JPS6361588B2 - - Google Patents

Info

Publication number
JPS6361588B2
JPS6361588B2 JP59277612A JP27761284A JPS6361588B2 JP S6361588 B2 JPS6361588 B2 JP S6361588B2 JP 59277612 A JP59277612 A JP 59277612A JP 27761284 A JP27761284 A JP 27761284A JP S6361588 B2 JPS6361588 B2 JP S6361588B2
Authority
JP
Japan
Prior art keywords
polyol
urethane foam
parts
cell
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59277612A
Other languages
Japanese (ja)
Other versions
JPS61153480A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59277612A priority Critical patent/JPS61153480A/en
Priority to DE8585116491T priority patent/DE3584672D1/en
Priority to US06/812,512 priority patent/US4668555A/en
Priority to EP19850116491 priority patent/EP0188806B1/en
Priority to KR1019850009890A priority patent/KR900005028B1/en
Publication of JPS61153480A publication Critical patent/JPS61153480A/en
Publication of JPS6361588B2 publication Critical patent/JPS6361588B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、冷蔵庫,冷凍プレハブ等に利用する
断熱体に関するものである。 従来の技術 第3図は、従来の断熱体を示している。以下に
従来例の構成について第3図を参考に説明する。 近年、断熱箱体の断熱性能を向上するため内部
を減圧した断熱体を用いることが注目されてい
る。この断熱体の心材としてはパーライト等の粉
末,ハニカム、及び発泡体等を用いられる。例え
ば、特開昭57―133870号に示されるように連続気
泡を有する硬質ウレタンフオームを心材とする提
案がなされている。この特開昭57―133870号を第
3図で説明すると、図において、1は断熱性構造
体であり、連続気泡を有する硬質ウレタンフオー
ム2を気密性薄膜から成る容器3で被い、内部を
0.001mmHgまで減圧し、密閉している。硬質ウレ
タンフオーム2は、独立気泡率が約80〜90%程度
の市販の材料を高温高湿下で真空脱気して気泡膜
を破り、連続気泡を得ることが特徴となつてい
る。 発明が解決しようとする問題点 しかし、このような断熱性構造体1において
は、硬質ウレタンフオーム2の気泡膜は、高温高
湿下の状態でも樹脂強度が強いため、破泡しない
場合があり、そのため連続気泡率が、100%に到
達しえないことが考えられる。このため、初期の
熱伝導率が優れたものでも経時的に断熱性構造体
1の内部圧力は、独立気泡部から徐々に拡散する
空気・水蒸気・フロンガス等の気体により上昇
し、熱伝導率が大きくなつてくるのである。例え
ば、30cm×30cm×2cm(容積1800cm3)の大きさ
で、平均気泡径300μm程度の硬質ウレタンフオー
ム2の心材を有する断熱性構造体1において、98
%の連続気泡率のとき、0.001mmHgまで減圧した
としても、理論上2%の独立気泡部に含まれる約
36cm3の気体(1800cm3×0.02)は、気泡膜の拡散抵
抗を受けながら、徐々に減圧されている連続気泡
部に拡散する。また、実験によると圧力平衡に完
全に達するのに常温で約30日間、硬質ウレタンフ
オーム2の耐熱温度に近い80〜100℃の雰囲気で
も1〜3日の経時が必要であつた。そして、前記
の約36cm3の気体が長期的にみると内部圧力を
0.001mmHgから15mmHgまで上昇させて熱伝導率
を0.020kcal/mh℃以上に劣化させることが考え
られる。 これを防ぐには、少なくとも80〜100℃に断熱
性構造体1を維持し、1日以上真空ポンプで排気
し続けることが必要であろう。すなわち、この操
作により独立気泡部に残存する気体は、気泡膜を
介して排気され、たとえ、独立気泡部があつたと
しても所定の圧力まで減圧することができる。し
かしながら、この操作は、生産においては、排気
設備1台に対し、1日1体しか製造できず、量産
化は、非常に困難である。又、高温高湿処理も大
規模な設備が必要となり、同様に量産化に対し、
問題である。 本発明は、上記問題点に鑑み短時間の排気で所
定の圧力まで減圧できることによつて生産性を大
幅に向上させると共に、断熱体の断熱性能を長期
にわたつて維持し、品質信頼性を確保することを
目的とする。 問題点を解決するための手段 本発明は、上記問題点を解決するために有機ポ
リイソシアネート,ポリオール,触媒,発泡剤及
び気泡連通化剤としてポリオール100重量部に対
し0.1〜5.0重量部の粉状の飽和モノカルボン酸の
2価金属塩を原料とする硬質ウレタンフオームを
断熱体の心材とするものである。 作 用 上記構成によつて発泡過程で気泡膜が破れ、連
続気泡率が100%となる心材を金属―プラスチツ
クスラミネートフイルムから成る容器で被い、内
部を減圧するため、短時間の排気ができ断熱体の
内部圧力を均一に所定圧力まで減圧できるもので
ある。また、独立気泡部がないため、長期間にわ
たつて内部圧力の上昇がなく、初期の断熱性能を
維持するものである。 なお、本発明で使用できる粉末の飽和モノカル
ボン酸の2価金属塩としては、例えばステアリン
酸カルシウム,ステアリン酸マグネシウム,ステ
アリン酸ストロンチウムミリスチン酸カルシウム
等がある。 実施例 以下、本発明の一実施例を第1図,第2図を参
考に説明する 図において、4は下表に示す原料及び配合部数
を用いてウレタン高圧発泡機で発泡し、硬化させ
た硬質ウレタンフオームで常温でエージングした
後、所定の大きさに切断したものである。
INDUSTRIAL APPLICATION FIELD The present invention relates to a heat insulator used in refrigerators, frozen prefabricated products, and the like. Prior Art FIG. 3 shows a conventional heat insulator. The configuration of the conventional example will be explained below with reference to FIG. In recent years, attention has been paid to the use of a heat insulator with a reduced internal pressure in order to improve the heat insulation performance of the heat insulating box. As the core material of this heat insulating body, powder such as perlite, honeycomb, foam, etc. are used. For example, as shown in JP-A-57-133870, a proposal has been made to use a hard urethane foam having open cells as the core material. This Japanese Patent Application Laid-open No. 57-133870 is explained with reference to Fig. 3. In the figure, 1 is a heat insulating structure, in which a hard urethane foam 2 with open cells is covered with a container 3 made of an airtight thin film.
The pressure is reduced to 0.001mmHg and it is sealed. Rigid urethane foam 2 is characterized in that a commercially available material with a closed cell ratio of about 80 to 90% is vacuum degassed under high temperature and high humidity to break the cell membrane and obtain open cells. Problems to be Solved by the Invention However, in such a heat insulating structure 1, the bubble membrane of the hard urethane foam 2 has strong resin strength even under high temperature and high humidity conditions, so the bubbles may not burst. Therefore, it is possible that the open cell ratio cannot reach 100%. Therefore, even if the initial thermal conductivity is excellent, the internal pressure of the heat insulating structure 1 will increase over time due to gases such as air, water vapor, and fluorocarbon gas gradually diffusing from the closed cell parts, and the thermal conductivity will decrease. It's getting bigger. For example, in a heat insulating structure 1 having a core material of hard urethane foam 2 with a size of 30 cm x 30 cm x 2 cm (volume 1800 cm 3 ) and an average cell diameter of about 300 μm, 98
% open cell ratio, even if the pressure is reduced to 0.001 mmHg, the theoretical amount of water contained in 2% closed cell portion is
36cm 3 of gas (1800cm 3 ×0.02) diffuses into the open cell portion, which is gradually being depressurized, while being affected by the diffusion resistance of the cell membrane. Further, according to experiments, it took about 30 days at room temperature to completely reach pressure equilibrium, and 1 to 3 days in an atmosphere of 80 to 100°C, which is close to the heat resistance temperature of the rigid urethane foam 2. In the long run, the approximately 36 cm3 of gas mentioned above will increase the internal pressure.
It is conceivable to increase the thermal conductivity from 0.001 mmHg to 15 mmHg and deteriorate the thermal conductivity to 0.020 kcal/mh℃ or more. To prevent this, it would be necessary to maintain the heat insulating structure 1 at a temperature of at least 80 to 100°C and to continue to evacuate it with a vacuum pump for one day or more. That is, by this operation, the gas remaining in the closed cell portion is exhausted through the cell membrane, and even if there is a closed cell portion, the pressure can be reduced to a predetermined pressure. However, in production, only one unit of exhaust equipment can be manufactured per day using this operation, and mass production is extremely difficult. In addition, large-scale equipment is required for high-temperature and high-humidity processing, which also makes mass production difficult.
That's a problem. In view of the above problems, the present invention significantly improves productivity by reducing the pressure to a predetermined pressure in a short time, and maintains the insulation performance of the heat insulator over a long period of time, ensuring quality reliability. The purpose is to Means for Solving the Problems In order to solve the above problems, the present invention provides organic polyisocyanate, polyol, catalyst, blowing agent, and cell communication agent in the form of a powder of 0.1 to 5.0 parts by weight per 100 parts by weight of polyol. The core material of the heat insulator is a hard urethane foam made from a divalent metal salt of a saturated monocarboxylic acid. Effect With the above structure, the cell membrane ruptures during the foaming process and the core material, which has an open cell ratio of 100%, is covered with a container made of metal-plastic laminate film, and the interior is depressurized, allowing for short-time evacuation. This allows the internal pressure of the heat insulator to be uniformly reduced to a predetermined pressure. Furthermore, since there are no closed cell portions, there is no increase in internal pressure over a long period of time, and the initial heat insulation performance is maintained. In addition, examples of powdered divalent metal salts of saturated monocarboxylic acids that can be used in the present invention include calcium stearate, magnesium stearate, strontium stearate, and calcium myristate. EXAMPLE Hereinafter, an example of the present invention will be explained with reference to FIGS. 1 and 2. In the figure, 4 is a urethane foam foamed and cured using a high-pressure urethane foaming machine using the raw materials and blended parts shown in the table below. It is made of hard urethane foam, aged at room temperature, and then cut into a predetermined size.

【表】【table】

【表】 表において、ポリオールAは芳香族ジアミンを
開始剤としてプロピレンオキサイド(以下、PO
と呼ぶ)を付加重合させて得た水酸基価442mg
KOH/gのポリエーテルポリオールである。ま
た、ポリオールBは、蔗糖,エチレンジアミン,
ジエチレングリコールを開始剤とし、POを付加
重合させて得た水酸基価400mgKOH/gのポリエ
ーテルポリオールである。また、ポリオールC
は、ポリオールAとポリオールBの70:30の比率
の混合ポリエーテルポリオールである。そして、
整泡剤は、信越化学(株)製のシリコーン界面活性剤
F―318、発泡剤は、昭和電工(株)製フロンR―11
である。触媒Aは、ジメチルエタノールアミン、
触媒Bは、ジブチルチンジラウレートである。ま
た、気泡連通化剤は、日本油脂(株)製ステアリン酸
カルシウムである。有機ポリイソシアネートA
は、トルイレンジイソシアネートとトリメチルプ
ロパン及びジエチレングリコールを反応させて得
たアミン当量150のポリイソシアネート,有機ポ
リイソシアネートBは、日本ポリウレタン(株)製ア
ミン当量136の粗製ジフエニールメタンジイソシ
アネートである。これらの原料を種々組合せて発
泡を行ない、この一部を実施例としてNo.1〜No.
4、比較例としてNo.A,Bを表に表わした。これ
らの硬質ウレタンフオーム4の密度,連続気泡率
も表に示す。 この後、120℃で約2時間加熱し、吸着水分を
蒸発させて、アルミ蒸着ポリエステルフイルムと
ポリエチレンフイルムのラミネート構成による金
属―プラスチツクスラミネートフイルムから成る
袋状の容器5で被い、内部を0.05mmHgまで減圧
し、密閉して断熱体6を得ている。このときの排
気時間は、3分間であつた。得られた断熱体6の
密閉直後の初期値の熱伝導率と、30日後の熱伝導
率も表に示した。熱伝導率は真空理工(株)製K―
Maticで平均温度24℃で測定した。 表から明らかなようにポリオール,有機イソシ
アネート,触媒,整泡剤,発泡剤、及び気泡連通
化剤として、紛状の飽和モノカルボン酸の2価金
属塩をポリオール100重量部に対し、0.1〜5.0重
量部を使用して発泡した硬質ウレタンフオーム4
は連続気泡率が100%となることが判つた。これ
は、粉状の飽和モノカルボン酸の2価金属塩が、
硬質ウレタンフオーム4の発泡時に、気泡膜の膜
上に分散し膜厚を不均一化し、破泡させるものと
考えられるが、本プロセスの詳細は解明に至つて
いない。そして、この連続気泡率が100%で独立
気泡部のない硬質ウレタンフオーム4を断熱体6
の心材として用いるため、短時間の排気で断熱体
6の内部圧力を連続気泡を通して均一に所定圧力
まで減圧でき、量産効率の優れたものとなる。ま
た、気体を含有する独立気泡部がないため、断熱
体6を長期にわたつて放置しても独立気泡部から
のガス拡散はなく圧力上昇を起こすことはない、
よつて、断熱体6の断熱性能は長期にわたつて劣
化することがなく品質確保に寄与するものであ
る。一方、気泡連通化剤が0.05重量部のNo.Aは連
続気泡率が100%に足らず、熱伝導率は経時後、
著しく大きなものとなつている。また、6.0重量
部のNo.Bは、気泡連通化剤の作用が大きいため
に、気泡骨格そのものが、形成されず消泡してし
まい、断熱体1の心材として適用外のものとなつ
た。 発明の効果 本発明は、上記の説明からも明らかなように、
以下に示すような効果が得られるものである。 a 有機ポリイソシアネート,ポリオール,触
媒,整泡剤,発泡剤,及び気泡連通化剤として
ポリオール100重量部に対し、0.1〜5.0重量部
の粉末状の飽和モノカルボン酸の2価金属塩を
混合、発泡して得られる硬質ウレタンフオーム
は、連続気泡率が100%で独立気泡部のない気
泡構造となるため、これを金属―プラスチツク
スラミネートフイルムから成る容器で被い、内
部を減圧すると内部圧力は均一に所定圧力まで
短時間に到達することができ、量産時の生産性
を確保することが可能となる。 b 気体を含有する独立気泡部がないため、断熱
体を長期にわたつて放置しても独立気泡部から
のガス拡散はなく圧力上昇を起こすことはな
い。よつて断熱体の断熱性能は劣化することな
く、品質の安定性を確保するものである。
[Table] In the table, polyol A is propylene oxide (hereinafter referred to as PO) using an aromatic diamine as an initiator.
Hydroxyl value 442mg obtained by addition polymerization of
KOH/g polyether polyol. In addition, polyol B includes sucrose, ethylenediamine,
This is a polyether polyol with a hydroxyl value of 400 mgKOH/g obtained by addition polymerizing PO using diethylene glycol as an initiator. In addition, polyol C
is a mixed polyether polyol containing polyol A and polyol B in a ratio of 70:30. and,
The foam stabilizer is silicone surfactant F-318 manufactured by Shin-Etsu Chemical Co., Ltd., and the foaming agent is Freon R-11 manufactured by Showa Denko Co., Ltd.
It is. Catalyst A is dimethylethanolamine,
Catalyst B is dibutyltin dilaurate. In addition, the cell communication agent is calcium stearate manufactured by NOF Corporation. Organic polyisocyanate A
is a polyisocyanate with an amine equivalent of 150 obtained by reacting toluylene diisocyanate with trimethylpropane and diethylene glycol, and organic polyisocyanate B is a crude diphenylmethane diisocyanate with an amine equivalent of 136 manufactured by Nippon Polyurethane Co., Ltd. Foaming was performed using various combinations of these raw materials.
4. Nos. A and B are shown in the table as comparative examples. The density and open cell ratio of these hard urethane foams 4 are also shown in the table. Thereafter, the adsorbed moisture is evaporated by heating at 120°C for about 2 hours, and the interior is covered with a bag-shaped container 5 made of a metal-plastic laminate film with a laminate structure of an aluminum vapor-deposited polyester film and a polyethylene film. The pressure was reduced to mmHg, and the heat insulator 6 was obtained by sealing. The evacuation time at this time was 3 minutes. The initial thermal conductivity of the obtained heat insulator 6 immediately after sealing and the thermal conductivity after 30 days are also shown in the table. Thermal conductivity is K made by Shinku Riko Co., Ltd.
Measured with Matic at an average temperature of 24℃. As is clear from the table, as a polyol, an organic isocyanate, a catalyst, a foam stabilizer, a blowing agent, and a cell communication agent, 0.1 to 5.0 of a powdered divalent metal salt of a saturated monocarboxylic acid is added to 100 parts by weight of the polyol. Hard urethane foam foamed using weight parts 4
It was found that the open cell ratio was 100%. This is a powdery divalent metal salt of a saturated monocarboxylic acid.
It is thought that when the hard urethane foam 4 is foamed, it is dispersed on the cell film, making the film thickness non-uniform and causing the bubbles to break, but the details of this process have not yet been elucidated. Then, this hard urethane foam 4 with an open cell ratio of 100% and no closed cell portion is made into a heat insulating material 6.
Since it is used as a core material, the internal pressure of the heat insulating body 6 can be uniformly reduced to a predetermined pressure through open cells by evacuation for a short time, resulting in excellent mass production efficiency. In addition, since there is no closed cell portion containing gas, even if the heat insulator 6 is left for a long period of time, there will be no gas diffusion from the closed cell portion and no pressure increase will occur.
Therefore, the heat insulating performance of the heat insulator 6 does not deteriorate over a long period of time, contributing to quality assurance. On the other hand, in No. A containing 0.05 parts by weight of the cell communication agent, the open cell ratio was less than 100%, and the thermal conductivity was
It has become extremely large. In addition, in No. B containing 6.0 parts by weight, the cell skeleton itself was not formed and the foam disappeared due to the large effect of the cell communication agent, making it inapplicable as the core material of the heat insulating body 1. Effects of the Invention As is clear from the above description, the present invention has the following advantages:
The following effects can be obtained. a. Mixing 0.1 to 5.0 parts by weight of a powdered divalent metal salt of a saturated monocarboxylic acid to 100 parts by weight of the polyol as an organic polyisocyanate, a polyol, a catalyst, a foam stabilizer, a blowing agent, and a cell communication agent; The rigid urethane foam obtained by foaming has a cell structure with a 100% open cell ratio and no closed cells, so when it is covered with a container made of metal-plastic laminate film and the inside is depressurized, the internal pressure is reduced. It is possible to uniformly reach a predetermined pressure in a short time, and it is possible to ensure productivity during mass production. b. Since there is no closed cell part containing gas, even if the heat insulator is left for a long period of time, there will be no gas diffusion from the closed cell part and no pressure increase will occur. Therefore, the heat insulating performance of the heat insulator does not deteriorate, and quality stability is ensured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における硬質ウレタ
ンフオームの外観斜視図、第2図は同断熱体の断
面図、第3図は従来例の断熱性構造体の断面図で
ある。 4……硬質ウレタンフオーム、5……容器、6
……断熱体。
FIG. 1 is an external perspective view of a rigid urethane foam according to an embodiment of the present invention, FIG. 2 is a sectional view of the same heat insulating body, and FIG. 3 is a sectional view of a conventional heat insulating structure. 4...Hard urethane foam, 5...Container, 6
...Insulator.

Claims (1)

【特許請求の範囲】[Claims] 1 有機ポリイソシアネート、ポリオール、触
媒、整泡剤、発泡剤、及び気泡連通化剤としてポ
リール100重量部に対し0.1〜5.0重量部の粉末状
の飽和モノカルボン酸の2価金属塩を混合し、発
泡して連続気泡構造の硬質ウレタンフオームを形
成し、この硬質ウレタンフオームを金属―プラス
チツクスラミネートフイルムから成る容器で被
い、内部を減圧して密閉した断熱体。
1. 0.1 to 5.0 parts by weight of a powdered divalent metal salt of a saturated monocarboxylic acid is mixed with 100 parts by weight of polyol as an organic polyisocyanate, a polyol, a catalyst, a foam stabilizer, a blowing agent, and a cell communication agent, A heat insulator that is foamed to form a rigid urethane foam with an open cell structure, covered with a container made of metal-plastic laminate film, and sealed by reducing the pressure inside.
JP59277612A 1984-12-27 1984-12-27 Heat insulator Granted JPS61153480A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59277612A JPS61153480A (en) 1984-12-27 1984-12-27 Heat insulator
DE8585116491T DE3584672D1 (en) 1984-12-27 1985-12-23 POLYURETHANE FOAM CONTAINING HEAT-INSULATING BODY.
US06/812,512 US4668555A (en) 1984-12-27 1985-12-23 Heat insulating body
EP19850116491 EP0188806B1 (en) 1984-12-27 1985-12-23 Rigid polyurethane foam containing heat insulating body
KR1019850009890A KR900005028B1 (en) 1984-12-27 1985-12-27 Heat insulating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59277612A JPS61153480A (en) 1984-12-27 1984-12-27 Heat insulator

Publications (2)

Publication Number Publication Date
JPS61153480A JPS61153480A (en) 1986-07-12
JPS6361588B2 true JPS6361588B2 (en) 1988-11-29

Family

ID=17585844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59277612A Granted JPS61153480A (en) 1984-12-27 1984-12-27 Heat insulator

Country Status (1)

Country Link
JP (1) JPS61153480A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321476A (en) * 1986-07-15 1988-01-29 松下冷機株式会社 Heat insulator
JPS6334479A (en) * 1986-07-29 1988-02-15 松下冷機株式会社 Heat insulator
JPS63189771A (en) * 1987-02-03 1988-08-05 松下冷機株式会社 Manufacture of heat insulator
JP2702746B2 (en) * 1988-09-19 1998-01-26 松下冷機株式会社 Insulation
JPH062798A (en) * 1992-06-16 1994-01-11 Matsushita Refrig Co Ltd Manufacture of heat insulated body
DE69632254T2 (en) * 1995-05-26 2004-08-26 Stepan Co., Northfield OPEN CELL POLYURETHANE FOAM AND METHOD FOR THE PRODUCTION THEREOF AND COMPOSITIONS FOR PREPARING SUCH FOAM

Also Published As

Publication number Publication date
JPS61153480A (en) 1986-07-12

Similar Documents

Publication Publication Date Title
US4668555A (en) Heat insulating body
JPS6361588B2 (en)
JPH06213561A (en) Insulating material and refrigerator using the same
JP2543041B2 (en) Insulation
JP2702746B2 (en) Insulation
JPH0789003B2 (en) Insulation
JPH023115B2 (en)
JPS62147275A (en) Manufacture of heat insulator
JPS6321475A (en) Heat insulator
JP2548323B2 (en) Insulation
JPH0463992B2 (en)
JPH02120598A (en) Insulating body
JPH02154894A (en) Heat insulator
KR900005028B1 (en) Heat insulating body
JPS6361586B2 (en)
JPH0789004B2 (en) Insulation
JPH0272295A (en) Heat insulating structure
JPH01189479A (en) Preparation of core of heat insulating body
JPH04143586A (en) Adiabatic body
JPS6361589B2 (en)
JPS6361587B2 (en)
JPH0827130B2 (en) Insulation
JPS6262173A (en) Heat insulator
JPS6321476A (en) Heat insulator
JPH05280691A (en) Heat insulating body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term