KR102015093B1 - Cryogenic Insulation Panel And Method for Manufacturing the Same - Google Patents

Cryogenic Insulation Panel And Method for Manufacturing the Same Download PDF

Info

Publication number
KR102015093B1
KR102015093B1 KR1020170155602A KR20170155602A KR102015093B1 KR 102015093 B1 KR102015093 B1 KR 102015093B1 KR 1020170155602 A KR1020170155602 A KR 1020170155602A KR 20170155602 A KR20170155602 A KR 20170155602A KR 102015093 B1 KR102015093 B1 KR 102015093B1
Authority
KR
South Korea
Prior art keywords
mixture
layer
polymer foam
foam layer
silica
Prior art date
Application number
KR1020170155602A
Other languages
Korean (ko)
Other versions
KR20190058018A (en
Inventor
이제명
김정현
김슬기
김정대
안재혁
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Priority to KR1020170155602A priority Critical patent/KR102015093B1/en
Priority to PCT/KR2017/013826 priority patent/WO2019103222A1/en
Publication of KR20190058018A publication Critical patent/KR20190058018A/en
Application granted granted Critical
Publication of KR102015093B1 publication Critical patent/KR102015093B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • B32B5/20Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material foamed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/32Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/029Shape or form of insulating materials, with or without coverings integral with the insulating materials layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B2038/0052Other operations not otherwise provided for
    • B32B2038/0084Foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0278Polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/12Gel
    • B32B2266/126Aerogel, i.e. a supercritically dried gel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4026Coloured within the layer by addition of a colorant, e.g. pigments, dyes

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

본 발명은 폴리올과 이소시아네이트에 서로 다른 배합비로 발포제가 혼합되어 발포 성형됨으로써 서로 다른 밀도를 갖는 복수의 폴리머폼층이 연속으로 적층된 구조를 갖는 극저온 단열재 및 그 제조방법에 관한 것으로, 본 발명의 극저온 단열재를 제조하는 방법은, 폴리올과 이소시아네이트에 서로 다른 배합비로 발포제를 혼합하여 복수의 혼합물을 제조하고, 제조된 각각의 혼합물을 발포용기 내에 시간 간격을 두고 연속적으로 투입하고 발포 성형하여 서로 다른 밀도를 갖는 복수의 폴리머폼층을 적층하는 것을 특징으로 한다. The present invention relates to a cryogenic heat insulating material having a structure in which a plurality of polymer foam layers having different densities are continuously stacked by foam molding by mixing a blowing agent in polyol and isocyanate at different mixing ratios, and a method for manufacturing the same. In the method for preparing a polyol and isocyanate, a foaming agent is mixed at different mixing ratios to prepare a plurality of mixtures, and each of the prepared mixtures is continuously charged at a time interval in a foaming vessel and foam molded to have different densities. It is characterized by laminating a plurality of polymer foam layers.

Figure R1020170155602
Figure R1020170155602

Description

극저온 단열재의 제조방법{Cryogenic Insulation Panel And Method for Manufacturing the Same}Cryogenic Insulation Panel And Method for Manufacturing the Same

본 발명은 극저온용 단열재에 관한 것으로, 더욱 상세하게는 극저온 탱크와 같은 극저온 환경에서 열 차단을 위해 사용하는 것으로, 서로 다른 밀도를 갖는 복수의 폴리머 폼(foam) 층으로 이루어진 극저온 단열재 및 그 제조방법에 관한 것이다.The present invention relates to a cryogenic insulation, and more particularly, to use for thermal insulation in cryogenic environments, such as cryogenic tanks, cryogenic insulation made of a plurality of polymer foam layers having different densities and a method of manufacturing the same. It is about.

최근 해양환경오염에 대한 관심이 증가함에 따라, 선박에 의한 대기오염물질 저감, 해양환경오염 방지를 위한 국제 환경 규제가 강화되고 있는 추세이다. 특히, 특정 국가에서는 이와 같은 규제를 준수하지 않을 경우 자국 내 어종보호 및 해양생물 피해를 방지하기 위하여 입항을 금지시키고 있다. As interest in marine environmental pollution has recently increased, international environmental regulations for reducing air pollutants by ships and preventing marine environmental pollution have been tightened. In particular, certain countries prohibit entry in order to protect their species and prevent marine damage if they do not comply with these regulations.

이 같은 상황에 주목을 받는 것이 액화천연가스(LNG) 연료 추진선박이다. LNG는 기존의 선박용 디젤 대비 황산화물(SOx), 질소산화물(NOx), 이산화탄소의 배출을 각각 100%, 80%, 23%까지 줄일 수 있어 현재 선박용 국제 환경기준인 EEDI 및 ECA를 충족시킬 수 있는 거의 유일한 친환경 연료로 평가되고 있다. Attention is drawn to LNG fueled ships. LNG can reduce emissions of sulfur oxides (SOx), nitrogen oxides (NOx), and carbon dioxide by 100%, 80%, and 23%, respectively, compared to existing marine diesel, which can meet current international environmental standards for ships, EEDI and ECA. It is rated as the only environmentally friendly fuel.

하지만 LNG는 천연가스를 기압 냉각시켜 액체 상태로 만든 물질이라는 특성으로 인해 이를 연료로 사용하기 위해서는 선박 내에 초저온 탱크를 필요로 한다. 더불어 탱크의 극저온 환경을 유지하기 위해선 기존에 비해 두꺼운 단열재의 사용이 필수적이다. 단열재의 두께 증가는 천연가스의 자연기화율(BOR)을 낮추어 LNG의 손실을 막아주는 대신, 공간이 한정적인 선박의 화물 및 연료의 적재량을 낮춘다는 단점이 있다. However, LNG is a material that is made by liquid-cooling the natural gas into a liquid state, and requires a cryogenic tank in a ship to use it as a fuel. In addition, to maintain the cryogenic environment of the tank, it is necessary to use a thicker insulation than conventional. Increasing the thickness of the insulation reduces the natural vaporization rate (BOR) of natural gas to prevent the loss of LNG, there is a disadvantage that lowers the cargo and fuel load of the limited space ship.

이를 극복하기 위하여 선박의 단열재로 널리 사용되고 있는 폴리우레탄 폼의 단열성능을 향상시키기 위한 연구가 이루어지고 있지만 단열성능 향상 대비 강도의 하락으로 실용성이 떨어진다. In order to overcome this problem, researches have been made to improve the insulation performance of polyurethane foam, which is widely used as a heat insulating material for ships, but its practicality is poor due to the decrease in strength compared to the improvement of insulation performance.

이에 폴리우레탄 폼을 이종 재료와 접합시켜 복층으로 단열구조를 구성한 단열재가 개발되었으나, 층(layer)의 수가 증가할수록 접합공정이 계속적으로 늘어나는 한계에 봉착하게 된다. Accordingly, a heat insulating material having a heat insulating structure composed of a double layer by bonding a polyurethane foam with a heterogeneous material has been developed. However, as the number of layers increases, the bonding process continues to increase.

기계적 성능 및 단열성능을 향상시키기 위해 유리섬유 혹은 에어로겔 powder 등 다양한 강화제를 이용하여 단열재를 제작하고 있기는 하지만 발포 시 강화제가 셀 형성을 방해할 경우 셀 파괴로 인해 단열성능 및 기계적 성능이 저하되는 문제가 있고, 이를 해결하기 위해 표면개질 등 추가적인 화학공정이 요구되고 있다.In order to improve the mechanical performance and thermal insulation performance, insulation materials are manufactured using various reinforcing agents such as glass fiber or aerogel powder, but if the reinforcing agent interferes with cell formation during foaming, the thermal insulation performance and mechanical performance deteriorate due to cell destruction. In order to solve this problem, additional chemical processes such as surface modification are required.

대량생산을 수행해야만 하는 선박용 극저온 단열시스템의 경우 이러한 두 가지 한계를 해결하기 위해서는 많은 시간과 노력이 요구되며, 이는 곧 제품의 경제성과 직결된다. For cryogenic insulation systems for ships that must be mass-produced, much time and effort is required to address these two limitations, which is directly related to the economics of the product.

등록특허 제10-0765802호(2007.10.04. 등록)Registered Patent No. 10-0765802 (registered on October 4, 2007) 등록특허 제10-0592052호(2006.06.14. 등록)Registered Patent No. 10-0592052 (registered on June 14, 2006) 등록특허 제10-0613164호(2006.08.09. 등록)Registered Patent No. 10-0613164 (registered Aug. 09, 2006)

본 발명은 상기와 같은 문제를 해결하기 위한 것으로, 본 발명의 목적은 서로 다른 밀도를 갖는 복수의 폴리머 폼(foam) 층을 별도의 접합 공정을 거치지 않고 연속적으로 발포하여 제조함으로써 제조가 용이하고 신속하며, 우수한 단열 성능과 기계적 강도 성능을 동시에 제공할 수 있는 극저온 단열재 및 그 제조방법을 제공함에 있다.The present invention is to solve the above problems, the object of the present invention is to manufacture a plurality of polymer foam (foam) layer having a different density by continuously foaming without a separate bonding process to manufacture easily and quickly In addition, the present invention provides a cryogenic insulation material and a method of manufacturing the same that can simultaneously provide excellent thermal insulation performance and mechanical strength performance.

상기한 목적을 달성하기 위한 본 발명에 따른 극저온 단열재는, 폴리올과 이소시아네이트에 서로 다른 배합비로 발포제가 혼합되어 발포 성형됨으로써 서로 다른 밀도를 갖는 복수의 폴리머폼층이 연속으로 적층된 구조를 갖는다. The cryogenic heat insulating material according to the present invention for achieving the above object has a structure in which a plurality of polymer foam layers having different densities are continuously stacked by foam molding by mixing a blowing agent in polyol and isocyanate at different mixing ratios.

본 발명의 한 형태에 따르면, 본 발명의 극저온 단열재는 폴리머폼층의 사이사이에 적층되는 실리카에어로겔층을 더 포함할 수 있다.According to one aspect of the present invention, the cryogenic insulation of the present invention may further comprise a silica airgel layer laminated between the polymer foam layers.

또한 본 발명의 극저온 단열재는 상기 각각의 폴리머폼층의 발포 성형 시 서로 다른 색상의 안료가 함께 혼합되어 발포 성형될 수 있다. In addition, the cryogenic heat insulating material of the present invention may be foam-molded by mixing the pigments of different colors together during the foam molding of each polymer foam layer.

본 발명의 극저온 단열재를 제조하는 방법은, 폴리올과 이소시아네이트에 서로 다른 배합비로 발포제를 혼합하여 복수의 혼합물을 제조하고, 제조된 각각의 혼합물을 발포용기 내에 시간 간격을 두고 연속적으로 투입하고 발포 성형하여 서로 다른 밀도를 갖는 복수의 폴리머폼층을 적층하는 것을 특징으로 한다. In the method for producing the cryogenic insulation of the present invention, a polyol and isocyanate are mixed with a blowing agent in different blending ratios to prepare a plurality of mixtures, and each of the prepared mixtures is continuously introduced into the foaming container at a time interval and foamed and molded. A plurality of polymer foam layers having different densities are laminated.

본 발명의 한 형태에 따르면, 어느 한 혼합물을 발포용기 내에 투입하고 그 위에 실리카에어로겔 분말을 분사한 후 가열하면 혼합물이 발포되면서 폴리머폼층이 만들어지고, 그 위에 실리카에어로겔층이 일체로 적층되며, 상기 실리카에어로겔층 위에 다른 혼합물을 투입하여 다른 밀도의 폴리머폼층을 적층할 수 있다. According to one embodiment of the present invention, when a mixture is introduced into a foaming container, a silica aerogel powder is injected thereon, and heated, a mixture is foamed to form a polymer foam layer, and a silica aerogel layer is integrally stacked thereon. Different mixtures may be added to the silica airgel layer to stack polymer foam layers having different densities.

그리고 폴리올과 이소시아네이트에 발포제를 혼합하여 혼합물을 제조할 때 안료를 함께 혼합하여 혼합물을 제조할 수 있다. And when the mixture is prepared by mixing the blowing agent in polyol and isocyanate, the mixture may be prepared by mixing the pigments together.

본 발명의 다른 한 형태에 따르면, 상기 복수의 혼합물은 각각의 폴리머폼층을 형성한 후에 그 다음에 적층될 폴리머폼층을 형성하기 위해 제조될 수 있다.According to another aspect of the present invention, the plurality of mixtures may be prepared to form a polymer foam layer to be laminated after forming each polymer foam layer.

본 발명에 따르면, 폴리올과 이소시아네이트에 서로 다른 배합비로 발포제를 혼합하여 연속 발포 성형함으로써 서로 다른 밀도를 갖는 폴리우레탄 폼을 복층으로 구성하여 극저온 단열재를 제조할 수 있다. 따라서 상대적으로 낮은 밀도를 갖는 폴리우레탄 폼 층에 의해 우수한 단열성능을 얻을 수 있고, 상대적으로 높은 밀도를 갖는 폴리우레탄 폼 층에 의해 우수한 기계적 강도를 얻을 수 있게 된다. According to the present invention, cryogenic insulation may be prepared by mixing polyurethane foams having different densities into a plurality of layers by mixing foaming agents in polyols and isocyanates at different mixing ratios and continuously foaming them. Therefore, excellent heat insulating performance can be obtained by the polyurethane foam layer having a relatively low density, and excellent mechanical strength can be obtained by the polyurethane foam layer having a relatively high density.

또한 본 발명의 극저온 단열재는 서로 다른 밀도를 갖는 폴리머폼층 사이사이에 기공이 많은 구조의 실리카에어로겔층이 적층되어 단열재의 단열성능을 더욱 향상시킴과 더불어 발포 셀이 조밀해지고 셀의 균질성을 확보할 수 있다. In addition, the cryogenic heat insulating material of the present invention can be laminated between the polymer foam layer having a different density, the porous layer of silica airgel is laminated to further improve the heat insulating performance of the heat insulating material, as well as to ensure that the foam cell is compact and the cell homogeneity. have.

도 1은 본 발명의 일 실시예에 따른 극저온 단열재의 단면도이다.
도 2는 도 1에 도시된 극저온 단열재를 제조하는 방법을 순차적으로 설명하는 모식도이다.
1 is a cross-sectional view of a cryogenic heat insulating material according to an embodiment of the present invention.
FIG. 2 is a schematic diagram sequentially illustrating a method of manufacturing the cryogenic insulation shown in FIG. 1.

본 명세서에 기재된 실시예와 도면에 도시된 구성은 개시된 발명의 바람직한 일 예에 불과할 뿐이며, 본 출원의 출원시점에 있어서 본 명세서의 실시예와 도면을 대체할 수 있는 다양한 변형 예들이 있을 수 있다.Configurations shown in the embodiments and drawings described herein are only exemplary embodiments of the disclosed invention, there may be various modifications that can replace the embodiments and drawings of the present specification at the time of filing of the present application.

이하에서는 첨부된 도면을 참조하여 극저온 단열재 및 그 제조방법을 후술된 실시예들에 따라 구체적으로 설명하도록 한다. 도면에서 동일한 부호는 동일한 구성 요소를 나타낸다. Hereinafter, with reference to the accompanying drawings will be described in detail the cryogenic insulation and its manufacturing method according to the embodiments described below. Like reference numerals in the drawings denote like elements.

도 1을 참조하면, 본 발명의 일 실시예에 따른 극저온 단열재는 서로 다른 밀도를 갖는 복수의 폴리머폼층(11, 12, 13)과, 각각의 폴리머폼층(11, 12, 13)의 사이사이에 적층되어 일체화된 실리카에어로겔층(21, 22)을 포함한다. Referring to FIG. 1, the cryogenic insulation material according to an embodiment of the present invention includes a plurality of polymer foam layers 11, 12, and 13 having different densities, and between the polymer foam layers 11, 12, and 13. And laminated silica integrated airgel layers 21 and 22.

복수의 폴리머폼층(11, 12, 13)은 별도의 접합 공정없이 발포용기 내에서 연속 발포되어 일체화된 것이다. 복수의 폴리머폼층(11, 12, 13)은 폴리올과 이소시아네이트에 서로 다른 배합비로 발포제가 각각 혼합되어 발포 성형된 폴리우레탄 폼으로, 각각의 폴리머폼층(11, 12, 13)은 발포제의 배합비에 따라 다른 밀도를 갖게 된다. 즉, 발포제의 배합비가 커지면 밀도가 작아지게 되고, 발포제의 배합비가 작아지면 밀도가 커지게 된다. 밀도가 낮은 폴리우레탄 폼은 단열성능은 우수하지만 기계적 강도는 상대적으로 낮고, 밀도가 높은 폴리우레탄 폼은 단열성능은 낮지만 기계적 강도는 우수하다. The plurality of polymer foam layers 11, 12, and 13 are continuously foamed and integrated in a foaming container without a separate bonding process. The plurality of polymer foam layers 11, 12 and 13 are polyurethane foams which are foam-molded by mixing foaming agents in different blending ratios of polyol and isocyanate, respectively, and each of the polymer foam layers 11, 12 and 13 according to the blending ratio of foaming agents. Will have a different density. That is, the density becomes small when the compounding ratio of a blowing agent becomes large, and it becomes large when the compounding ratio of a foaming agent becomes small. Low density polyurethane foam has good thermal insulation but relatively low mechanical strength. High density polyurethane foam has low thermal insulation but good mechanical strength.

따라서 본 발명의 극저온 단열재는 서로 다른 밀도를 갖는 폴리우레탄 폼인 폴리머폼층(11, 12, 13)이 복층으로 구성되므로 우수한 단열 성능과 기계적 강도를 함께 갖게 된다. Therefore, the cryogenic heat insulating material of the present invention has excellent thermal insulation performance and mechanical strength because the polymer foam layers 11, 12, and 13, which are polyurethane foams having different densities, are composed of multiple layers.

이 실시예에서 폴리머폼층(11, 12, 13)은 3개의 층으로 이루어지며, 도면 상 최하단에 배치된 폴리머폼층(11)의 밀도가 가장 작고, 바로 그 위에 적층된 중간층의 폴리머폼층(12)의 밀도는 최하단 폴리머폼층(11)보다는 크고, 최상단에 배치된 폴리머폼층(13)의 밀도가 가장 크다. 예를 들어 최하단 폴리머폼층(11)의 밀도는 130㎏/㎥이고, 중간층 폴리머폼층(12)의 밀도는 155㎏/㎥ 이며, 최상단 폴리머폼층(13)은 180㎏/㎥ 으로 이루어질 수 있다. In this embodiment, the polymer foam layers 11, 12, and 13 are composed of three layers, and the polymer foam layer 11 disposed at the bottom of the drawing has the smallest density, and the polymer foam layer 12 of the intermediate layer stacked directly thereon. The density of is greater than that of the lowermost polymer foam layer 11, and the density of the polymer foam layer 13 disposed on the uppermost is the largest. For example, the density of the lowermost polymer foam layer 11 is 130 kg / m 3, the density of the intermediate polymer foam layer 12 is 155 kg / m 3, and the uppermost polymer foam layer 13 may be 180 kg / m 3.

밀도가 가장 작은 최하단의 폴리머폼층(11)은 기계적 강도는 셋 중 가장 약하지만 단열 성능을 가장 크기 때문에 본 발명의 단열재가 적용되는 구조물, 예를 들어 LNG 탱크의 외벽면에 인접하는 단열재의 내측 단열층을 이루고, 밀도가 가장 큰 최상단의 폴리머폼층(13)은 가장 큰 기계적 강도를 가지므로 단열재의 외측 단열층을 이루는 것이 바람직하다.The lowest density of the polymer foam layer 11 having the smallest density has the lowest mechanical strength but the highest thermal insulation performance, so the inner insulation layer of the insulation material adjacent to the outer wall surface of the structure, for example, the LNG tank, is applied to the insulation material of the present invention. In this case, the polymer foam layer 13 having the highest density has the greatest mechanical strength, and therefore, it is preferable to form the outer heat insulating layer of the heat insulating material.

본 발명의 단열재를 극저온 구조물에 시공할 때 복수의 폴리머폼층(11, 12, 13)을 밀도를 용이하게 확인할 수 있도록 하기 위하여, 각각의 폴리머폼층(11, 12, 13)을 위한 폴리올과 이소시아네이트와 발포제의 혼합물에 서로 다른 색상의 안료를 혼합하여 각각의 폴리머폼층(11, 12, 13)이 서로 다른 특정한 색상을 갖게 할 수 있다. Polyol and isocyanate for each polymer foam layer (11, 12, 13) and in order to easily check the density of the plurality of polymer foam layers (11, 12, 13) when the heat insulating material of the present invention is installed in the cryogenic structure Pigments of different colors can be mixed with the mixture of blowing agents to ensure that each of the polymer foam layers 11, 12, 13 has a different specific color.

상기 폴리머폼층(11, 12, 13)을 형성하기 위한 발포제로는 공지의 발포우레탄 폼에 적용되는 발포제를 적용할 수 있는데, 예를 들어 통상의 폴리우레탄 폼에 사용하는 시클로 펜탄, 노말펜탄, 이소펜탄, 메틸렌클로라이드, 헥산, 아세톤 등을 하나 이상 사용할 수 있다.As the foaming agent for forming the polymer foam layers 11, 12, and 13, a foaming agent applied to a known foaming urethane foam may be applied. For example, cyclopentane, normal pentane, iso Pentane, methylene chloride, hexane, acetone and the like can be used.

상기 복수의 폴리머폼층(11, 12, 13) 사이사이에는 실리카에어로겔(silica aerogel) 분말이 균일하게 분사되어 만들어진 실리카에어로겔층(21, 22)이 바로 위층 및 아래층의 폴리머폼층(11, 12, 13)과 일체화된다. 실리카에어로겔층(21, 22)은 기공이 많은 구조로 되어 단열재의 단열성능을 더욱 향상시킴과 더불어 발포 셀이 조밀해지고 균일한 셀 배열이 가능하여 셀의 균질성을 확보하는 작용을 한다. Between the plurality of polymer foam layers 11, 12, and 13, silica aerogel layers 21 and 22 formed by uniformly spraying silica aerogel powder are polymer layers 11, 12, and 13 directly above and below. ) Is integrated. Silica airgel layer (21, 22) is a structure with a lot of pores to further improve the thermal insulation performance of the heat insulating material, and the foam cell is compact and uniform cell arrangement is possible to ensure the homogeneity of the cell.

이러한 본 발명의 극저온 단열재를 제조하는 방법을 도 2를 참조하여 설명하면 다음과 같다. When explaining the cryogenic insulation of the present invention with reference to Figure 2 as follows.

먼저 폴리올과 이소시아네이트와 발포제를 중량비로 100:116:6의 비율로 준비하고(S1), 이를 호모게나이저로 1분간 4500rpm에서 고르게 교반하여 첫번째 혼합물을 제조한다(S2). 이 때 특정 색상의 안료를 함께 혼합하여 이후 과정에서 혼합물이 발포하여 폴리머폼층(11)이 만들어질 때 폴리머폼층(11)이 특정한 색상을 갖게 할 수 있다.First, a polyol, an isocyanate, and a blowing agent are prepared in a weight ratio of 100: 116: 6 (S1), and the mixture is stirred evenly at 4500 rpm for 1 minute with a homogenizer to prepare a first mixture (S2). In this case, by mixing the pigment of a specific color together, the polymer foam layer 11 may have a specific color when the polymer foam layer 11 is made by foaming the mixture in a subsequent process.

그리고, 제조된 첫번째 혼합물을 발포용기(C)에 투입하고(S3), 그 위에 분말공급기(powder distribution system)로 실리카에어로겔 분말을 균일하게 분산하여 공급한 후 가열하면 혼합물이 발포되면서 첫번째 폴리머폼층(11)이 만들어지고, 그 위에 실리카에어로겔층(21)이 일체로 적층된다(S4).Then, the prepared first mixture is poured into the foaming vessel (C) (S3), and the silica aerogel powder is uniformly dispersed and supplied by a powder distribution system (powder distribution system) thereon, and the mixture is foamed and the first polymer foam layer ( 11) is made, and the silica airgel layer 21 is integrally laminated thereon (S4).

이어서, 소정의 시간(예를 들어 15분 정도)이 경과한 후, 폴리올과 이소시아네이트와 발포제를 중량비로 100:116:5의 비율로 준비하고(S5), 이를 호모게나이저로 1분간 4500rpm에서 고르게 교반하여 두번째 혼합물을 제조한다(S6). 이 때 이전과는 다른 특정 색상의 안료를 함께 혼합한다. Subsequently, after a predetermined time (for example, about 15 minutes) has elapsed, the polyol, isocyanate, and blowing agent are prepared in a ratio of 100: 116: 5 by weight ratio (S5), which is evenly applied at 4500 rpm for 1 minute with a homogenizer. Stirring to prepare a second mixture (S6). At this time, the pigment of a specific color different from before is mixed together.

이렇게 혼합된 두번째 혼합물을 발포용기(C)에 투입하여 발포용기(C) 내에 발포 성형된 첫번째 폴리머폼층(11) 및 실리카에어로겔층(21) 위에 적층하고(S7), 그 위에 분말공급기(powder distribution system)로 실리카에어로겔 분말을 균일하게 분산하며 공급한 후 가열하여 두번째 폴리머폼층(12) 및 실리카에어로겔층(22)을 형성한다(S8). The second mixture thus mixed is poured into the foaming vessel (C) and laminated on the first polymer foam layer 11 and the silica aerogel layer 21 foamed and molded in the foaming vessel (C) (S7), and a powder feeder thereon. The silica aerogel powder is uniformly dispersed and supplied as a system) and then heated to form a second polymer foam layer 12 and a silica aerogel layer 22 (S8).

그리고 다시 15분 정도의 시간이 경과한 후 폴리올과 이소시아네이트와 발포제를 중량비로 100:116:4의 비율로 준비하고(S9), 여기에 다른 색상의 안료를 혼합한 후 이를 호모게나이저로 1분간 4500rpm에서 고르게 교반하여 세번째 혼합물을 제조한다(S10). After another 15 minutes, the polyol, isocyanate and blowing agent were prepared in a weight ratio of 100: 116: 4 (S9), mixed with pigments of different colors, and then mixed with a homogenizer for 1 minute. By stirring evenly at 4500rpm to prepare a third mixture (S10).

이어서 세번째 혼합물을 발포용기(C)에 투입하여 발포용기(C) 내에 발포 성형된 두번째 폴리머폼층(12) 및 실리카에어로겔층(22) 위에 적층하고 가열하여 발포시키면 세번째 폴리머폼층(13)이 만들어진다(S11). Subsequently, the third mixture is poured into the foaming vessel (C), stacked on the second polymer foam layer 12 and the silica aerogel layer 22 foamed and molded in the foaming vessel C, and heated and foamed to form a third polymer foam layer 13 ( S11).

상술한 과정을 거쳐 원하는 단수(이 실시예에서는 3단)로 폴리머폼층(11, 12, 13)이 적층되면 대략 24시간 동안 경화시킨 후 발포용기(C) 내에서 인출한다(S12). 이로써 서로 다른 밀도를 갖는 복수의 폴리머폼층(11, 12, 13)과 실리카에어로겔층(21, 22)이 일체화된 복층 구조의 단열재가 완성된다. When the polymer foam layers 11, 12, and 13 are stacked in a desired number of stages (three steps in this embodiment) through the above-described process, the polymer foam layers 11, 12, and 13 are cured for about 24 hours and then drawn out in the foam container C (S12). This completes a multi-layered heat insulating material in which a plurality of polymer foam layers 11, 12, 13 and silica airgel layers 21, 22 having different densities are integrated.

이 제조 방법의 실시예에서 제시된 폴리올과 이소시아네이트와 발포제의 배합비는 여러가지 배합비 중 바람직한 배합비의 하나이며 다양한 배합비로 실시가 가능할 것이다. 또한 폴리올과 이소시아네이트와 발포제와 함께 혼합되는 안료는 폴리올과 이소시아네이트와 발포제의 전체 중량의 0.2 ~ 3.0 중량%로 혼합되는 것이 바람직하며, 안료의 종류는 공지의 폴리우레탄 폼에 사용되는 통상의 안료를 사용할 수 있다. The blending ratio of the polyol, isocyanate and blowing agent shown in the examples of this manufacturing method is one of the preferred blending ratios among various blending ratios and may be carried out in various blending ratios. In addition, the pigment mixed with the polyol, the isocyanate and the blowing agent is preferably mixed with 0.2 to 3.0% by weight of the total weight of the polyol, the isocyanate and the blowing agent, and the type of pigment may be used a conventional pigment used in a known polyurethane foam Can be.

전술한 것과 같이 본 발명의 단열재는 폴리올과 이소시아네이트에 서로 다른 배합비로 발포제를 혼합하여 연속 발포 성형함으로써 서로 다른 밀도를 갖는 폴리우레탄 폼을 복층으로 구성할 수 있다. 따라서 상대적으로 낮은 밀도를 갖는 폴리머폼층에 의해 우수한 단열성능을 얻을 수 있고, 상대적으로 높은 밀도를 갖는 폴리머폼층에 의해 우수한 기계적 강도를 얻을 수 있게 된다. As described above, the heat insulating material of the present invention may form polyurethane foams having different densities in a plurality of layers by mixing a foaming agent in polyol and isocyanate at different blending ratios and continuously foam molding. Therefore, excellent heat insulating performance can be obtained by the polymer foam layer having a relatively low density, and excellent mechanical strength can be obtained by the polymer foam layer having a relatively high density.

이상에서 본 발명은 실시예를 참조하여 상세히 설명되었으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 상기에서 설명된 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 부가 및 변형이 가능할 것임은 당연하며, 이와 같은 변형된 실시 형태들 역시 아래에 첨부한 특허청구범위에 의하여 정하여지는 본 발명의 보호 범위에 속하는 것으로 이해되어야 할 것이다.Although the present invention has been described in detail with reference to the embodiments, those skilled in the art to which the present invention pertains will be capable of various substitutions, additions, and modifications without departing from the technical spirit described above. It is to be understood that such modified embodiments are also within the protection scope of the present invention as defined by the appended claims.

11, 12, 13 : 폴리머폼층
21, 22 : 실리카에어로겔층
C : 발포용기
11, 12, and 13: polymer foam layer
21, 22 silica silica gel layer
C: Foam Container

Claims (7)

삭제delete 삭제delete 삭제delete 폴리올과 이소시아네이트에 서로 다른 배합비로 발포제를 혼합하여 복수의 혼합물을 제조하고, 제조된 각각의 혼합물과 실리카에어로겔 분말을 발포용기 내에 시간 간격을 두고 연속적으로 투입하고 발포 성형하여 서로 다른 밀도를 갖는 복수의 폴리머폼층을 적층하고, 각각의 폴리머폼층 사이사이에 실리카에어로겔층을 일체로 적층하는 극저온 단열재를 제조하는 방법으로서,
상기 각각의 폴리머폼층 및 실리카에어로겔층을 적층할 때, 어느 한 혼합물을 발포용기 내에 투입하고 그 위에 실리카에어로겔 분말을 분산하여 공급한 후 가열함으로써, 혼합물의 발포에 의해 폴리머폼층이 형성됨과 동시에 발포된 폴리머폼층 위에 실리카에어로겔층이 일체화되면서 적층되게 한 극저온 단열재의 제조 방법.
A plurality of mixtures are prepared by mixing a blowing agent with polyol and an isocyanate in different mixing ratios, and each of the prepared mixtures and silica aerogel powders are continuously introduced into the foaming container at a time interval and foamed to form a plurality of mixtures having different densities. A method of manufacturing a cryogenic heat insulating material in which a polymer foam layer is laminated and a silica air gel layer is integrally laminated between each polymer foam layer,
When the polymer foam layer and the silica aerogel layer are laminated, one of the mixtures is put into a foaming container, and the silica aerogel powder is dispersed and supplied thereon, followed by heating, thereby forming a polymer foam layer by foaming the mixture and simultaneously foaming the mixture. A method for producing a cryogenic insulation material which is laminated while a silica airgel layer is integrated on a polymer foam layer.
삭제delete 제4항에 있어서, 폴리올과 이소시아네이트에 발포제를 혼합하여 혼합물을 제조할 때 안료를 함께 혼합하여 혼합물을 제조하는 극저온 단열재의 제조 방법.The method of claim 4, wherein the pigment is mixed together to prepare the mixture when the blowing agent is mixed with the polyol and the isocyanate to prepare the mixture. 제4항에 있어서,
(a) 폴리올과 이소시아네이트에 첫번째 배합비로 발포제를 혼합하여 첫번째 혼합물을 제조하는 단계;
(b) 상기 첫번째 혼합물을 발포용기(C) 내에 투입하고 그 위에 실리카에어로겔 분말을 분산하여 공급하는 단계;
(c) 상기 발포용기(C)를 가열하여 첫번째 혼합물을 발포하여 첫번째 폴리머폼층을 형성하면서 그 위에 첫번째 실리카에어로겔층이 일체로 적층되게 하는 단계;
(d) 폴리올과 이소시아네이트에 두번째 배합비로 발포제를 혼합하여 두번째 혼합물을 제조하는 단계;
(e) 상기 발포용기(C) 내에 상기 두번째 혼합물을 투입하고, 그 위에 실리카에어로겔 분말을 분산하여 공급하는 단계;
(f) 상기 발포용기(C)를 가열하여 두번째 혼합물을 발포하여 두번째 폴리머폼층을 형성하면서 그 위에 두번째 실리카에어로겔층이 일체로 적층되게 하는 단계;
(g) 폴리올과 이소시아네이트에 세번째 배합비로 발포제를 혼합하여 세번째 혼합물을 제조하는 단계;
(h) 상기 발포용기(C) 내에 상기 세번째 혼합물을 투입하는 단계;
(i) 상기 발포용기(C)를 가열하여 세번째 혼합물을 발포하여 세번째 폴리머폼층을 형성하는 단계;
(j) 일정 시간 동안 경화시킨 후 발포용기(C) 내에서 상기 첫번째 폴리머폼층과 첫번째 실리카에어로겔층, 두번째 폴리머폼층과 두번째 실리카에어로겔층, 세번째 폴리머폼층이 하측에서 순차적으로 적층되어 있는 극저온 단열재를 인출하는 단계;
를 포함하는 극저온 단열재의 제조 방법.
The method of claim 4, wherein
(a) mixing the blowing agent with the polyol and isocyanate in a first blending ratio to produce a first mixture;
(b) injecting the first mixture into the foam container (C) and dispersing the silica aerogel powder thereon;
(c) heating the foam container (C) to foam the first mixture to form the first polymer foam layer and thereon to integrally stack the first silica airgel layer thereon;
(d) mixing the blowing agent with the polyol and the isocyanate in a second blending ratio to produce a second mixture;
(e) adding the second mixture into the foaming vessel (C), and dispersing and supplying the silica aerogel powder thereon;
(f) heating the foam container (C) to foam the second mixture to form a second polymer foam layer, thereby allowing the second silica airgel layer to be integrally stacked thereon;
(g) mixing a blowing agent with a polyol and an isocyanate in a third blending ratio to produce a third mixture;
(h) introducing the third mixture into the foam container (C);
(i) heating the foam container (C) to foam a third mixture to form a third polymer foam layer;
(j) After curing for a predetermined time, the cryogenic insulation material having the first polymer foam layer, the first silica air gel layer, the second polymer foam layer and the second silica air gel layer, and the third polymer foam layer sequentially stacked in the foam container (C) are drawn out. Making;
Method for producing a cryogenic insulation comprising a.
KR1020170155602A 2017-11-21 2017-11-21 Cryogenic Insulation Panel And Method for Manufacturing the Same KR102015093B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020170155602A KR102015093B1 (en) 2017-11-21 2017-11-21 Cryogenic Insulation Panel And Method for Manufacturing the Same
PCT/KR2017/013826 WO2019103222A1 (en) 2017-11-21 2017-11-29 Cryogenic insulation material and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170155602A KR102015093B1 (en) 2017-11-21 2017-11-21 Cryogenic Insulation Panel And Method for Manufacturing the Same

Publications (2)

Publication Number Publication Date
KR20190058018A KR20190058018A (en) 2019-05-29
KR102015093B1 true KR102015093B1 (en) 2019-08-27

Family

ID=66631620

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170155602A KR102015093B1 (en) 2017-11-21 2017-11-21 Cryogenic Insulation Panel And Method for Manufacturing the Same

Country Status (2)

Country Link
KR (1) KR102015093B1 (en)
WO (1) WO2019103222A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220120962A (en) 2021-02-24 2022-08-31 부산대학교 산학협력단 Polyurethane Foam Composed Glass Bubble And Method for Manufacturing the Same
KR20220159517A (en) * 2021-05-25 2022-12-05 오세만 the thermal insulation structure of the cryogenic container

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101337644B1 (en) * 2011-12-16 2013-12-16 삼성중공업 주식회사 Insulation structure and liquefied natural gas storage tank including the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100710981B1 (en) * 2003-12-17 2007-04-24 현대중공업 주식회사 Heat Insulating Materials of Cargo Tank for Liquefied Natural Gas Carriers
KR100613164B1 (en) 2004-12-29 2006-08-17 주식회사 젠트로 Cryogenic Isulation Panel
KR100592052B1 (en) 2005-12-06 2006-06-21 주식회사 세영폴리머 Multi-layer reflective insulation using polyurethane foam
KR100765802B1 (en) 2006-06-20 2007-10-12 에스엔케이폴리텍(주) Double side polyurethane foam or elastomer sheet
KR101273433B1 (en) * 2012-01-20 2013-06-12 부산대학교 산학협력단 Hybrid type lng insulation system of lng tank
EP2644374A1 (en) * 2012-03-26 2013-10-02 Huntsman International LLC Insulation board
KR102007948B1 (en) * 2012-11-15 2019-08-07 케이피엑스케미칼 주식회사 Rigid Polyurethane Foams for LNG Ship-Insulator Containing Biopolyol

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101337644B1 (en) * 2011-12-16 2013-12-16 삼성중공업 주식회사 Insulation structure and liquefied natural gas storage tank including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220120962A (en) 2021-02-24 2022-08-31 부산대학교 산학협력단 Polyurethane Foam Composed Glass Bubble And Method for Manufacturing the Same
KR20220159517A (en) * 2021-05-25 2022-12-05 오세만 the thermal insulation structure of the cryogenic container
KR102507500B1 (en) * 2021-05-25 2023-03-08 오세만 the thermal insulation structure of the cryogenic container

Also Published As

Publication number Publication date
KR20190058018A (en) 2019-05-29
WO2019103222A1 (en) 2019-05-31

Similar Documents

Publication Publication Date Title
CN102079804B (en) Combined polyether and composition for preparing polyurethane rigid foam and application method thereof
US4044184A (en) Cryogenic insulating structure
CN109503794B (en) Polyurethane rigid foam composition, polyurethane rigid foam material and preparation method thereof
CN102875833B (en) Foamer composition, polyurethane rigid foam, preparation method of foamer composition, refrigeration equipment and thermal insulation component
US3289704A (en) Sectionalized pipe
CN101128303A (en) Method of forming a composite material
CN113248907B (en) Inorganic filler composite polyurethane insulation board and preparation method and application thereof
KR102015093B1 (en) Cryogenic Insulation Panel And Method for Manufacturing the Same
CN104927022A (en) Halogen-free inherent flame retardant type RPUF (Rigid Polyurethane Foam) and preparation method thereof
KR20210146953A (en) Polyurethane/polyisocyanurate foam block of insulation of container and manufacturing process thereof
CN1290748C (en) Thermally insulated container and use thereof
JPS60502149A (en) Method for manufacturing products containing foamed plastic materials using a low pressure chamber
JP2653884B2 (en) Rigid polyurethane foam, method for producing the same, heat insulator, and refrigerator using the same
JP2001133135A (en) Refrigerator
CN105694386A (en) Composition for preparation of phosphorus-containing copolyester foam and method for preparing phosphorus-containing copolyester foam from composition
CN105153395A (en) Polymeric ceramic material and preparation method thereof
KR102252902B1 (en) foaming composition and insulating material including foam article using the same, liquefied gas storage tank and ship
CN106220825A (en) Refrigerator car polyurethane bulk bubble insulation material and preparation method thereof
KR102065251B1 (en) A manufacturing method of semi-inflammable insulation material
CN105111410A (en) Preparation method for polymeric ceramic material
CN101906248B (en) High compression-strength rigid-enhancement type hard polyurethane foaming plastic and preparation method thereof
KR20090004329A (en) Polymer foam composite comprising hollow particles and preparation process thereof
CN112321883A (en) Preparation process of high-flame-retardant inorganic polyurethane thermal insulation foam board
JP2022528319A (en) Polyurethane / polyisocyanurate foam block in the insulation body of the tank, and its preparation process
Das et al. Foams for thermal insulation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant