JPS61153481A - Heat insulator - Google Patents

Heat insulator

Info

Publication number
JPS61153481A
JPS61153481A JP59277613A JP27761384A JPS61153481A JP S61153481 A JPS61153481 A JP S61153481A JP 59277613 A JP59277613 A JP 59277613A JP 27761384 A JP27761384 A JP 27761384A JP S61153481 A JPS61153481 A JP S61153481A
Authority
JP
Japan
Prior art keywords
pressure
urethane foam
heat insulator
foam
hard urethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59277613A
Other languages
Japanese (ja)
Other versions
JPH0463992B2 (en
Inventor
一登 上門
一雄 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co, Takeda Chemical Industries Ltd filed Critical Matsushita Refrigeration Co
Priority to JP59277613A priority Critical patent/JPS61153481A/en
Publication of JPS61153481A publication Critical patent/JPS61153481A/en
Publication of JPH0463992B2 publication Critical patent/JPH0463992B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Packages (AREA)
  • Refrigerator Housings (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷蔵庫、冷凍プレハブ等に利用する断熱体に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat insulator used in refrigerators, frozen prefabricated products, and the like.

従来の技術 第4図は、従来の断熱体を示している。以下に従来例の
構成について第4図を参考に説明する。
Prior Art FIG. 4 shows a conventional heat insulator. The configuration of the conventional example will be explained below with reference to FIG. 4.

近年、断熱箱体の断熱性能を図る目的で内部を減圧した
断熱体を用いることが注目されている。
In recent years, attention has been paid to the use of a heat insulator with a reduced internal pressure for the purpose of improving the heat insulation performance of a heat insulating box.

この断熱体の心材としては、パーライト等の粉末、ハニ
カム、及び発泡体等が用いられる。例えば、特開昭57
−133870号に示されるように連続気泡を有する硬
質ウレタンフオームを心材とする提案がなされている。
As the core material of this heat insulating body, powder such as perlite, honeycomb, foam, etc. are used. For example, JP-A-57
As shown in No. 133870, a proposal has been made to use a rigid urethane foam having open cells as the core material.

特開昭57−13870号を第4図で説明すると、図に
おいて、1は断熱性構造体であり、連続気泡を有する硬
質ウレタンフオーム2を気密性薄膜から成る容器3で被
い、内部を0.001mHfまで減圧し、密閉している
。硬質ウレタンフオーム2は、独立気泡率が約80〜9
0チ程度の市販の材料を高温高湿下で真空脱気して、気
泡膜を破り、連続気泡を得ることが特徴となっている。
To explain JP-A-57-13870 with reference to FIG. 4, 1 is a heat insulating structure in which a hard urethane foam 2 having open cells is covered with a container 3 made of an airtight thin film, and the inside is sealed with zero The pressure is reduced to .001 mHf and the chamber is sealed. The hard urethane foam 2 has a closed cell ratio of approximately 80 to 9.
It is characterized by vacuum degassing of commercially available materials with a size of about 0.0 cm under high temperature and high humidity to break the cell membrane and obtain open cells.

発明が解決しようとする問題点 しかし、このような断熱性構造体においては、硬質ウレ
タンフオーム2の気泡膜は、高温高湿下の状態でも、樹
脂強度が強いため、破泡しない場合があり、そのため、
連続気泡率が100%に到達しえないことが考えられる
。このため初期の熱伝導率が優れたものでも、経時的に
断熱性構造体1の内部圧力は、独立気泡部から徐々に拡
散する空気・水蒸気・フロンガス等の気体により上昇し
、熱伝導率が大きくなってくるのである。例えば、30
cm X 30cm x 2 cm (容積18007
)の大きさで、平均気泡径10011m程度の硬質ウレ
タンフオーム2の心材を有する断熱性構造体1において
、98%の連続気泡率のとき、o、 oo 1rtrm
Hqまで減圧したとしても、理論上2チの独立気泡部に
含まれる約36a!tD気体(1sock x o、 
o2)は、気泡膜の拡散抵抗を受けながら徐々に減圧さ
れている連続気泡部に拡散する。実験によると圧力平衡
に完全に達するのに常温で約30日間、硬質ウレタンフ
オーム2の耐熱温度に近い80〜100℃の雰囲気でも
1〜3日間の経時が必要であった。
Problems to be Solved by the Invention However, in such a heat insulating structure, the bubble membrane of the hard urethane foam 2 has strong resin strength even under high temperature and high humidity conditions, so the bubbles may not burst. Therefore,
It is possible that the open cell ratio cannot reach 100%. Therefore, even if the initial thermal conductivity is excellent, the internal pressure of the heat insulating structure 1 will increase over time due to gases such as air, water vapor, and fluorocarbon gas that gradually diffuse from the closed cell parts, and the thermal conductivity will decrease. It's getting bigger. For example, 30
cm x 30cm x 2cm (volume 18007
) and has a core material of hard urethane foam 2 with an average cell diameter of about 10011 m, when the open cell ratio is 98%, o, oo 1rtrm
Even if the pressure is reduced to Hq, approximately 36a is theoretically contained in a 2-inch closed cell! tD gas (1 sock x o,
o2) diffuses into the open cell portion where the pressure is gradually reduced while being affected by the diffusion resistance of the cell membrane. According to experiments, it took about 30 days at room temperature to completely reach pressure equilibrium, and 1 to 3 days even in an atmosphere of 80 to 100°C, which is close to the heat resistance temperature of the rigid urethane foam 2.

そして、前記の約36dの気体が、究極的に内部圧力を
0.001 mmHgから15m1qまで上昇させて熱
伝導率を、0.0201al/mh’c以上に劣化させ
ることが考えられる。
It is conceivable that the above-mentioned approximately 36 d of gas ultimately increases the internal pressure from 0.001 mmHg to 15 m1q and deteriorates the thermal conductivity to 0.0201 al/mh'c or more.

これを防ぐには、少なくとも80〜100℃に断熱性構
造体1を維持し1日以上真空ポンプで排気し続けること
が必要であろう。すなわち、この操作により、独立気泡
部に残存する気体は気泡膜を介して排気され、たとえ、
独立気泡部があったとしても所定の圧力まで減圧するこ
とができる。
To prevent this, it will be necessary to maintain the heat insulating structure 1 at a temperature of at least 80 to 100°C and continue to evacuate it with a vacuum pump for one day or more. That is, by this operation, the gas remaining in the closed cell portion is exhausted through the cell membrane, and even if
Even if there is a closed cell portion, the pressure can be reduced to a predetermined pressure.

しかしながら、この操作は、生産においては、排気設備
1台に対し、1日1体しか製造できず、量産化は、非常
に困難である。又高温高湿処理も大規模な設備が必要と
なり、同様に量産化に対し、問題である。
However, in production, only one unit of exhaust equipment can be manufactured per day using this operation, and mass production is extremely difficult. Furthermore, high temperature and high humidity treatment also requires large-scale equipment, which is also a problem for mass production.

本発明は、上記問題点に鑑み、短時間の排気で所定の圧
力まで減圧できることによって生産性を大巾に向上させ
ると共に、断熱体の断熱性能を長期にわたって維持し、
品質の信頼性を確立することを目的とする。
In view of the above problems, the present invention greatly improves productivity by reducing the pressure to a predetermined pressure in a short time, and maintains the heat insulation performance of the heat insulator over a long period of time.
The purpose is to establish quality reliability.

問題点を解決するための手段 本発明は、上記問題点を解決するために100チ未満6
0%以上の連続気泡率を有する発泡体を圧力容器中に配
置し、加圧気体で加圧して断熱体の心材とするものであ
る。
Means for Solving the Problems The present invention solves the above problems by using less than 100 pieces.
A foam having an open cell ratio of 0% or more is placed in a pressure vessel and pressurized with pressurized gas to form the core material of the heat insulator.

作  用 上記構成のように加圧によって発泡体の気泡膜を破り、
連続気泡率を100%とした心材を金属−プラスチック
スラミネートフィルムから成る容器で被い内部を減圧す
るため、短時間の排気で断熱体の内部圧力を均一に所定
圧力まで減圧できると共に、独立気泡部がないため長期
間にわたって内部圧力の上昇がなく、初期の断熱性能を
維持するのである。
Function: As in the above configuration, the cell membrane of the foam is broken by applying pressure.
Since the core material with 100% open cell ratio is covered with a container made of metal-plastic laminate film to reduce the internal pressure, the internal pressure of the insulation can be uniformly reduced to a predetermined pressure with a short evacuation. Since there is no internal pressure, there is no increase in internal pressure over a long period of time, and the initial insulation performance is maintained.

実施例 以下、本発明の一実施例を第1図〜第3図を参考に説明
する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 3.

図において、4は下表に示す原料を用いて発泡し硬化さ
せた硬質ウレタンフオームからなる発泡体(以下硬質ウ
レタンフオームと呼ぶ)で、常温でエージングした後、
所定の大きさに切断したものである。
In the figure, 4 is a foam made of hard urethane foam (hereinafter referred to as hard urethane foam) that is foamed and hardened using the raw materials shown in the table below, and after aging at room temperature,
It is cut into a predetermined size.

表において、ポリオールは、芳香族ジアミンを開始剤と
してプロピレンオキサイド(以下、P。
In the table, polyols are propylene oxide (hereinafter referred to as P) using an aromatic diamine as an initiator.

と呼ぶ)を付加重合させて得た水酸基価442mgKO
H/gのポリエーテルポリオールである0整泡剤は、信
越化学基のシリコーン系界面活性剤F−335、発泡剤
は、昭和電工株制フロンR−11、触媒は、ジメチルエ
タノールアミンである。
Hydroxyl value 442mgKO obtained by addition polymerization of
The foam stabilizer is a silicone surfactant F-335 manufactured by Shin-Etsu Chemical Group, the blowing agent is Showa Denko K.K. Freon R-11, and the catalyst is dimethylethanolamine.

気泡連通化剤は日本油脂掬製ステアリン酸カルシウムで
ある。有機ポリインシアネートは、日本ポリウレタン株
製アミン当量136の粗製ジフェニールメタンジインシ
アネートである。これらの原料を種々組合せて発泡を行
ない、前記硬質ウレタンフオーム4を得、この後、圧力
容器6中に硬質ウレタンフオーム4を配置し、圧力容器
6中を0.01KM−に減圧、及び2,3,4.5にν
dまでそれぞれ加圧し圧力処理硬質ウレタンフオーム6
を得た、この一部を実施例として、A1−A3に示し、
比較例としてAA−Bを表に示した。又、硬質ウレタン
7オーム4の密度連続気泡率と圧力処理硬質ウレタン7
オーム6の連続気泡率も表に示す。この後、6Ky/a
lまで加圧したものを120℃で約2時間、加熱し吸着
水分を蒸発させて、アルミ蒸着ポリエステルフィルムと
ポリエチレンフィルムのラミネート構成による金属−プ
ラスチックスラミネートフィルムから成る容器7で被い
、内部をo、 o s ttmHqiで減圧し1.密閉
して断熱体8を得た。このときの排気時間は3分間であ
った。
The bubble communication agent is calcium stearate manufactured by Nippon Yushiki. The organic polyinsyanate was crude diphenylmethane diincyanate with an amine equivalent weight of 136 manufactured by Nippon Polyurethane Co., Ltd. Various combinations of these raw materials are foamed to obtain the hard urethane foam 4. After that, the hard urethane foam 4 is placed in the pressure vessel 6, and the pressure in the pressure vessel 6 is reduced to 0.01 KM-, and 2. 3, 4.5 to ν
Pressure-treated hard urethane foam 6
A part of this is shown in A1-A3 as an example,
AA-B is shown in the table as a comparative example. In addition, the density of the hard urethane 7 ohm 4 and the pressure-treated hard urethane 7
The open cell ratio of Ohm 6 is also shown in the table. After this, 6Ky/a
After pressurizing the container to 120° C. for about 2 hours to evaporate the adsorbed moisture, the container 7 was covered with a metal-plastic laminate film made of a laminate of aluminum-deposited polyester film and polyethylene film, and the inside was sealed. o, o s ttmHqi to reduce the pressure 1. The heat insulator 8 was obtained by sealing. The evacuation time at this time was 3 minutes.

得られた断熱体8の密閉直後の初期値の熱伝導率と30
日後の熱伝導率も表に示した。なお、市販のフェノール
フオームについても同様の実験を行ない、結果を実施例
A4として表に付記した。
The initial value of thermal conductivity of the obtained heat insulator 8 immediately after sealing and 30
The thermal conductivity after several days is also shown in the table. A similar experiment was conducted using commercially available phenol foam, and the results are added to the table as Example A4.

表から明らかなように、連続気泡率は、加圧処理を行な
うことKより、増加し、s Kplct1程度で100
%化することが判った。これは、独立気泡中の圧力が少
なくとも1にシーに対し5にν薗以上の圧力をかけるこ
とにより、全ての気泡膜が耐え切れず破泡するからであ
る。ただし、独立気泡が40%以上占める硬質ウレタン
フオーム4の場合は変形・収縮が起こる。これは1つ1
つの気泡膜という局所に応力がかかるのではなく、連な
った独立気泡に応力がかかる確率が増加し、硬質ウレタ
ンフオーム4の広い部分に応力がかかる結果、ウレタン
7オーム4は収縮・変形・破壊が起るものと考えられる
As is clear from the table, the open cell ratio increases when the pressure treatment is performed, and at about s Kplct1, the open cell ratio increases to 100.
%. This is because when the pressure in the closed cells is at least 1 to 5 to 6 or more, all the cell membranes cannot withstand the pressure and burst. However, in the case of hard urethane foam 4 in which closed cells account for 40% or more, deformation and shrinkage occur. This is 1 1
Rather than stress being applied locally in the form of a single cell membrane, the probability of stress being applied to a series of closed cells increases, and as a result of stress being applied to a wide area of the hard urethane foam 4, the 7-ohm urethane 4 shrinks, deforms, and breaks. It is thought that it will happen.

そして、この連続気泡率が100%で独立気泡部のない
圧力処理の硬質ウレタンフオーム6を断熱体8の心材と
して用いるため、短時間の排気で断熱体7の内部圧力を
連続気泡を通して均一に所定圧力まで減圧でき、量産効
率の優れたものとなる。又、気体を含有する独立気泡部
がないため断熱体7を長期にわたって放置しても独立気
泡部からのガス拡散はなく、圧力上昇を起こすことはな
い。よって、断熱体7の断熱性能は、長期にわたって劣
化することがなく品質の確保に寄与するものである。
Since this pressure-treated hard urethane foam 6 with an open cell ratio of 100% and no closed cell portions is used as the core material of the heat insulator 8, the internal pressure of the heat insulator 7 is uniformly maintained through the open cells by a short time of evacuation. The pressure can be reduced to low pressure, making it highly efficient in mass production. Furthermore, since there is no closed cell portion containing gas, even if the heat insulator 7 is left for a long period of time, there will be no gas diffusion from the closed cell portion, and no pressure increase will occur. Therefore, the heat insulating performance of the heat insulator 7 does not deteriorate over a long period of time and contributes to ensuring quality.

発明の効果 本発明は、上記の説明から明らかなように以下に示すよ
うな効果が得られるのである。
Effects of the Invention As is clear from the above description, the present invention provides the following effects.

(a)  1oo%未満60%以上の連続気泡率を有す
る発泡体を圧力容器中に配置し、加圧気体により加圧す
ることにより、連続気泡率を100チ化したものである
から、これを金属−プラスチックスラミネートフィルム
から成る容器で被い内部を減圧すると内部圧力は均一に
所定圧力まで短時間に到達することができ、量産時の生
産性を確保しうる。
(a) A foam having an open cell ratio of less than 10% and 60% or more is placed in a pressure vessel and pressurized with pressurized gas to increase the open cell ratio to 100%. - By covering the container with a plastic laminate film and reducing the internal pressure, the internal pressure can uniformly reach a predetermined pressure in a short time, ensuring productivity during mass production.

(b)  気体を含有する独立気泡部がないため、断熱
体を長期にわたって放置しても独立気泡部からのガス拡
散はなく圧力上昇を起こすことはない、よって断熱体の
断熱性能は劣化することなく品質の安定性を確保するも
のである。
(b) Since there are no closed cells that contain gas, even if the insulation is left for a long time, there will be no gas diffusion from the closed cells and no pressure increase will occur, so the insulation performance of the insulation will deteriorate. This is to ensure stability of quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における硬質ウレタンフオー
ムの斜視図、第2図は圧力容器中に配置し、圧力処理中
の圧力容器と硬質ウレタンフオームの断面図、第3図は
本発明の断熱体の断面図、第4図は従来例の断熱性構造
体の断面図である。 4・・・・・・硬質ウレタンフオーム (発泡体)、5
・・・・・・・・・圧力容器、6・・・・・・硬質ウレ
タンフオーム、7・・・・・・容器、8・・・・・・断
熱体。 第3図 第4図
FIG. 1 is a perspective view of a rigid urethane foam according to an embodiment of the present invention, FIG. 2 is a sectional view of the pressure vessel and the rigid urethane foam placed in a pressure vessel and being subjected to pressure treatment, and FIG. 3 is a cross-sectional view of the rigid urethane foam according to an embodiment of the present invention. FIG. 4 is a sectional view of a conventional heat insulating structure. 4...Hard urethane foam (foam), 5
...... Pressure vessel, 6... Hard urethane foam, 7... Container, 8... Heat insulator. Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 100%未満60%以上の連続気泡率を有する発泡体を
圧力容器中に配置し、加圧気体で加圧して連続気泡率を
100%化し、これを金属−プラスチックスラミネート
フィルムから成る容器で被い、内部を減圧して密閉した
断熱体。
A foam having an open cell ratio of less than 100% and 60% or more is placed in a pressure vessel, pressurized with pressurized gas to make the open cell ratio 100%, and then covered with a container made of a metal-plastic laminate film. An insulator whose interior is sealed and depressurized.
JP59277613A 1984-12-27 1984-12-27 Heat insulator Granted JPS61153481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59277613A JPS61153481A (en) 1984-12-27 1984-12-27 Heat insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59277613A JPS61153481A (en) 1984-12-27 1984-12-27 Heat insulator

Publications (2)

Publication Number Publication Date
JPS61153481A true JPS61153481A (en) 1986-07-12
JPH0463992B2 JPH0463992B2 (en) 1992-10-13

Family

ID=17585856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59277613A Granted JPS61153481A (en) 1984-12-27 1984-12-27 Heat insulator

Country Status (1)

Country Link
JP (1) JPS61153481A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375749A (en) * 1986-09-19 1988-04-06 Konica Corp Direct positive silver halide color photographic sensitive material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133870A (en) * 1981-01-30 1982-08-18 Tokyo Shibaura Electric Co Heat insulating structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133870A (en) * 1981-01-30 1982-08-18 Tokyo Shibaura Electric Co Heat insulating structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375749A (en) * 1986-09-19 1988-04-06 Konica Corp Direct positive silver halide color photographic sensitive material

Also Published As

Publication number Publication date
JPH0463992B2 (en) 1992-10-13

Similar Documents

Publication Publication Date Title
KR20000006467A (en) Open-celled rigid polyurethane foam and method for producing the same
JP2001001352A (en) Production of vacuum insulating material core
JPS61153481A (en) Heat insulator
JPH06213561A (en) Insulating material and refrigerator using the same
JPS6361588B2 (en)
JP2702746B2 (en) Insulation
JPH02120598A (en) Insulating body
JPH023115B2 (en)
JP2021020463A (en) Method for manufacturing composite element for vacuum insulation element
JPH02154894A (en) Heat insulator
JPS633166A (en) Heat insulator
JPS6321475A (en) Heat insulator
JPS62147275A (en) Manufacture of heat insulator
KR900005028B1 (en) Heat insulating body
JPS63172878A (en) Heat insulator
JPH08105592A (en) Vacuum insulation body and manufacture of vacuum insulation body
JPS62251593A (en) Manufacture of heat insulator
JPS62246690A (en) Heat insulator
JPH0272293A (en) Heat insulating structure
JPH01189479A (en) Preparation of core of heat insulating body
JP3241782B2 (en) Insulation method
JPS62178866A (en) Manufacture of heat insulator
JPS6361587B2 (en)
JPH0272294A (en) Heat insulating structure
JPH05280691A (en) Heat insulating body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term