting the isocyanate index within the above range, a polyurethane foam panel having a low density and particularly excellent flexibility and heat insulation performance can be obtained. Here, the isocyanate index is the percentage equivalent of the isocyanate group of the polyisocyanate component to all active hydrogen groups contained in the polyol composition (calculated using water as a blowing agent as a bifunctional active hydrogen compound). (Equivalent ratio of isocyanate groups to 100 equivalents of active hydrogen groups).
 本発明に係るポリウレタンフォームパネルは、ポリウレタンフォームパネルの厚み方向と、フォーム内セルの発泡方向とが略垂直であることが好ましい。本発明において、「略垂直」とは、具体的には90°±15°を意味し、特には90°±10°を意味するものとする。また、「フォーム内セルの発泡方向」とは、個々のセル形状を楕円形とみなしたときの長径方向を意味し、特には幅方向中央部分(幅方向中心から両側に、幅方向長さの10%程度の部分)で測定したときの方向を指すものとする。 In the polyurethane foam panel according to the present invention, the thickness direction of the polyurethane foam panel and the foaming direction of the cells in the foam are preferably substantially perpendicular. In the present invention, “substantially vertical” specifically means 90 ° ± 15 °, and particularly 90 ° ± 10 °. The “foaming direction of the cells in the foam” means the major axis direction when each cell shape is regarded as an ellipse. In particular, the center part in the width direction (from the width direction center to both sides, the width direction length). The direction when measured in a portion of about 10%).
 本発明に係るポリウレタンフォームパネルは、以下の製造方法;
 ポリオール化合物、発泡剤である水を含有するポリオール組成物とポリイソシアネート成分とを含有する発泡原液組成物を原料として得られるポリウレタンフォームパネルの製造方法であって、長手方向、幅方向および厚み方向を有するモールドに対し、前記長手方向および前記厚み方向に延びる側面を底面として、前記発泡原液組成物を注入する注入工程と、前記注入工程後に前記発泡原液組成物を反応させる反応工程と、を備え、前記ポリオール化合物が、平均官能基数が2~4、重量平均分子量が3000~8000であって、アルキレンオキサイドの重合体であるポリエーテルポリオール(A)と、分子量が250未満であるショートグリコール(B)と、を含有し、前記ポリオール化合物100重量部に対して、前記水を20~100重量部含有するポリウレタンフォームパネルの製造方法、により製造可能である。
The polyurethane foam panel according to the present invention has the following production method:
A method for producing a polyurethane foam panel obtained by using a raw material foam composition containing a polyol composition and a polyol composition containing water as a foaming agent and a polyisocyanate component, wherein the longitudinal direction, the width direction and the thickness direction are An injection step of injecting the foamed stock solution composition with a side surface extending in the longitudinal direction and the thickness direction as a bottom surface, and a reaction step of reacting the foamed stock solution composition after the injection step, The polyol compound has a polyether polyol (A) which is an alkylene oxide polymer having an average functional group number of 2 to 4 and a weight average molecular weight of 3000 to 8000, and a short glycol (B) having a molecular weight of less than 250. And 20 to 1 of the water with respect to 100 parts by weight of the polyol compound. Method for producing a polyurethane foam panels containing 0 weight parts, can be manufactured by.
 上記製造方法において、ポリオール組成物とポリイソシアネート成分とを混合、反応させる際のイソシアネート指数(NCO Index)は30~100であることが好ましく、より好ましくは40~70である。イソシアネート指数を前記範囲内とすることにより、フォームの低密度化を図った場合でも、脆性の悪化を防止することができる。ここで、イソシアネート指数とは、ポリオール組成物に含まれる全ての活性水素基(発泡剤としての水を2官能活性水素化合物として計算)に対するポリイソシアネート成分のイソシアネート基の当量比を百分率で表したもの(活性水素基100当量に対するイソシアネート基の当量比)を意味する。 In the above production method, the isocyanate index (NCO Index) when the polyol composition and the polyisocyanate component are mixed and reacted is preferably 30 to 100, more preferably 40 to 70. By setting the isocyanate index within the above range, it is possible to prevent the deterioration of brittleness even when the density of the foam is reduced. Here, the isocyanate index is the percentage equivalent of the isocyanate group of the polyisocyanate component to all active hydrogen groups contained in the polyol composition (calculated using water as a blowing agent as a bifunctional active hydrogen compound). (Equivalent ratio of isocyanate groups to 100 equivalents of active hydrogen groups).
 また、該製造方法により得られるポリウレタンフォームパネルは、独立気泡率が15%以下であることが好ましく、より好ましくは0~10%である。このように連通化率を高くすることにより、ポリウレタンフォームとしての優れた寸法安定性を確保することができる。ここで、独立気泡率は、ASTM D2856に準拠して測定される値である。 Also, the polyurethane foam panel obtained by the production method preferably has a closed cell ratio of 15% or less, more preferably 0 to 10%. By increasing the communication rate in this way, it is possible to ensure excellent dimensional stability as a polyurethane foam. Here, the closed cell ratio is a value measured according to ASTM D2856.
 また、該製造方法により得られるポリウレタンフォームパネルは、熱伝導率λが、λ≦0.04W/m・Kであることが好ましい。この場合、低密度化されたポリウレタンフォームであっても、十分な断熱性能を発揮することができる。ここで、熱伝導率は、JIS A1412-2に準拠して測定される値である。 The polyurethane foam panel obtained by the production method preferably has a thermal conductivity λ of λ ≦ 0.04 W / m · K. In this case, even if the polyurethane foam has a reduced density, sufficient heat insulating performance can be exhibited. Here, the thermal conductivity is a value measured according to JIS A1412-2.
 また、別の本発明に係るポリウレタンフォームパネルは、以下の製造方法;
 ポリオール化合物、発泡剤である水を含有するポリオール組成物とポリイソシアネート成分とを含有する発泡原液組成物を原料として得られるポリウレタンフォームパネルの製造方法であって、ポリオール化合物が、平均官能基数が2~4、重量平均分子量が3000~8000であって、アルキレンオキサイドの重合体であるポリエーテルポリオール(A)と、分子量が250未満であるショートグリコール(B)と、を含有し、ポリオール化合物100重量部に対して、水を20~100重量部含有し、ポリオール組成物とポリイソシアネート成分とを混合、反応させる際のイソシアネート指数が30未満であるポリウレタンフォームパネルの製造方法、により製造可能である。ポリウレタンフォームパネルの厚み方向と、フォーム内セルの発泡方向とが略垂直であるポリウレタンフォームパネルを製造するためには、長手方向、幅方向および厚み方向を有するモールドに対し、長手方向および厚み方向に延びる側面を底面として、発泡原液組成物を注入する注入工程と、注入工程後に前記発泡原液組成物を反応させる反応工程と、を備える製造方法が好ましい。
Further, another polyurethane foam panel according to the present invention has the following production method:
A process for producing a polyurethane foam panel obtained from a foamed stock solution composition comprising a polyol compound and a polyol composition containing water as a foaming agent and a polyisocyanate component, wherein the polyol compound has an average number of functional groups of 2 Polyether polyol (A) having a weight average molecular weight of 3000 to 8000, a polymer of alkylene oxide, and short glycol (B) having a molecular weight of less than 250, and having a polyol compound of 100 weight It can be produced by a method for producing a polyurethane foam panel containing 20 to 100 parts by weight of water with respect to parts, and having an isocyanate index of less than 30 when the polyol composition and the polyisocyanate component are mixed and reacted. In order to produce a polyurethane foam panel in which the thickness direction of the polyurethane foam panel and the foaming direction of the cells in the foam are substantially perpendicular, in the longitudinal direction and the thickness direction, the mold has a longitudinal direction, a width direction and a thickness direction. A production method comprising an injection step of injecting the foamed stock solution composition with the extending side surface as a bottom surface and a reaction step of reacting the foamed stock solution composition after the injection step is preferable.
 また、該製造方法により得られるポリウレタンフォームパネルは、独立気泡率が15%以下であることが好ましく、より好ましくは0~10%である。このように連通化率を高くすることにより、ポリウレタンフォームとしての優れた寸法安定性を確保することができる。ここで、独立気泡率は、ASTM D2856に準拠して測定される値である。 Also, the polyurethane foam panel obtained by the production method preferably has a closed cell ratio of 15% or less, more preferably 0 to 10%. By increasing the communication rate in this way, it is possible to ensure excellent dimensional stability as a polyurethane foam. Here, the closed cell ratio is a value measured according to ASTM D2856.
 また、該製造方法により得られるポリウレタンフォームパネルは、熱伝導率λが、λ≦0.04W/m・Kであることが好ましい。この場合、低密度化されたポリウレタンフォームであっても、十分な断熱性能を発揮することができる。ここで、熱伝導率は、JIS A1412-2に準拠して測定される値である。 The polyurethane foam panel obtained by the production method preferably has a thermal conductivity λ of λ ≦ 0.04 W / m · K. In this case, even if the polyurethane foam has a reduced density, sufficient heat insulating performance can be exhibited. Here, the thermal conductivity is a value measured according to JIS A1412-2.
 従来のポリウレタンフォームパネルの製造方法では、図2に示すとおり、表面材3を原反より巻き出して供給しつつ、表面材3上に、ミキシングヘッド1からポリオール組成物とポリイソシアネート成分とを含有する発泡原液組成物を注入する(注入工程)。注入工程後、発泡原液組成物を他の表面材(裏面材)4で覆いつつ、発泡原液組成物を反応させる(反応工程)。その結果、厚み方向に平行な発泡方向を有するポリウレタンフォームパネルが得られる。特に、低密度のポリウレタンフォームパネルでは、各セルが連続気泡となっているため、発泡方向では熱移動が大きく、断熱性能が低下する傾向がある。このため、従来のポリウレタンフォームパネルの製造方法では、厚み方向での断熱性能が悪化する傾向があった。 In the conventional method for producing a polyurethane foam panel, as shown in FIG. 2, a polyol composition and a polyisocyanate component are contained on the surface material 3 from the mixing head 1 while being unwound and supplied from the raw material. The foaming stock solution composition to be injected is injected (injection step). After the injection step, the foamed stock solution composition is reacted while the foamed stock solution composition is covered with another surface material (back surface material) 4 (reaction step). As a result, a polyurethane foam panel having a foaming direction parallel to the thickness direction is obtained. In particular, in a low-density polyurethane foam panel, since each cell is an open cell, the heat transfer is large in the foaming direction, and the heat insulation performance tends to decrease. For this reason, in the manufacturing method of the conventional polyurethane foam panel, there existed a tendency for the heat insulation performance in the thickness direction to deteriorate.
 一方、本発明に係るポリウレタンフォームパネルの製造方法では、好適には例えば図1に示すとおり、長手方向a、幅方向bおよび厚み方向cを有するモールド2に対し、長手方向aおよび厚み方向cに延びる側面を底面Xとして、ミキシングヘッド1から、ポリオール組成物とポリイソシアネート成分とを含有する発泡原液組成物を注入する(注入工程)。注入後、発泡原液組成物は、反応しつつ、幅方向bに発泡しながら(膨らみながら)、フォームを形成する(反応工程)。その結果、発泡方向(幅方向b)と厚み方向cとが略垂直であるポリウレタンフォームパネルが得られる。上記反応工程では、必要に応じて、モールドを全体的に、あるいは局所的に、加温しても良い。 On the other hand, in the method for producing a polyurethane foam panel according to the present invention, as shown in FIG. 1, for example, the mold 2 having the longitudinal direction a, the width direction b, and the thickness direction c is preferably arranged in the longitudinal direction a and the thickness direction c. Using the extending side surface as the bottom surface X, a foaming stock solution composition containing a polyol composition and a polyisocyanate component is injected from the mixing head 1 (injection step). After the injection, the foamed stock solution composition reacts and forms a foam while foaming (swelling) in the width direction b (reaction process). As a result, a polyurethane foam panel in which the foaming direction (width direction b) and the thickness direction c are substantially perpendicular is obtained. In the reaction step, the mold may be heated as a whole or locally as necessary.
 以下、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(ポリオール組成物の調製)
 下記表1に記載した配合にてポリオール組成物を調製した。表1中の各成分の詳細は以下の通りである。
(Preparation of polyol composition)
A polyol composition was prepared with the formulation described in Table 1 below. The details of each component in Table 1 are as follows.
(1)ポリオール化合物
 ポリエーテルポリオール(A)-1;商品名「エクセノール-820」(旭硝子社製)、開始剤をグリセリンとして、エチレンオキサイドおよびプロピレンオキサイドを付加重合して得られたポリエーテルポリオール(重量平均分子量4900、水酸基価(OHV)=34mgKOH/g)
 ポリエーテルポリオール(A)-2;商品名「エクセノール-230」(旭硝子社製)、開始剤をグリセリンとして、エチレンオキサイドおよびプロピレンオキサイドを付加重合して得られたポリエーテルポリオール(重量平均分子量3000、水酸基価(OHV)=56mgKOH/g)
 ポリエーテルポリオール(A)-3;商品名「エクセノール-851」(旭硝子社製)、開始剤をグリセリンとして、エチレンオキサイドおよびプロピレンオキサイドを付加重合して得られたポリエーテルポリオール(重量平均分子量7000、水酸基価(OHV)=25mgKOH/g)
 ショートグリコール(B)-1;ジエチレングリコール(DEG)(分子量106、水酸基価(OHV)=1058mgKOH/g、ナカライテスク社製)
 ポリエーテルポリオール(C);商品名「T-3000S」(三井化学社製)、開始剤をグリセリンとして、プロピレンオキサイドのみを付加重合して得られたポリエーテルポリオール(重量平均分子量3000、水酸基価=56mgKOH/g)
(1) Polyol compound Polyether polyol (A) -1; trade name “Excenol-820” (manufactured by Asahi Glass Co., Ltd.), polyether polyol obtained by addition polymerization of ethylene oxide and propylene oxide using glycerol as an initiator ( Weight average molecular weight 4900, hydroxyl value (OHV) = 34 mgKOH / g)
Polyether polyol (A) -2; trade name “Excenol-230” (manufactured by Asahi Glass Co., Ltd.), polyether polyol obtained by addition polymerization of ethylene oxide and propylene oxide using glycerol as an initiator (weight average molecular weight 3000, Hydroxyl value (OHV) = 56 mgKOH / g)
Polyether polyol (A) -3; trade name “Excenol-851” (manufactured by Asahi Glass Co., Ltd.), polyether polyol obtained by addition polymerization of ethylene oxide and propylene oxide using glycerol as an initiator (weight average molecular weight 7000, Hydroxyl value (OHV) = 25 mgKOH / g)
Short glycol (B) -1; diethylene glycol (DEG) (molecular weight 106, hydroxyl value (OHV) = 1058 mg KOH / g, manufactured by Nacalai Tesque)
Polyether polyol (C); trade name “T-3000S” (manufactured by Mitsui Chemicals), polyether polyol obtained by addition polymerization of only propylene oxide using glycerol as an initiator (weight average molecular weight 3000, hydroxyl value = 56mgKOH / g)
(2)難燃剤:商品名「TMCPP」(大八化学社製)
(3)整泡剤
 整泡剤-1;シリコーン系ノニオン界面活性剤、商品名「SF-2938F」(東レダウコーニングシリコーン社製)
(4)触媒
 触媒-1;第3級アミン触媒、商品名「TOYOCAT-ET」(東ソー社製)
 触媒-2;N,N-ジメチルアミノエトキシエタノール、商品名「カオーNo.26」(花王社製)
(2) Flame retardant: Trade name “TMCPP” (manufactured by Daihachi Chemical Co., Ltd.)
(3) Foam stabilizer Foam stabilizer-1; silicone-based nonionic surfactant, trade name “SF-2938F” (manufactured by Toray Dow Corning Silicone)
(4) Catalyst Catalyst-1; Tertiary amine catalyst, trade name “TOYOCAT-ET” (manufactured by Tosoh Corporation)
Catalyst-2; N, N-dimethylaminoethoxyethanol, trade name “Kaoh No. 26” (manufactured by Kao Corporation)
(パネル評価)
 実施例1-2
 表1に記載の配合で調整したポリオール組成物とポリイソシアネート成分(c-MDI(住化バイエルウレタン社製「スミジュール44V-10」、NCO%:31%)を用い、イソシアネート指数(NCO Index)は表1に記載)とを含有する発泡原液組成物を、図1に示すモールド(長手方向a長さ1820mm、幅方向b長さ400mm、厚み方向c長さ100mm)の底面Xにミキシングヘッド1から注入した。その後、発泡原液組成物を反応させて、モールド内空間と略同形状であって、パネルの厚み方向とフォーム内セルの発泡方向とが略垂直(90°)であるポリウレタンフォームパネルを製造した。結果を表1に示す。
(Panel evaluation)
Example 1-2
Using a polyol composition and a polyisocyanate component (c-MDI (“Sumijour 44V-10” manufactured by Sumika Bayer Urethane Co., Ltd., NCO%: 31%) adjusted with the formulation shown in Table 1), an isocyanate index (NCO Index) 1 is mixed on the bottom surface X of the mold (longitudinal direction a length 1820 mm, width direction b length 400 mm, thickness direction c length 100 mm) shown in FIG. Injected from. Thereafter, the foamed stock solution composition was reacted to produce a polyurethane foam panel having substantially the same shape as the space in the mold and having the thickness direction of the panel and the foaming direction of the cells in the foam being substantially perpendicular (90 °). The results are shown in Table 1.
 比較例1
 実施例1で使用したポリオール組成物に代えて、表1に記載のポリオール組成物に変更したこと以外は、実施例1と同様の方法でポリウレタンフォームパネルを製造した。パネルの厚み方向とフォーム内セルの発泡方向とは、実施例1と同じ(略垂直(90°))であった。結果を表1に示す。
Comparative Example 1
Instead of the polyol composition used in Example 1, a polyurethane foam panel was produced in the same manner as in Example 1 except that the polyol composition described in Table 1 was used. The thickness direction of the panel and the foaming direction of the cells in the foam were the same as in Example 1 (substantially vertical (90 °)). The results are shown in Table 1.
 比較例2
 表1に記載の配合で調整したポリオール組成物とポリイソシアネート成分(c-MDI(住化バイエルウレタン社製「スミジュール44V-10」、NCO%:31%)を用い、イソシアネート指数(NCO Index)は表1に記載)とを含有する発泡原液組成物を、図2に示す表面材3上にミキシングヘッド1から注入した。その後、発泡原液組成物を反応させて、幅方向で裁断することにより、実施例1のポリウレタンフォームパネルと同形状であって、パネルの厚み方向とフォーム内セルの発泡方向とが略平行(0~30°)であるポリウレタンフォームパネルを製造した。結果を表1に示す。
Comparative Example 2
Using a polyol composition and a polyisocyanate component (c-MDI (“Sumijour 44V-10” manufactured by Sumika Bayer Urethane Co., Ltd., NCO%: 31%) adjusted with the formulation shown in Table 1), an isocyanate index (NCO Index) Is injected from the mixing head 1 onto the surface material 3 shown in FIG. Thereafter, the foamed stock solution composition is reacted and cut in the width direction, thereby having the same shape as the polyurethane foam panel of Example 1, and the thickness direction of the panel and the foaming direction of the cells in the foam are substantially parallel (0 Polyurethane foam panels that were ˜30 ° were produced. The results are shown in Table 1.
 [重量平均分子量]
 重量平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィ)にて測定し、標準ポリスチレンにより換算した。 
 GPC装置:島津製作所製、LC-10A
 カラム:Polymer Laboratories社製、(PLgel、5μm、500Å)、(PLgel、5μm、100Å)、及び(PLgel、5μm、50Å)の3つのカラムを連結して使用
 流量:1.0ml/min
 濃度:1.0g/l
 注入量:40μl
 カラム温度:40℃
 溶離液:テトラヒドロフラン
[Weight average molecular weight]
The weight average molecular weight was measured by GPC (gel permeation chromatography) and converted by standard polystyrene.
GPC device: manufactured by Shimadzu Corporation, LC-10A
Column: Polymer Laboratories, (PLgel, 5 μm, 500 Å), (PLgel, 5 μm, 100 及 び), and (PLgel, 5 μm, 50 Å) are connected and used. Flow rate: 1.0 ml / min
Concentration: 1.0 g / l
Injection volume: 40 μl
Column temperature: 40 ° C
Eluent: Tetrahydrofuran
[フォーム密度]
 フォーム密度についてはJIS K 7222 に準拠し求めた。
[Form density]
The foam density was determined according to JIS K 7222.
[熱伝導率]
 JIS A9526(建築物断熱用吹付け硬質ウレタンフォーム)に基づき、JIS A1412-2(熱絶縁材の熱抵抗および熱伝導率の測定方法-第2部:熱流計法)(HFM法)に準拠して、パネルの厚み方向での熱伝導率を測定した。
[Thermal conductivity]
Based on JIS A9526 (Blowing rigid urethane foam for thermal insulation of buildings), it conforms to JIS A1412-2 (Measurement method of thermal resistance and thermal conductivity of thermal insulation materials-Part 2: Heat flow meter method) (HFM method). The thermal conductivity in the thickness direction of the panel was measured.
[フォーム外観]
 製造後のポリウレタンフォームのコア部分の外観を目視にて評価した。フォームのセル径が細かく、発泡状態が特に良好であって、脆性が非常に小さいものを「○」、フォームのセル径が粗く、発泡状態が悪く、脆性が大きいものを「×」とした。
[Form appearance]
The appearance of the core part of the polyurethane foam after production was visually evaluated. The case where the cell diameter of the foam was fine and the foamed state was particularly good and the brittleness was very small was marked with “◯”, and the foam cell diameter was coarse, the foamed state was poor and the brittleness was marked with “x”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、実施例1-2のポリウレタンフォームパネルは、低密度であって、脆性が小さく、かつ厚み方向にて、優れた断熱性能を備えることがわかる。一方、比較例1のポリウレタンフォームパネルは、フォーム内の発泡ガス抜けが多く発生することで収縮が発生した。さらに、セル荒れが発生し、脆性が大きかった。また、厚み方向にて、断熱性能が悪化した。また、比較例2のポリウレタンフォームパネルは、同じポリオール組成物を原料として製造されたにもかかわらず、厚み方向での断熱性能が実施例1に比べて悪化した。 From the results shown in Table 1, it can be seen that the polyurethane foam panel of Example 1-2 has a low density, low brittleness, and excellent heat insulation performance in the thickness direction. On the other hand, in the polyurethane foam panel of Comparative Example 1, shrinkage occurred due to a large amount of foaming gas escape in the foam. Furthermore, cell roughening occurred and brittleness was great. Moreover, the heat insulation performance deteriorated in the thickness direction. Moreover, although the polyurethane foam panel of the comparative example 2 was manufactured using the same polyol composition as a raw material, the heat insulation performance in the thickness direction was deteriorated as compared with the example 1.
 次に、実施例1に係るポリオール組成物を原料として製造されたポリウレタンフォームから5cm角のフォームサンプルを製造し、これをT方向(フォームセルの発泡方向に平行)およびW方向(フォームセルの発泡方向に垂直)に90%形状になるまで圧縮し(10%圧縮し)、その復元率を測定した。結果は、T方向で99.0%形状、W方向で98.2%形状にまで復元した。したがって、本発明に係るポリウレタンフォームパネルは、復元率が高く、柔軟性に優れることがわかる。 Next, a 5 cm square foam sample was produced from the polyurethane foam produced using the polyol composition according to Example 1 as a raw material, and the foam sample was produced in the T direction (parallel to the foam cell foaming direction) and the W direction (foam cell foaming). The sample was compressed until it became 90% shape (perpendicular to the direction) (compressed 10%), and the restoration rate was measured. The results were restored to 99.0% shape in the T direction and 98.2% shape in the W direction. Therefore, it can be seen that the polyurethane foam panel according to the present invention has a high restoration rate and excellent flexibility.
(ポリオール組成物の調製)
 下記表2に記載した配合にてポリオール組成物を調製した。表2中の各成分の詳細は以下の通りである。
(Preparation of polyol composition)
A polyol composition was prepared with the formulation described in Table 2 below. Details of each component in Table 2 are as follows.
(1)ポリオール化合物
 ポリエーテルポリオール(A)-1;商品名「エクセノール-820」(旭硝子社製)、開始剤をグリセリンとして、エチレンオキサイドおよびプロピレンオキサイドを付加重合して得られたポリエーテルポリオール(重量平均分子量4900、水酸基価(OHV)=34mgKOH/g)
 ポリエーテルポリオール(A)-4;商品名「エクセノール-850」(旭硝子社製)、開始剤をグリセリンとして、エチレンオキサイドおよびプロピレンオキサイドを付加重合して得られたポリエーテルポリオール(重量平均分子量7000、水酸基価(OHV)=25mgKOH/g)
 ショートグリコール(B)-1;ジエチレングリコール(DEG)(分子量106、水酸基価(OHV)=1058mgKOH/g、ナカライテスク社製)
 ポリエーテルポリオール(C);商品名「T-3000S」(三井化学社製)、開始剤をグリセリンとして、プロピレンオキサイドのみを付加重合して得られたポリエーテルポリオール(重量平均分子量3000、水酸基価=56mgKOH/g)
(1) Polyol compound Polyether polyol (A) -1; trade name “Excenol-820” (manufactured by Asahi Glass Co., Ltd.), polyether polyol obtained by addition polymerization of ethylene oxide and propylene oxide using glycerol as an initiator ( Weight average molecular weight 4900, hydroxyl value (OHV) = 34 mgKOH / g)
Polyether polyol (A) -4; trade name “Excenol-850” (manufactured by Asahi Glass Co., Ltd.), polyether polyol obtained by addition polymerization of ethylene oxide and propylene oxide using glycerol as an initiator (weight average molecular weight 7000, Hydroxyl value (OHV) = 25 mgKOH / g)
Short glycol (B) -1; diethylene glycol (DEG) (molecular weight 106, hydroxyl value (OHV) = 1058 mg KOH / g, manufactured by Nacalai Tesque)
Polyether polyol (C); trade name “T-3000S” (manufactured by Mitsui Chemicals), polyether polyol obtained by addition polymerization of only propylene oxide using glycerol as an initiator (weight average molecular weight 3000, hydroxyl value = 56mgKOH / g)
(2)難燃剤:商品名「TMCPP」(大八化学社製)
(3)整泡剤
 整泡剤-1;シリコーン系ノニオン界面活性剤、商品名「SF-2938F」(東レダウコーニングシリコーン社製)
(4)触媒
 触媒-1;第3級アミン触媒、商品名「TOYOCAT-ET」(東ソー社製)
 触媒-2;N,N-ジメチルアミノエトキシエタノール、商品名「カオーNo.26」(花王社製)
(2) Flame retardant: Trade name “TMCPP” (manufactured by Daihachi Chemical Co., Ltd.)
(3) Foam stabilizer Foam stabilizer-1; silicone-based nonionic surfactant, trade name “SF-2938F” (manufactured by Toray Dow Corning Silicone)
(4) Catalyst Catalyst-1; Tertiary amine catalyst, trade name “TOYOCAT-ET” (manufactured by Tosoh Corporation)
Catalyst-2; N, N-dimethylaminoethoxyethanol, trade name “Kaoh No. 26” (manufactured by Kao Corporation)
(パネル評価)
 実施例3-5
 表2に記載の配合で調整したポリオール組成物とポリイソシアネート成分(c-MDI(住化バイエルウレタン社製「スミジュール44V-10」、NCO%:31%)を用い、イソシアネート指数(NCO Index)は表2に記載)とを含有する発泡原液組成物を、図1に示すモールド(長手方向a長さ1820mm、幅方向b長さ400mm、厚み方向c長さ100mm)の底面Xにミキシングヘッド1から注入した。その後、発泡原液組成物を反応させて、モールド内空間と略同形状であって、パネルの厚み方向とフォーム内セルの発泡方向とが略垂直(90°)であるポリウレタンフォームパネルを製造した。結果を表2に示す。なお、重量平均分子量、フォーム密度および熱伝導率の測定方法は前記のとおりである。
(Panel evaluation)
Example 3-5
Using a polyol composition and a polyisocyanate component (c-MDI (“Sumijour 44V-10” manufactured by Sumika Bayer Urethane Co., Ltd., NCO%: 31%) adjusted with the formulation shown in Table 2), an isocyanate index (NCO Index) 1 is mixed on the bottom surface X of the mold (longitudinal direction a length 1820 mm, width direction b length 400 mm, thickness direction c length 100 mm) shown in FIG. Injected from. Thereafter, the foamed stock solution composition was reacted to produce a polyurethane foam panel having substantially the same shape as the space in the mold and having the thickness direction of the panel and the foaming direction of the cells in the foam being substantially perpendicular (90 °). The results are shown in Table 2. In addition, the measuring method of a weight average molecular weight, foam density, and thermal conductivity is as above-mentioned.
[所定形状へポリウレタンフォームパネルの嵌め込み作業性]
 400mm幅のパネルで10%圧縮して360mm幅に嵌め込むことが容易に可能であれば、所定幅に対して融通ありということでポリウレタンフォームパネルの嵌め込み作業性は良好(表中では○)と判断した。
[Workability of inserting polyurethane foam panels into specified shapes]
If it is possible to compress 10% with a 400 mm width panel and easily fit into a 360 mm width, the polyurethane foam panel can be fitted with good workability because it is flexible for a given width (in the table, ○). It was judged.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、実施例3-5のポリウレタンフォームパネルは、低密度であって、脆性が小さく、かつ厚み方向にて、優れた断熱性能を備えることがわかる。また、優れた柔軟性を有することから、嵌め込み作業性にも優れることがわかる。 From the results in Table 2, it can be seen that the polyurethane foam panel of Example 3-5 has low density, low brittleness, and excellent heat insulation performance in the thickness direction. Moreover, since it has the outstanding softness | flexibility, it turns out that it is excellent also in fitting workability | operativity.

Claims (10)

  1.  ポリオール化合物、発泡剤である水を含有するポリオール組成物とポリイソシアネート成分とを混合、反応させて得られたポリウレタンフォームパネルであって、
     前記ポリオール化合物が、平均官能基数が2~4、重量平均分子量が3000~8000であって、アルキレンオキサイドの重合体であるポリエーテルポリオール(A)と、分子量が250未満であるショートグリコール(B)と、を含有し、
     前記ポリオール化合物100重量部に対して、前記水を20~100重量部含有し、
     前記ポリウレタンフォームパネルの厚み方向と、フォーム内セルの発泡方向とが略垂直であることを特徴とするポリウレタンフォームパネル。
    A polyurethane foam panel obtained by mixing and reacting a polyol compound and a polyol composition containing water as a blowing agent and a polyisocyanate component,
    The polyol compound has a polyether polyol (A) which is an alkylene oxide polymer having an average functional group number of 2 to 4 and a weight average molecular weight of 3000 to 8000, and a short glycol (B) having a molecular weight of less than 250. And containing
    Containing 20 to 100 parts by weight of the water with respect to 100 parts by weight of the polyol compound;
    A polyurethane foam panel, wherein a thickness direction of the polyurethane foam panel and a foaming direction of cells in the foam are substantially perpendicular.
  2.  ポリオール化合物、発泡剤である水を含有するポリオール組成物とポリイソシアネート成分とを混合、反応させて得られたポリウレタンフォームパネルであって、
     前記ポリオール化合物が、平均官能基数が2~4、重量平均分子量が3000~8000であって、アルキレンオキサイドの重合体であるポリエーテルポリオール(A)と、分子量が250未満であるショートグリコール(B)と、を含有し、
     前記ポリオール化合物100重量部に対して、前記水を20~100重量部含有し、
     前記ポリオール組成物と前記ポリイソシアネート成分とを混合、反応させる際のイソシアネート指数が30以下であることを特徴とするポリウレタンフォームパネル。
    A polyurethane foam panel obtained by mixing and reacting a polyol compound and a polyol composition containing water as a blowing agent and a polyisocyanate component,
    The polyol compound has a polyether polyol (A) which is an alkylene oxide polymer having an average functional group number of 2 to 4 and a weight average molecular weight of 3000 to 8000, and a short glycol (B) having a molecular weight of less than 250. And containing
    Containing 20 to 100 parts by weight of the water with respect to 100 parts by weight of the polyol compound;
    A polyurethane foam panel having an isocyanate index of 30 or less when the polyol composition and the polyisocyanate component are mixed and reacted.
  3.  前記ポリウレタンフォームパネルの厚み方向と、フォーム内セルの発泡方向とが略垂直である請求項2に記載のポリウレタンフォームパネル。 The polyurethane foam panel according to claim 2, wherein the thickness direction of the polyurethane foam panel and the foaming direction of the cells in the foam are substantially perpendicular.
  4.  前記ポリオール化合物100重量部中、前記ポリエーテルポリオール(A)を10~80重量部含有し、前記ショートグリコール(B)を10~60重量部含有する請求項1~3のいずれかに記載のポリウレタンフォームパネル。 The polyurethane according to any one of claims 1 to 3, comprising 10 to 80 parts by weight of the polyether polyol (A) and 10 to 60 parts by weight of the short glycol (B) in 100 parts by weight of the polyol compound. Form panel.
  5.  前記ポリオール化合物が、さらに平均官能基数が2~4、重量平均分子量が3000~5000であって、プロピレンオキサイドの重合体であるポリエーテルポリオール(C)を含有する請求項1~4のいずれかに記載のポリウレタンフォームパネル。 The polyol compound according to any one of claims 1 to 4, further comprising a polyether polyol (C) having a mean number of functional groups of 2 to 4, a weight average molecular weight of 3000 to 5000, and a polymer of propylene oxide. The polyurethane foam panel described.
  6.  ポリオール化合物、発泡剤である水を含有するポリオール組成物とポリイソシアネート成分とを含有する発泡原液組成物を原料として得られるポリウレタンフォームパネルの製造方法であって、
     長手方向、幅方向および厚み方向を有するモールドに対し、前記長手方向および前記厚み方向に延びる側面を底面として、前記発泡原液組成物を注入する注入工程と、
     前記注入工程後に前記発泡原液組成物を反応させる反応工程と、を備え、
     前記ポリオール化合物が、平均官能基数が2~4、重量平均分子量が3000~8000であって、アルキレンオキサイドの重合体であるポリエーテルポリオール(A)と、分子量が250未満であるショートグリコール(B)と、を含有し、
     前記ポリオール化合物100重量部に対して、前記水を20~100重量部含有することを特徴とするポリウレタンフォームパネルの製造方法。
    A method for producing a polyurethane foam panel obtained by using, as a raw material, a foamed stock solution composition containing a polyol compound, a polyol composition containing water as a foaming agent, and a polyisocyanate component,
    An injection step of injecting the foaming stock solution composition with a side surface extending in the longitudinal direction and the thickness direction as a bottom surface for a mold having a longitudinal direction, a width direction, and a thickness direction;
    A reaction step of reacting the foaming stock solution composition after the injection step,
    The polyol compound has a polyether polyol (A) which is an alkylene oxide polymer having an average functional group number of 2 to 4 and a weight average molecular weight of 3000 to 8000, and a short glycol (B) having a molecular weight of less than 250. And containing
    A method for producing a polyurethane foam panel, comprising 20 to 100 parts by weight of the water based on 100 parts by weight of the polyol compound.
  7.  ポリオール化合物、発泡剤である水を含有するポリオール組成物とポリイソシアネート成分とを含有する発泡原液組成物を原料として得られるポリウレタンフォームパネルの製造方法であって、
     前記ポリオール化合物が、平均官能基数が2~4、重量平均分子量が3000~8000であって、アルキレンオキサイドの重合体であるポリエーテルポリオール(A)と、分子量が250未満であるショートグリコール(B)と、を含有し、
     前記ポリオール化合物100重量部に対して、前記水を20~100重量部含有し、
     前記ポリオール組成物と前記ポリイソシアネート成分とを混合、反応させる際のイソシアネート指数が30以下であることを特徴とするポリウレタンフォームパネルの製造方法。
    A method for producing a polyurethane foam panel obtained by using, as a raw material, a foamed stock solution composition containing a polyol compound, a polyol composition containing water as a foaming agent, and a polyisocyanate component,
    The polyol compound has a polyether polyol (A) which is an alkylene oxide polymer having an average functional group number of 2 to 4 and a weight average molecular weight of 3000 to 8000, and a short glycol (B) having a molecular weight of less than 250. And containing
    Containing 20 to 100 parts by weight of the water with respect to 100 parts by weight of the polyol compound;
    A method for producing a polyurethane foam panel, wherein an isocyanate index when mixing and reacting the polyol composition and the polyisocyanate component is 30 or less.
  8.  長手方向、幅方向および厚み方向を有するモールドに対し、前記長手方向および前記厚み方向に延びる側面を底面として、前記発泡原液組成物を注入する注入工程と、
     前記注入工程後に前記発泡原液組成物を反応させる反応工程と、を備える請求項7に記載のポリウレタンフォームパネルの製造方法。
    An injection step of injecting the foaming stock solution composition with a side surface extending in the longitudinal direction and the thickness direction as a bottom surface for a mold having a longitudinal direction, a width direction, and a thickness direction;
    A method for producing a polyurethane foam panel according to claim 7, further comprising a reaction step of reacting the foamed stock solution composition after the injection step.
  9.  前記ポリオール化合物100重量部中、前記ポリエーテルポリオール(A)を10~80重量部含有し、前記ショートグリコール(B)を10~60重量部含有する請求項6~8のいずれかに記載のポリウレタンフォームパネルの製造方法。 The polyurethane according to any one of claims 6 to 8, comprising 10 to 80 parts by weight of the polyether polyol (A) and 10 to 60 parts by weight of the short glycol (B) in 100 parts by weight of the polyol compound. A method for manufacturing a foam panel.
  10.  前記ポリオール化合物が、さらに平均官能基数が2~4、重量平均分子量が3000~5000であって、プロピレンオキサイドの重合体であるポリエーテルポリオール(C)を含有する請求項6~9のいずれかに記載のポリウレタンフォームパネルの製造方法。 10. The polyol compound according to any one of claims 6 to 9, further comprising a polyether polyol (C) which has an average functional group number of 2 to 4, a weight average molecular weight of 3000 to 5000, and is a propylene oxide polymer. The manufacturing method of the polyurethane foam panel of description.
PCT/JP2012/064977 2011-07-19 2012-06-12 Polyurethane foam panel and method for producing same WO2013011773A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137034586A KR20140015592A (en) 2011-07-19 2012-06-12 Polyurethane foam panel and method for producing same
US14/232,164 US20140148524A1 (en) 2011-07-19 2012-06-12 Polyurethane foam panel and production method for polyurethane foam panel
CA2842051A CA2842051A1 (en) 2011-07-19 2012-06-12 Polyurethane foam panel and production method for polyurethane foam panel

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-157985 2011-07-19
JP2011157985 2011-07-19
JP2012-021047 2012-02-02
JP2012021047A JP5314167B2 (en) 2011-07-19 2012-02-02 Rigid polyurethane foam panel and manufacturing method thereof
JP2012-051994 2012-03-08
JP2012051994A JP5314169B2 (en) 2012-03-08 2012-03-08 Polyurethane foam panel and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2013011773A1 true WO2013011773A1 (en) 2013-01-24

Family

ID=47557959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064977 WO2013011773A1 (en) 2011-07-19 2012-06-12 Polyurethane foam panel and method for producing same

Country Status (1)

Country Link
WO (1) WO2013011773A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014109216A1 (en) * 2013-01-09 2014-07-17 東洋ゴム工業株式会社 Polyurethane foam panel
JP2014133805A (en) * 2013-01-09 2014-07-24 Toyo Tire & Rubber Co Ltd Polyurethane foam panel
US20150345135A1 (en) * 2013-01-09 2015-12-03 Toyo Tire & Rubber Co., Ltd. Construction structure and method for producing same
CN108269565A (en) * 2018-03-13 2018-07-10 吉林大学 With ribbed Bionic conflguration non-smooth surface polyurethane foam board and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625375A (en) * 1992-04-20 1994-02-01 Takeda Chem Ind Ltd Production of open-cell rigid polyurethane foam
JPH06213561A (en) * 1993-01-18 1994-08-02 Hitachi Ltd Insulating material and refrigerator using the same
JP2002293868A (en) * 2001-03-29 2002-10-09 Mitsui Chemicals Inc Rigid polyurethane foam and production method thereof
JP2004331772A (en) * 2003-05-06 2004-11-25 Mitsui Takeda Chemicals Inc Heat-insulating molding of rigid polyurethane foam and method for producing the same
JP2007031613A (en) * 2005-07-28 2007-02-08 Kao Corp Method for producing polyurethane foam
JP2010168575A (en) * 2008-12-25 2010-08-05 Asahi Glass Co Ltd Method for producing open-cell rigid synthetic resin foam
JP2011057893A (en) * 2009-09-11 2011-03-24 Toyo Tire & Rubber Co Ltd Method for producing open-cell polyurethane foam and polyol composition used therefor
WO2011074642A1 (en) * 2009-12-18 2011-06-23 旭硝子株式会社 Process for production of rigid open-cell foam

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625375A (en) * 1992-04-20 1994-02-01 Takeda Chem Ind Ltd Production of open-cell rigid polyurethane foam
JPH06213561A (en) * 1993-01-18 1994-08-02 Hitachi Ltd Insulating material and refrigerator using the same
JP2002293868A (en) * 2001-03-29 2002-10-09 Mitsui Chemicals Inc Rigid polyurethane foam and production method thereof
JP2004331772A (en) * 2003-05-06 2004-11-25 Mitsui Takeda Chemicals Inc Heat-insulating molding of rigid polyurethane foam and method for producing the same
JP2007031613A (en) * 2005-07-28 2007-02-08 Kao Corp Method for producing polyurethane foam
JP2010168575A (en) * 2008-12-25 2010-08-05 Asahi Glass Co Ltd Method for producing open-cell rigid synthetic resin foam
JP2011057893A (en) * 2009-09-11 2011-03-24 Toyo Tire & Rubber Co Ltd Method for producing open-cell polyurethane foam and polyol composition used therefor
WO2011074642A1 (en) * 2009-12-18 2011-06-23 旭硝子株式会社 Process for production of rigid open-cell foam

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014109216A1 (en) * 2013-01-09 2014-07-17 東洋ゴム工業株式会社 Polyurethane foam panel
JP2014133803A (en) * 2013-01-09 2014-07-24 Toyo Tire & Rubber Co Ltd Polyurethane foam panel
JP2014133805A (en) * 2013-01-09 2014-07-24 Toyo Tire & Rubber Co Ltd Polyurethane foam panel
US20150345135A1 (en) * 2013-01-09 2015-12-03 Toyo Tire & Rubber Co., Ltd. Construction structure and method for producing same
CN108269565A (en) * 2018-03-13 2018-07-10 吉林大学 With ribbed Bionic conflguration non-smooth surface polyurethane foam board and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5860709B2 (en) Polyol composition for rigid polyurethane foam and method for producing rigid polyurethane foam
JP2011057893A (en) Method for producing open-cell polyurethane foam and polyol composition used therefor
TWI468428B (en) Polyurethane foam board and its manufacturing method
JP2017095553A (en) Method for producing hard polyurethane foam
JP5710654B2 (en) Polyurethane foam panels
JP2015004011A (en) Method for producing rigid polyurethane foam
WO2013011773A1 (en) Polyurethane foam panel and method for producing same
JP5314169B2 (en) Polyurethane foam panel and manufacturing method thereof
JP4978986B2 (en) Polyol composition for foamed rigid polyurethane foam and method for producing foamed rigid polyurethane foam
JP5710653B2 (en) Polyurethane foam panels
TWI510698B (en) Building structure and manufacturing method thereof
JP2016074887A (en) Polyol composition for rigid polyurethane foam, and rigid polyurethane foam production method
JP5314167B2 (en) Rigid polyurethane foam panel and manufacturing method thereof
JP2013185154A (en) Polyurethane foam panel
JP2015052726A (en) Sound insulation material
JP2007186551A (en) Polyol composition for rigid polyurethane foam and method for producing rigid polyurethane foam
JP2005344079A (en) Polyol composition for rigid polyurethane foam and method for producing rigid polyurethane foam
JP5969252B2 (en) Rigid polyurethane foam panel
JP2012144625A (en) Polyol composition for open-cell polyurethane foam, and method of producing the open-cell polyurethane foam
JP2006137814A (en) Method for producing polyol composition for rigid polyurethane foam
JP2015052074A (en) Sound insulation material
JP2006137810A (en) Polyol composition for rigid polyurethane foam and method for producing rigid polyurethane foam
JP2006137811A (en) Polyol composition for rigid polyurethane foam and method for producing rigid polyurethane foam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12814358

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137034586

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14232164

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2842051

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12814358

Country of ref document: EP

Kind code of ref document: A1