JP2702746B2 - Insulation - Google Patents

Insulation

Info

Publication number
JP2702746B2
JP2702746B2 JP63233952A JP23395288A JP2702746B2 JP 2702746 B2 JP2702746 B2 JP 2702746B2 JP 63233952 A JP63233952 A JP 63233952A JP 23395288 A JP23395288 A JP 23395288A JP 2702746 B2 JP2702746 B2 JP 2702746B2
Authority
JP
Japan
Prior art keywords
urethane foam
rigid urethane
heat
closed
heat insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63233952A
Other languages
Japanese (ja)
Other versions
JPH0280893A (en
Inventor
一登 上門
仁孝 片岡
英夫 中元
Original Assignee
松下冷機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下冷機株式会社 filed Critical 松下冷機株式会社
Priority to JP63233952A priority Critical patent/JP2702746B2/en
Publication of JPH0280893A publication Critical patent/JPH0280893A/en
Application granted granted Critical
Publication of JP2702746B2 publication Critical patent/JP2702746B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷蔵庫,冷凍プレハブ等に利用する断熱体
に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat insulator used for a refrigerator, a freezing prefab, and the like.

従来の技術 第3図は、従来の断熱体を示している。以下に従来例
の構成について第3図を参考に説明する。
FIG. 3 shows a conventional heat insulator. The configuration of the conventional example will be described below with reference to FIG.

近年、断熱箱体の断熱性能を向上するため内部を減圧
した断熱体を用いることが注目されている。この断熱体
の心材としてはパーライト等の粉末,ハニカム,及び発
泡体等を用いられる。例えば、特開昭57−133870号公報
に示されるように連続気泡を有する硬質ウレタンフォー
ムを心材とする提案がなされている。この特開昭57−13
3870号公報を第3図で説明すると、図において、1は断
熱性構造体であり、連続気泡を有する硬質ウレタンフォ
ーム2を気密性薄膜から成る容器3で被い、内部を0.00
1mmHgまで減圧し、密閉している。硬質ウレタンフォー
ム2は、独立気泡率が約80〜90%程度の市販の材料を高
温高湿下で真空脱気して気泡膜を破り、連続気泡を得る
ことが特徴となっている。
In recent years, attention has been paid to using a heat insulator whose internal pressure is reduced in order to improve the heat insulating performance of the heat insulating box. As a core material of the heat insulator, powder such as pearlite, honeycomb, foam, or the like is used. For example, as disclosed in JP-A-57-133870, a proposal has been made to use a rigid urethane foam having open cells as a core material. JP-A-57-13
Referring to FIG. 3, reference numeral 1 denotes a heat insulating structure, in which a rigid urethane foam 2 having open cells is covered with a container 3 made of an airtight thin film, and the inside is made 0.00
Reduce the pressure to 1 mmHg and seal. The rigid urethane foam 2 is characterized in that a commercially available material having a closed cell ratio of about 80 to 90% is vacuum-degassed under high temperature and high humidity to break a cell membrane and obtain open cells.

発明が解決しようとする課題 しかし、このような断熱性構造体1においては、硬質
ウレタンフォーム2の気泡膜は、高温高湿下の状態でも
樹脂強度が強いため、破泡しない場合があり、そのため
連続気泡率が、100%に到達しえないことが考えられ
る。このため、初期の熱伝導率が優れたものでも経時的
に断熱性構造体1の内部圧力は、独立気泡部から徐々に
拡散する空気・水蒸気・フロンガス等の気体により上昇
し、熱伝導率が大きくなってくるのである。例えば、30
cm×30cm×2cm(容積1800cm3)の大きさで、平均気泡径
300μm程度の硬質ウレタンフォーム2の心材を有する
断熱性構造体1において、98%の連続気泡率のとき、0.
001mmHgまで減圧したとしても、理論上2%の独立気泡
部に含まれる約36cm3の気体(1800cm3×0.02)は、気泡
膜の拡散抵抗を受けながら、徐々に減圧されている連続
気泡部に拡散する。また、実験によると圧力平衡に完全
に達するのに常温で約30日間、硬質ウレタンフォーム2
の耐熱温度に近い80〜100℃の雰囲気でも1〜3日の経
時が必要であった。そして、前記の約36cm3の気体が長
期的にみると内部圧力を0.001mmHgから15mmHgまで上昇
させて熱伝導率を0.020kcal/mh℃以上に劣化させること
が考えられる。
Problems to be Solved by the Invention However, in such a heat-insulating structure 1, the foam film of the rigid urethane foam 2 may not break due to high resin strength even in a state of high temperature and high humidity. It is considered that the open cell rate cannot reach 100%. For this reason, even if the initial thermal conductivity is excellent, the internal pressure of the heat-insulating structure 1 gradually increases with time due to the gas, such as air, water vapor, and chlorofluorocarbon gas, which gradually diffuses from the closed cell portion, and the thermal conductivity increases. It is getting bigger. For example, 30
cm × 30cm × 2cm (volume 1800cm 3 ), average bubble diameter
In the heat-insulating structure 1 having a core material of a hard urethane foam 2 of about 300 μm, when the open cell ratio is 98%, the heat-insulating structure 1 has a thickness of 0.2%.
Even if the pressure is reduced to 001 mmHg, theoretically, about 36 cm 3 of gas (1800 cm 3 × 0.02) contained in 2% of closed-cell parts is reduced to open-cell parts that are gradually reduced in pressure while receiving the diffusion resistance of the bubble film. Spread. According to experiments, it was necessary to use rigid urethane foam 2 at room temperature for about 30 days to completely reach pressure equilibrium.
Even in an atmosphere at a temperature of 80 to 100 ° C. close to the heat-resistant temperature, aging was required for 1 to 3 days. In the long term, it is considered that the gas of about 36 cm 3 raises the internal pressure from 0.001 mmHg to 15 mmHg and deteriorates the thermal conductivity to 0.020 kcal / mh ° C. or more.

これを防ぐには、少なくとも80〜100℃に硬質ウレタ
ンフォーム2を維持し、1日以上真空ポンプで排気し続
けることが必要であろう。すなわち、この操作により独
立気泡部に残存する気体は、気泡膜を介して排気され、
たとえ、独立気泡があったとしても所定の圧力まで減圧
することができる。しかしながら、この操作は、生産に
おいては、排気設備1台に対し、1日1体しか製造でき
ず、量産化は、非常に困難である。又、高温高湿処理も
大規模な設備が必要となり、同様に量産化に対し、問題
があり、生産性の向上が課題であった。
In order to prevent this, it will be necessary to maintain the rigid urethane foam 2 at least at 80 to 100 ° C. and continue to evacuate it with a vacuum pump for one day or more. That is, the gas remaining in the closed cell portion by this operation is exhausted through the bubble film,
Even if there are closed cells, the pressure can be reduced to a predetermined pressure. However, this operation can produce only one body per day for one exhaust facility in production, and mass production is very difficult. In addition, high-temperature and high-humidity processing also requires large-scale equipment, which also has a problem in mass production, and there has been a problem in improving productivity.

本発明は、上記課題を解決するため短時間の排気で所
定の圧力まで減圧できることによって生産性を大幅に向
上させると共に、断熱体の断熱性能を長期にわたって維
持し、品質信頼性を確保することを目的とする。
The present invention solves the above-mentioned problems, by significantly reducing the pressure to a predetermined pressure with a short-time exhaust, significantly improves the productivity, maintains the heat insulation performance of the heat insulator for a long time, and ensures the quality reliability. Aim.

課題を解決するための手段 本発明は、上記課題を解決するためにシリコーン系消
泡剤を内面に塗布した密閉容器と、前記密閉容器と一体
発泡により充填してなる飽和モノカルボン酸2価金属塩
を気泡連通化剤とする硬質ウレタンフォームとより成
り、密閉容器内部を減圧して断熱体を得るものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a sealed container in which a silicone-based antifoaming agent is applied on the inner surface, and a saturated monocarboxylic acid divalent metal which is filled by integral foaming with the sealed container. It is made of a rigid urethane foam using a salt as a cell communicating agent, and the inside of the closed vessel is depressurized to obtain a heat insulator.

作 用 上記構成によって発泡過程で密閉容器と接する硬質ウ
レタンフォームのスキン部も含めて気泡膜が破れ連続気
泡率が100%となるため、密閉容器内部を減圧すると短
時間で排気ができ、断熱体の内部圧力を均一に所定圧力
まで減圧できるのである。また、独立気泡部がないため
長期間にわたって内部圧力の上昇がなく、初期の断熱性
能を維持するものである。
Effect The above structure breaks the cell membrane including the skin portion of the rigid urethane foam that comes into contact with the closed container during the foaming process, and the open cell ratio becomes 100%. Can be uniformly reduced to a predetermined pressure. In addition, since there is no closed cell portion, the internal pressure does not increase for a long period of time, and the initial heat insulating performance is maintained.

実 施 例 以下、本発明の一実施例を第1図から第2図を参考に
説明する。
Embodiment An embodiment of the present invention will be described below with reference to FIGS.

図において、4は、ステンレスから成る密閉容器であ
り、あらかじめ東レシリコン(株)製シリコーン系消泡
剤SH−200(図示せず)を内面に塗布している。5は密
閉容器4の注入口6より注入し、一体発泡した連続気泡
構造の硬質ウレタンフォームである。硬質ウレタンフォ
ーム5の原料及び配合部数を表に示す。
In the figure, reference numeral 4 denotes an airtight container made of stainless steel, to which a silicone-based antifoaming agent SH-200 (not shown) manufactured by Toray Silicon Co., Ltd. is applied in advance on the inner surface. Reference numeral 5 denotes a rigid urethane foam having an open-cell structure, which is injected from an injection port 6 of a closed container 4 and is integrally foamed. The raw material and blending number of the rigid urethane foam 5 are shown in the table.

表において、ポリオールAは芳香族ジアミンを開始剤
としてプロピレンオキサイド(以下、POと呼ぶ)を付加
重合させて得た水酸基価442mgKOH/gのポリエーテルポリ
オールである。そして、整泡剤は、信越化学(株)製の
シリコーン界面活性剤F−338、発泡剤は、昭和電工
(株)製フロンR−11である。触媒Aは、ジメチルエタ
ノールアミン、触媒Bは、ジブチルチンジラウレートで
ある。また、気泡連通化剤は、日本油脂(株)製ステア
リン酸カルシウムである。有機ポリイソシアネートA
は、トルイレンジイソシアネートとトリメチルプロパン
及びジエチレングリコールを反応させて得たアミン当量
150のポリイソシアネートこれらの原料を組合せて発泡
を行ない、この一部を実施例として表に表わした。この
ときの硬質ウレタンフォーム5の密度、連続気泡率につ
いてスキン層を含めた全体平均及び中心部で測定した結
果を同表に付した。
In the table, polyol A is a polyether polyol having a hydroxyl value of 442 mgKOH / g obtained by addition polymerization of propylene oxide (hereinafter, referred to as PO) using an aromatic diamine as an initiator. The foam stabilizer is silicone surfactant F-338 manufactured by Shin-Etsu Chemical Co., Ltd., and the foaming agent is Freon R-11 manufactured by Showa Denko KK. Catalyst A is dimethylethanolamine and catalyst B is dibutyltin dilaurate. In addition, the bubble communicating agent is calcium stearate manufactured by NOF Corporation. Organic polyisocyanate A
Is the amine equivalent obtained by reacting toluylene diisocyanate with trimethylpropane and diethylene glycol.
150 polyisocyanates These materials were combined and foamed, some of which are shown in the table as examples. The results obtained by measuring the density and open cell ratio of the rigid urethane foam 5 at the entire average including the skin layer and at the center at this time are shown in the same table.

この後、120℃で約2時間加熱し、注入口6を介して
及着水分等を蒸発させてからバルブ7を取付け、真空ポ
ンプにより内部を0.05mmHgまで減圧し断熱体8を得た。
このときの排気時間は10分であった。得られた断熱体8
の減圧直後の初期値の熱伝導率と20日後の熱伝導率も表
に示した。熱伝導率は真空理工(株)製K−Maticで平
均温度24℃で測定した。
Thereafter, the mixture was heated at 120 ° C. for about 2 hours to evaporate water and the like through the inlet 6, and then the valve 7 was attached. The pressure inside the container was reduced to 0.05 mmHg by a vacuum pump to obtain a heat insulator 8.
The evacuation time at this time was 10 minutes. The obtained heat insulator 8
The thermal conductivity of the initial value immediately after decompression and the thermal conductivity after 20 days are also shown in the table. The thermal conductivity was measured at an average temperature of 24 ° C. using K-Matic manufactured by Vacuum Riko Co., Ltd.

一方、比較例として、密閉容器4の内面にシリコーン
系消泡剤を塗布しない場合の硬質ウレタンフォーム5の
密度,連続気泡率についての全体平均値及び中心部での
値、さらに断熱体6の熱伝導率変化も同表に示した。
On the other hand, as a comparative example, the density and the open cell ratio of the rigid urethane foam 5 when the silicone-based defoaming agent is not applied to the inner surface of the closed container 4, the overall average value and the value at the center, and the heat of the heat insulator 6. The change in conductivity is also shown in the table.

表から明らかなように密閉容器の内面にシリコーン系
消泡剤を塗布し、この中に飽和カルボン酸2価金属塩を
気泡連通化剤とする硬質ウレタンフォームを注入し、一
体発泡したものは連続気泡率がスキン層も含めた全体平
均で100%となることが判った。
As is clear from the table, a silicone-based antifoaming agent is applied to the inner surface of the closed container, and a rigid urethane foam having a saturated carboxylic acid divalent metal salt as a cell communicating agent is injected into the inside, and the foamed one is continuous. It was found that the air bubble ratio was 100% on the whole average including the skin layer.

これは、飽和モノカルボン酸2価金属塩が、硬質ウレ
タンフォーム5の発泡時に、気泡膜の膜上に分散し膜厚
を不均一化し、破泡させると共に、密閉容器4と接触す
るスキン層の高密度部分においても塗布されたシリコー
ン系消泡剤が発泡過程の硬質ウレタンフォーム5に対し
破泡効果を発揮、連続気泡率を100%化するものと思わ
れる。そして、この連続気泡率が100%で独立気泡部の
ない硬質ウレタンフォーム5を断熱体8の芯材として用
いるため、短時間の排気で断熱体8の内部圧力を連続気
泡を通して均一に所定圧力まで減圧でき、量産効率の優
れたものとなる。また、気体を含有する独立気泡部がな
いため、断熱体8を長期にわたって放置しても独立気泡
部からのガス拡散はなく圧力上昇を起こすことはない。
よって、断熱体8の断熱性能は長期にわたって劣化する
ことがなく品質確保に寄与するものである。
This is because, when the rigid urethane foam 5 is foamed, the saturated monocarboxylic acid divalent metal salt is dispersed on the foamed film to make the film thickness non-uniform, break bubbles, and break the foam. It is considered that the applied silicone-based defoamer also exerts a foam breaking effect on the rigid urethane foam 5 in the foaming process even in the high-density portion, and increases the open cell ratio to 100%. Since the rigid urethane foam 5 having an open cell ratio of 100% and having no closed cell portion is used as a core material of the heat insulator 8, the internal pressure of the heat insulator 8 is uniformly reduced to a predetermined pressure through the open cells by short-time exhaustion. The pressure can be reduced and the mass production efficiency becomes excellent. Further, since there is no closed cell portion containing gas, even if the heat insulator 8 is left for a long period of time, there is no gas diffusion from the closed cell portion and no pressure rise occurs.
Therefore, the heat insulating performance of the heat insulator 8 does not deteriorate for a long time and contributes to quality assurance.

なお、シリコーン系消泡剤による連続気泡化は、飽和
モノカルボン酸2価金属塩と異なり気泡が粗大化し、熱
伝導率が悪くなるが、密閉容器4の内面に塗布したもの
であり、この影響はスキン層部の局部に限られ全体に対
する悪影響は小さいものである。
In addition, unlike the saturated monocarboxylic acid divalent metal salt, the open cell formation by the silicone-based antifoaming agent causes the bubbles to be coarse and the thermal conductivity to deteriorate, but is applied to the inner surface of the closed container 4. Is limited to the local portion of the skin layer portion and has a small adverse effect on the whole.

一方、シリコーン系消泡剤を塗布しない比較例の場
合、スキン層部の連続気泡率が低く、熱伝導率は経時後
著しく大きなものとなっている。
On the other hand, in the case of the comparative example in which the silicone-based antifoaming agent was not applied, the open cell ratio of the skin layer portion was low, and the thermal conductivity became significantly large after the elapse of time.

発明の効果 本発明は、上記の説明からも明らかなように、以下に
示すような効果が得られるものである。
Advantageous Effects of the Invention As is clear from the above description, the present invention has the following effects.

(a) シリコーン系消泡剤を密閉容器の内面に塗布
し、前記密閉容器内に飽和モノカルボン酸2価金属塩を
気泡連通化剤とする硬質ウレタンフォームを注入し一体
発泡したものであるから、得られる連続気泡構造の硬質
ウレタンフォームはスキン部を含めて連続気泡率が100
%で独立気泡部のない気泡構造となるため、密閉容器内
部を減圧すると内部圧力は均一に所定圧力まで短時間に
到達することができ、量産時の生産性を確保することが
可能となる。特に、密閉容器の内面にシリコーン系消泡
剤を塗布することにより、スキン部も発泡過程で独立気
泡部の破泡を促進でき、フォーム中心部はもちろんのこ
とスキン部の破泡の行われて連続気泡率100%の硬質ウ
レタンフォームが得られるものである。
(A) A silicone-based antifoaming agent is applied to the inner surface of a closed container, and rigid urethane foam having a saturated monocarboxylic acid divalent metal salt as a cell communicating agent is injected into the closed container and integrally foamed. The obtained open-celled rigid urethane foam has an open cell ratio of 100 including the skin.
%, A closed cell structure without a closed cell portion is obtained. Therefore, when the inside of the sealed container is depressurized, the internal pressure can uniformly reach a predetermined pressure in a short time, and productivity during mass production can be secured. In particular, by applying a silicone-based antifoaming agent to the inner surface of the closed container, the foaming of the closed cell part can be promoted in the foaming process of the skin part, and the foam part of the skin part as well as the foam center is broken. A rigid urethane foam having an open cell ratio of 100% can be obtained.

(b) 気体を含有する独立気泡部がないため、断熱体
を長期にわたって放置しても独立気泡部からのガス拡散
はなく圧力上昇を起こすことはない。よって断熱体の断
熱性能は劣化することなく、品質の安定性を確保するも
のである。
(B) Since there is no closed cell portion containing gas, even if the heat insulator is left for a long period of time, there is no gas diffusion from the closed cell portion and no pressure rise occurs. Therefore, the heat insulation performance of the heat insulator is not deteriorated, and the stability of quality is ensured.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例における断熱体外観斜視図、
第2図は同断熱体の硬質ウレタンフォーム充填後の断面
図、第3図は従来例の断熱性構造体の断面図である。 4……密閉容器、5……硬質ウレタンフォーム、8……
断熱体。
FIG. 1 is an external perspective view of a heat insulator according to one embodiment of the present invention,
FIG. 2 is a cross-sectional view of the heat insulating body after filling with rigid urethane foam, and FIG. 3 is a cross-sectional view of a conventional heat insulating structure. 4 ... closed container, 5 ... hard urethane foam, 8 ...
Insulation.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】シリコーン系消泡剤を内面に塗布した密閉
容器と、前記密閉容器内に一体発泡により充填してなる
飽和モノカルボン酸2価金属塩を気泡連通化剤とする硬
質ウレタンフォームとから成り、この密閉容器内部を減
圧してなる断熱体。
1. A closed container in which a silicone-based antifoaming agent is applied to the inner surface thereof; A heat insulator formed by reducing the pressure inside the closed container.
JP63233952A 1988-09-19 1988-09-19 Insulation Expired - Fee Related JP2702746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63233952A JP2702746B2 (en) 1988-09-19 1988-09-19 Insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63233952A JP2702746B2 (en) 1988-09-19 1988-09-19 Insulation

Publications (2)

Publication Number Publication Date
JPH0280893A JPH0280893A (en) 1990-03-20
JP2702746B2 true JP2702746B2 (en) 1998-01-26

Family

ID=16963197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63233952A Expired - Fee Related JP2702746B2 (en) 1988-09-19 1988-09-19 Insulation

Country Status (1)

Country Link
JP (1) JP2702746B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2533492Y2 (en) * 1990-07-14 1997-04-23 松下電工株式会社 Door panel
JPH0560292A (en) * 1991-08-30 1993-03-09 Matsushita Refrig Co Ltd Manufacture of heat insulator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153482A (en) * 1984-12-27 1986-07-12 松下冷機株式会社 Heat insulator
JPS61153480A (en) * 1984-12-27 1986-07-12 松下冷機株式会社 Heat insulator

Also Published As

Publication number Publication date
JPH0280893A (en) 1990-03-20

Similar Documents

Publication Publication Date Title
US4668555A (en) Heat insulating body
KR20140137108A (en) refrigerator and manufacturing method thereof
JP3475763B2 (en) Insulated box for refrigerator
JP2702746B2 (en) Insulation
JPS6361588B2 (en)
JPH07110097A (en) Heat insulation material
JP2879848B1 (en) Insulation gas consisting of fluorinated ketone and insulation material filled with it
JP2543041B2 (en) Insulation
JPH02154894A (en) Heat insulator
JPH02120598A (en) Insulating body
JPS61153481A (en) Heat insulator
JPH023115B2 (en)
JP3125017B2 (en) Insulation
JPH11310619A (en) Polyurethane foam, its production, insulating material and insulating box
KR900005028B1 (en) Heat insulating body
JPH0789003B2 (en) Insulation
JPH04143586A (en) Adiabatic body
JPS61153482A (en) Heat insulator
JPS6361586B2 (en)
JPS62147275A (en) Manufacture of heat insulator
JPH01189479A (en) Preparation of core of heat insulating body
JPH08105592A (en) Vacuum insulation body and manufacture of vacuum insulation body
JPH0789004B2 (en) Insulation
JPH0827130B2 (en) Insulation
JPH0272293A (en) Heat insulating structure

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees