JP2001133135A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JP2001133135A
JP2001133135A JP31474299A JP31474299A JP2001133135A JP 2001133135 A JP2001133135 A JP 2001133135A JP 31474299 A JP31474299 A JP 31474299A JP 31474299 A JP31474299 A JP 31474299A JP 2001133135 A JP2001133135 A JP 2001133135A
Authority
JP
Japan
Prior art keywords
polyol
parts
refrigerator
amount
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31474299A
Other languages
Japanese (ja)
Other versions
JP3700499B2 (en
Inventor
Kuninari Araki
邦成 荒木
Katsumi Fukuda
克美 福田
Atsushi Komuro
淳 小室
Hisao Yokokura
久男 横倉
Yutaka Ito
伊藤  豊
Masayoshi Sugano
正義 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31474299A priority Critical patent/JP3700499B2/en
Priority to KR1020000045801A priority patent/KR100354637B1/en
Priority to CNB001269402A priority patent/CN1133676C/en
Publication of JP2001133135A publication Critical patent/JP2001133135A/en
Application granted granted Critical
Publication of JP3700499B2 publication Critical patent/JP3700499B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/125Water, e.g. hydrated salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/08Parts formed wholly or mainly of plastics materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Refrigerator Housings (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator external appearance of which is improved by preventing its surface from being strained and deformed. SOLUTION: In a refrigerator provided with a heat insulator packed with rigid foamed polyurethane obtained by using at least polyol, aromatic isocyanate, and a mixed blowing agent composed of cyclopentane and water, the polyol contains three or more kinds of mixtures prepared by adding initiators respectively composed of m-tolylenediamine and o-tolylenediamine to polyol by using ethylene oxide and/or propylene oxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、硬質ポリウレタン
フォームを充填した冷蔵庫に関する。
The present invention relates to a refrigerator filled with rigid polyurethane foam.

【0002】[0002]

【従来の技術】冷蔵庫の断熱箱体には、外箱と内箱の空
間に気泡を有する硬質ポリウレタンフォームを用いた断
熱材が用いられている。この硬質ポリウレタンフォーム
は、ポリオール成分とイソシアネート成分を発泡剤、触
媒、整泡剤の存在下で反応させることにより得られるも
のである。これまでの発泡剤としては、ガス熱伝導率が
低く難分解性のトリクロロモノフルオロメタンが断熱箱
体に使用されてきた。
2. Description of the Related Art A heat insulating material using a rigid polyurethane foam having air bubbles in a space between an outer box and an inner box is used for a heat insulating box of a refrigerator. This rigid polyurethane foam is obtained by reacting a polyol component and an isocyanate component in the presence of a foaming agent, a catalyst, and a foam stabilizer. As a foaming agent, trichloromonofluoromethane, which has a low gas thermal conductivity and is hardly decomposable, has been used for a heat insulating box.

【0003】しかし、大気中に放出されると成層園のオ
ゾン層破壊や温室効果による地表の温度上昇が生じると
され、代替品の1、1−ジクロロ−1−モノフルオロエ
タンが断熱部材用の発泡剤に用いられたが、これも規制
の対象となり2003年には全廃の予定になっている。
However, when released into the atmosphere, it is said that the ozone layer is depleted in the stratosphere and the surface temperature rises due to the greenhouse effect, and 1,1-dichloro-1-monofluoroethane as a substitute is used as a heat insulating material. It was used as a foaming agent, but is also subject to regulations and is scheduled to be completely abolished in 2003.

【0004】一方、フロンを用いないことによりオゾン
層破壊を少なくした、所謂ノンフロン系の発泡剤は、欧
州を中心に炭化水素系化合物、例えばシクロペンタン発
泡剤が冷蔵庫の断熱材に使用され始めている。例えば、
シクロペンタンとイソペンタンの混合発泡剤を用いた低
密度で流動性が改良された硬質ポリウレタンフォームや
シクロペンタンと水の混合発泡剤を用いた低密度で高い
流動性を有する硬質ポリウレタンフォームを用いた冷蔵
庫や冷凍庫の断熱箱体あるいは断熱扉などが提案されて
いる。このような従来の技術は、特開平11−1401
55号公報や特開平11−201628号公報や特開平
11−248344号公報に開示されている。
On the other hand, so-called non-fluorocarbon blowing agents, which have reduced the ozone layer depletion by not using fluorocarbons, have been used mainly in Europe as hydrocarbon-based compounds, for example, cyclopentane blowing agents, as heat insulating materials for refrigerators. . For example,
Refrigerator using rigid polyurethane foam with low density and improved fluidity using a mixed foaming agent of cyclopentane and isopentane or rigid polyurethane foam with low density and high fluidity using a mixed foaming agent of cyclopentane and water Insulated boxes and insulated doors for refrigerators and freezers have been proposed. Such a conventional technique is disclosed in Japanese Unexamined Patent Application Publication No. 11-14401.
No. 55, JP-A-11-201628 and JP-A-11-248344.

【0005】[0005]

【発明が解決しようとする課題】しかし、シクロペンタ
ンやイソペンタンの炭化水素系発泡剤は、これまでの従
来発泡剤に比べガスの熱伝導率が高く断熱性能が大きく
劣る問題がある。特に、シクロペンタンと水の混合発泡
剤を用いた硬質ポリウレタンフォームが地球温暖化およ
び地球環境保護の立場から、断熱性向上による省エネ化
が可能なウレタン材料の開発が望まれている。
However, hydrocarbon blowing agents such as cyclopentane and isopentane have a problem that the heat conductivity of the gas is high and the heat insulating performance is greatly inferior to conventional blowing agents. In particular, from the standpoint of global warming and protection of the global environment, the development of urethane materials that can save energy by improving heat insulation properties is demanded for rigid polyurethane foams using a mixed blowing agent of cyclopentane and water.

【0006】一方、冷蔵庫および冷凍庫の大型化や食
材、食種に合わせた異なる温度(−18℃、0℃、3
℃、5℃等)で設置される貯蔵箱体は、最上段に冷蔵
室、中段に野菜室、その下段に上段冷凍室および下段冷
凍室が設けられ多様化が進展している。
On the other hand, different sizes (-18 ° C, 0 ° C,
(5 ° C., 5 ° C., etc.), a refrigerator compartment is provided at the top, a vegetable compartment is provided at the middle, and an upper freezing compartment and a lower freezing compartment are provided below the compartment.

【0007】このため、近年では、冷蔵庫および冷凍庫
の大型化並びに省スペース化などの要求でキャビネット
壁内空間の狭隙間化や複雑形状化も進み、銅パイプ、ア
ルミテープ、紙テープ、ポリスチレン片、配線の障害物
が内箱の外側面に数多く有するため、フォームが冷蔵庫
壁内部を流動しにくくなり、この部分への充填が不完全
になるという問題が生じる。これを解決して天丼部、底
部、背面部、ハンドル部、ヒンジ部で均一フォームを形
成するに低密度で流動性の良いウレタン材料が好まし
い。このことから、シクロペンタンと水の混合発泡剤の
ウレタン材料でも代替フロンと同様に、低密度で熱伝導
率の低減および強度確保が可能な材料の開発が急務とな
っている。
For this reason, in recent years, the space inside the cabinet wall has become narrower and more complicated due to demands for larger refrigerators and freezers and space savings, and copper pipes, aluminum tape, paper tape, polystyrene pieces, wiring, etc. There are many obstacles on the outer surface of the inner box, so that the foam does not easily flow through the inside of the refrigerator wall, and there is a problem that the filling of this portion is incomplete. To solve this problem, a urethane material having a low density and good fluidity is preferable in order to form a uniform foam in the bowl portion, the bottom portion, the back surface portion, the handle portion, and the hinge portion. For this reason, there is an urgent need to develop a urethane material which is a mixed foaming agent of cyclopentane and water, which has a low density and can reduce the thermal conductivity and secure the strength, similarly to the alternative chlorofluorocarbon.

【0008】そのため、シクロペンタンと水の混合発泡
剤を用いた低密度の硬質ポリウレタンフォームは、フォ
ームの膨れ量が小さいこと、さらに低温放置での外箱表
鉄板の歪み変形が小さいこと、且つ熱伝導率の低減およ
び圧縮強度や寸法安定性も両立可能であることが断熱材
料の要件として要求されている。
[0008] Therefore, a low-density rigid polyurethane foam using a mixed blowing agent of cyclopentane and water has a small foam swelling amount, a small distortion deformation of an outer box surface iron plate when left at a low temperature, and a low heat resistance. It is required as a requirement for a heat insulating material that a reduction in conductivity and a compression strength and dimensional stability can be compatible.

【0009】ポリウレタン樹脂中に発泡される気泡の形
成には、ポリオールやイソシアネートの化学構造と共に
発泡剤の量、水の量、触媒、整泡剤によって調節される
気泡の発生や成長といった物理現象のみならず、原料各
素材の相溶性、反応性、発泡過程での流動性が大きく影
響すると考えられる。このことから、上記の要求を満た
すためには、各々素材の最適化が必要になってくる。
[0009] The formation of cells foamed in the polyurethane resin involves only physical phenomena such as the generation and growth of bubbles controlled by the amount of the foaming agent, the amount of water, the catalyst and the foam stabilizer together with the chemical structure of the polyol or isocyanate. However, it is considered that the compatibility, reactivity, and fluidity during the foaming process of each raw material greatly affect the raw materials. For this reason, in order to satisfy the above requirements, optimization of each material is required.

【0010】しかし、シクロペンタンの発泡剤を用いた
硬質ポリウレタンフォームは、代替フロンの発泡剤に比
べて飽和蒸気圧が低いため気泡のセル内の圧力も低下し
てしまい、充填後の収縮が発生し易い。このため、充填
する密度を低し過ぎると表面の変形が発生して製品の歩
留まりが低下したり、箱体や扉の強度が低下してしまっ
たりする。
However, the rigid polyurethane foam using a cyclopentane blowing agent has a lower saturated vapor pressure than the alternative fluorocarbon blowing agent, so that the pressure in the cells of the cells also decreases, and shrinkage after filling occurs. Easy to do. For this reason, if the filling density is too low, the deformation of the surface will occur and the yield of the product will decrease, or the strength of the box or door will decrease.

【0011】つまり、低密度の硬質ポリウレタンフォー
ムでは、気泡内ガスの膨張・収縮の影響が加わるため
に、フォームの線膨張係数が大きくなるのである。ここ
で、低密度の硬質ポリウレタンフォームの充填では、充
填後に収縮が生じても製品としての形状を保とうとして
充填する量を大きくすると、充填の際の箱体や扉の膨張
率、膨れ量が増加することになる。また、これまでは、
一般に高密度のウレタン材料が主に使用されてきたが、
フォームの流動性が劣るため、発泡圧を高くしウレタン
充填量を多くする手法で強度確保を進めてきたが、ウレ
タンフォームの液もれが発生し易くなるという問題も発
生してしまう。
That is, in the case of a low-density rigid polyurethane foam, the expansion and contraction of the gas in the cells is affected, so that the linear expansion coefficient of the foam is increased. Here, when filling low-density rigid polyurethane foam, if the amount of filling is increased to maintain the shape as a product even if shrinkage occurs after filling, the expansion rate and swelling amount of the box or door at the time of filling are increased. Will increase. Also, until now,
Generally, high-density urethane materials have been mainly used,
Since the fluidity of the foam is inferior, a method of increasing the foaming pressure and increasing the urethane filling amount has been used to ensure the strength, but there is also a problem that the urethane foam tends to leak.

【0012】本発明者らは、低密度の硬質ポリウレタン
フォームを用いて特性の両立化を図るため、主原料のポ
リオールやイソシアネートおよび気泡を形成する発泡剤
と水、反応性を制御する触媒や界面現象を調整する整泡
剤について検討した。具体的には、低密度の硬質ポリウ
レタンフォームがウレタン発泡脱型時の膨れ量を小さく
することおよび発泡時の型温度変動並びに充填量のパッ
ク率変動などが生じても、膨れ量が小さく熱伝導率の低
減および圧縮強度や寸法安定性も優れる硬質ポリウレタ
ンフォームを見出す原料素材の最適組成化を種々行っ
て、解決する見通しを得た。
The inventors of the present invention used polyols and isocyanates as main raw materials, a foaming agent for forming air bubbles, water, a catalyst for controlling the reactivity, and a A foam stabilizer for controlling the phenomenon was studied. Specifically, the low-density rigid polyurethane foam reduces the amount of swelling during urethane foam demolding and reduces the amount of swelling even if the mold temperature fluctuates during foaming and the packing ratio fluctuates. The optimal composition of the raw material to find a rigid polyurethane foam with reduced compression ratio and excellent compressive strength and dimensional stability was variously performed, and the prospect of solving the problem was obtained.

【0013】本発明の目的は、表面の歪み変形が防止さ
れ外観品質の優れた冷蔵庫を提供することに有る。
An object of the present invention is to provide a refrigerator which is prevented from being deformed and deformed on the surface and has excellent appearance quality.

【0014】[0014]

【課題を解決するための手段】上記目的は、外箱と内箱
との間の空間に、少なくともポリオール、芳香族イソシ
アネートと発泡剤としてシクロペンタンと水の混合発泡
剤を用いた硬質ポリウレタンフォームが充填された断熱
材を備える冷蔵庫において、ポリオール成分としてm−
トリレンジアミンとo−トリレンジアミンからなる開始
剤をエチレンオキサイドおよび/またはプロピレンオキ
サイドで付加した混合物を3成分以上含有する前記硬質
ポリウレタンフォームが充填された前記断熱材を備える
達成される。
An object of the present invention is to provide a rigid polyurethane foam in which at least a polyol, an aromatic isocyanate, and a mixed blowing agent of cyclopentane and water are used as a blowing agent in a space between an outer box and an inner box. In a refrigerator provided with a filled heat insulating material, m-
The heat insulating material is filled with the rigid polyurethane foam containing at least three components of a mixture obtained by adding an initiator consisting of tolylenediamine and o-tolylenediamine with ethylene oxide and / or propylene oxide.

【0015】さらに、上記硬質ポリウレタンフォームの
ポリオール成分が、m−トリレンジアミン、o−トリレ
ンジアミン、ビスフェノールA、トリエタノールアミン
からなる開始剤をエチレンオキサイドおよび/またはプ
ロピレンオキサイドで付加した混合物を90%以上含む
ポリエーテルポリオールであり、ウレタン注入口から少
なくとも500mm以上離れた平面部分から厚みが約2
0〜25mmのコア層断熱材の密度が29〜33kg/
m3、熱伝導率が平均温度10℃で17.5〜18.0
mW/m・Kを有する前記断熱材を用いたことにより達
成される。さらに、上記硬質ポリウレタンフォームの芳
香族イソシアネート成分が、ジフェニルメタンジイソシ
アネート多核体にプレポリマー変性トリレンジイソシア
ネートの混合物を使用し、さらにポリオール100重量
部に対して1.2〜1.6重量部の水と14〜18重量
部のシクロペンタンを組合わせた混合発泡剤中で反応さ
せた前記断熱材を用いたことにより達成される。
Further, a mixture obtained by adding an initiator consisting of m-tolylenediamine, o-tolylenediamine, bisphenol A and triethanolamine with ethylene oxide and / or propylene oxide as the polyol component of the rigid polyurethane foam is 90%. % Of a polyether polyol having a thickness of at least about 2 mm from a plane portion at least 500 mm away from the urethane inlet.
The density of the core layer heat insulating material of 0 to 25 mm is 29 to 33 kg /
m3, thermal conductivity is 17.5 to 18.0 at an average temperature of 10 ° C.
This is achieved by using the heat insulating material having mW / m · K. Further, the aromatic isocyanate component of the rigid polyurethane foam uses a mixture of polyphenylene diphenylmethane diisocyanate and a prepolymer-modified tolylene diisocyanate, and further contains 1.2 to 1.6 parts by weight of water with respect to 100 parts by weight of polyol. This is achieved by using the thermal insulation material reacted in a mixed blowing agent in which 14 to 18 parts by weight of cyclopentane are combined.

【0016】上記硬質ポリウレタンフォームのポリオー
ル成分が、m−トリレンジアミンにプロピレンオキサイ
ドおよびエチレンオキサイドとプロピレンオキサイドを
付加して得られるOH価400〜500のポリオール4
5〜55重量部、o−トリレンジアミンにプロピレンオ
キサイドとエチレンオキサイドで付加して得られるOH
価450〜500のポリオールを10〜20重量部、ト
リエタノールアミンにプロピレンオキサイドで付加して
得られるOH価350〜450のポリオール10〜20
重量部、ビスフェノールAにプロピレンオキサイドで付
加して得られるOH価250〜300のポリオール10
〜20重量部、ジエタノールアミンにプロピレンオキサ
イドで付加して得られるOH価450〜480のポリオ
ール3〜8重量部、トリメチロ−ルプロパンOH価12
56を2〜5重量部の混合物からなり、該ポリオールの
平均OH価が400〜450である硬質ポリウレタンフ
ォームが充填された前記断熱材を用いたことにより達成
される。
The polyol component of the rigid polyurethane foam is a polyol having an OH value of 400 to 500 obtained by adding propylene oxide and ethylene oxide and propylene oxide to m-tolylenediamine.
5 to 55 parts by weight of OH obtained by adding propylene oxide and ethylene oxide to o-tolylenediamine
10-20 parts by weight of a polyol having an OH value of 450-500, and a polyol 10-20 having an OH value of 350-450 obtained by adding propylene oxide to triethanolamine.
Parts by weight, polyol 10 having an OH value of 250 to 300 obtained by adding propylene oxide to bisphenol A
To 20 parts by weight, 3 to 8 parts by weight of polyol having an OH value of 450 to 480 obtained by adding propylene oxide to diethanolamine, and OH value of trimethylolpropane to 12 parts by weight.
This is achieved by using the heat insulating material filled with a rigid polyurethane foam comprising a mixture of 2 to 5 parts by weight of 56 and having an average OH value of the polyol of 400 to 450.

【0017】[0017]

【発明の実施の形態】本発明者らは、冷蔵庫および冷凍
庫に使用する断熱箱体の最適な低密度の硬質ポリウレタ
ンフォームを開発するため、シクロペンタンと水の混合
発泡剤で膨れ量を小さくし、熱伝導率の低減と圧縮強度
や寸法安定性が両立可能な最適ポリオ−ルを選定した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have developed a low-density rigid polyurethane foam suitable for a heat insulating box used in refrigerators and freezers by reducing the amount of blister with a mixed blowing agent of cyclopentane and water. An optimal polyol was selected, which can achieve both a reduction in thermal conductivity and compressive strength and dimensional stability.

【0018】先ず、フォームの膨れ量を小さくすると共
に熱伝導率の低減並びに圧縮強度や寸法安定性を両立さ
せるため、立体障害を起こし易い芳香環を有する開始剤
のポリオールを多く導入することを試みた。
First, in order to reduce the foam swelling amount, reduce the thermal conductivity, and at the same time achieve both compressive strength and dimensional stability, an attempt was made to introduce a large amount of an initiator polyol having an aromatic ring which easily causes steric hindrance. Was.

【0019】しかし、芳香環の付加重合物は単一成分で
配合量を多くして用いることや異種成分の例えばポリエ
ステルポリオールなどと混合すると、ポリエーテルポリ
オール成分の相溶性が極端に低下してくる。その結果、
プレミックス時に濁りが発生し易くなり、保存安定時に
ワニス粘度も変化し発泡時の充填量が変動し易くなる問
題がある。
However, when the addition polymer of the aromatic ring is used in a single component in a large amount, or when mixed with a different component such as a polyester polyol, the compatibility of the polyether polyol component is extremely reduced. . as a result,
There is a problem that turbidity is likely to occur during premixing, the varnish viscosity changes during storage stability, and the filling amount during foaming tends to fluctuate.

【0020】そこで、本願で用いる最適なポリオールと
しては、種々のアルキレンオキサイドと膨れ量を調べた
結果、シクロペンタン発泡剤に溶解しやすいものがフォ
ーム膨れに対して有効であることがわかってきた。この
ことから、プロピレンオキサイドの付加重合物を主に選
定し、その他物性を両立させるため、エチレンオキサイ
ドも併用しポリエステルポリオールなどの異種成分を含
まないポリエーテルポリオールとした。
Therefore, as a result of examining various alkylene oxides and the amount of blister as the optimum polyol used in the present application, it has been found that those which are easily dissolved in the cyclopentane blowing agent are effective for foam blister. For this reason, an addition polymer of propylene oxide was mainly selected, and in order to make other physical properties compatible, a polyether polyol containing no heterogeneous components such as polyester polyol using ethylene oxide was also used.

【0021】さらに、芳香環の中ではm−トリレンジア
ミンが通常良く使用され諸物性の両立化を得るため、m
−トリレンジアミン付加重合物と高反応性でキュアー性
が期待されるo−トリレンジアミン付加重合物を併用し
た3成分系のポリエーテルポリオールが膨れ量に対し有
効なことがわかった。
Further, among aromatic rings, m-tolylenediamine is commonly used, and in order to achieve compatibility of various physical properties, m-tolylenediamine is used.
It was found that a three-component polyether polyol using an o-tolylenediamine addition polymer, which is highly reactive and expected to have cure properties, in combination with a tolylenediamine addition polymer, is effective for the amount of swelling.

【0022】しかし、o−トリレンジアミン付加物は、
m−トリレンジアミン付加物に比べてワニス粘度が高く
なり、高反応性になり易いために断熱箱体の壁内中に発
泡充填するとボイドやクラックの発生が起こり易い問題
がある。このことから、o−トリレンジアミン付加物を
混合する際にはワニス粘度の低減や反応性のバランスを
得るため、m−トリレンジアミン付加物より少ない配合
量で使用すること並びにm−トリレンジアミン付加物は
強度と相溶性を向上するため、プロピレンオキサイド付
加物とプロピレンオキサイドおよびエチレンオキサイド
付加物の両者を併用した。
However, the o-tolylenediamine adduct is
Since the varnish viscosity is higher than that of the m-tolylenediamine adduct and the reactivity is easily increased, there is a problem that voids and cracks are liable to occur when foaming is filled in the wall of the heat insulating box. For this reason, when mixing the o-tolylenediamine adduct, it is necessary to use a smaller amount than the m-tolylenediamine adduct in order to reduce the varnish viscosity and obtain a balance of reactivity. In order to improve the strength and compatibility of the amine adduct, a propylene oxide adduct and both propylene oxide and ethylene oxide adducts were used in combination.

【0023】さらに、芳香環を有する開始剤以外に特性
のバランスを得るため、第3成分にビスフェノールA
系、第4成分にトリエタノールアミン系の開始剤を用い
てプロピレンオキサイドで付加した重合物を最適な母体
成分の90%以上に選定した。
Further, in order to obtain a balance of properties other than the initiator having an aromatic ring, bisphenol A is used as the third component.
The polymer added with propylene oxide using a triethanolamine-based initiator as the system and the fourth component was selected to be 90% or more of the optimum base component.

【0024】また、イソシアネート成分は熱伝導率の低
減と圧縮強度や寸法安定性を両立させるため、通常使用
のジフェニルメタンジイソシアネート多核体にプレポリ
マー変性トリレンジイソシアネートを混合する成分を選
定した。その理由としては、ジフェニルメタンジイソシ
アネート多核体を使用した場合、初期反応は遅くなるが
反応すると急速に増粘される傾向が見られ、流動性への
障害や気泡の合体会合が起こり易くなることが判明した
ためである。そこで、プレポリマー変性トリレンジイソ
シアネートを混合することにより増粘挙動のマイルド
化、ウレタン結合と尿素結合の高濃度化や架橋点間距離
を短くして均一微細セルを形成させるため、混合系のイ
ソシアネートを選定した。
The isocyanate component is selected from a mixture of a commonly used polynuclear diphenylmethane diisocyanate and a prepolymer-modified tolylene diisocyanate in order to achieve both a reduction in thermal conductivity and compressive strength and dimensional stability. The reason for this is that when polynuclear diphenylmethane diisocyanate is used, the initial reaction is slowed down, but the reaction tends to thicken rapidly when reacting, impeding flowability and coalescence association of bubbles is found to occur easily Because he did. Therefore, by mixing the prepolymer-modified tolylene diisocyanate, the thickening behavior is mild, the concentration of urethane bonds and urea bonds is increased, and the distance between crosslinking points is shortened to form uniform fine cells. Was selected.

【0025】さらに、シクロペンタンと水の最適配合
比、触媒、整泡剤について膨れ量を小さくし、低密度で
熱伝導率の低減並びに圧縮強度や寸法安定性の両立を検
討した結果、シクロペンタンと水の最適配合比はポリオ
ール100重量部に対し1.2〜1.6重量部の水と1
4〜18重量部のシクロペンタンを組合わせること、主
触媒にトリメチルアミノエチルピペラジン、ペンタメチ
ルジエチレントリアミおよびトリス(3−ジメチルアミ
ノプロピレン)ヘキサヒドロ−S−トリアジンなどの3
量化触媒を併用し、速反応化とキュアー性を高め低表面
張力の整泡剤を選定して、本発明を完成するに至った。
Further, as a result of studying the optimum blending ratio of cyclopentane and water, the amount of swelling of the catalyst and the foam stabilizer, the reduction of thermal conductivity at low density, and the compatibility of compressive strength and dimensional stability, the results showed that cyclopentane The optimum mixing ratio of water and water is 1.2 to 1.6 parts by weight of water and 1 to 100 parts by weight of polyol.
Combining 4-18 parts by weight of cyclopentane, the main catalyst being trimethylaminoethylpiperazine, pentamethyldiethylenetriami and tris (3-dimethylaminopropylene) hexahydro-S-triazine such as
The present invention was completed by selecting a foam stabilizer having a low surface tension by increasing the reaction speed and curing property by using a quantification catalyst in combination.

【0026】本発明の目的を達成するウレタン材料を得
るには、シクロペンタン発泡剤と補助発泡剤の水配合量
も大きく影響する。また、一般的には、シクロペンタン
と水の配合量が共に多く用いることにより低密度化が容
易に図れる。
In order to obtain a urethane material which achieves the object of the present invention, the amounts of water of the cyclopentane blowing agent and the auxiliary blowing agent are greatly affected. Further, generally, by using a large amount of cyclopentane and water in a large amount, the density can be easily reduced.

【0027】しかし、水配合量を多くした場合気泡セル
内の炭酸ガスの分圧増加により膨れ量や熱伝導率も大き
くなり、シクロペンタン配合量も多くなると圧縮強度や
寸法安定性が劣ってくる傾向が見られる。そのため、シ
クロペンタンと水の最適配合比は、ポリオール100重
量部に対して1.2〜1.6重量部の水および14〜1
8重量部のシクロペンタンを組合わせることが好まし
い。
However, when the amount of water is increased, the swelling amount and the thermal conductivity are increased due to an increase in the partial pressure of carbon dioxide in the bubble cell, and when the amount of cyclopentane is increased, the compressive strength and dimensional stability are deteriorated. There is a tendency. Therefore, the optimal mixing ratio of cyclopentane and water is 1.2 to 1.6 parts by weight of water and 14 to 1 for 100 parts by weight of polyol.
It is preferred to combine 8 parts by weight of cyclopentane.

【0028】また、フォームの膨れ量を調べた結果、断
熱パネルの厚みでも異なり厚いフォーム程膨れ量が大き
くなる傾向が見られる。これはパネルが厚くなる程、断
熱材が反応する時にフォームの内部温度も高くなり膨張
と収縮の温度差も大きくなって、膨れ量が増加すると考
えられる。また、実機の冷蔵庫および冷凍庫の箱体にウ
レタンを注入後、低温放置すると箱体の中で左右側面の
表鉄板歪みの外観変形が発生し易い問題がある。
Further, as a result of examining the swelling amount of the foam, there is a tendency that the swelling amount increases as the thickness of the foam differs depending on the thickness of the heat insulating panel. It is considered that the thicker the panel, the higher the internal temperature of the foam when the heat insulating material reacts, the larger the temperature difference between expansion and contraction, and the amount of swelling increases. In addition, if urethane is injected into the boxes of the actual refrigerator and freezer and left at low temperature, there is a problem that the appearance of the iron plate on the left and right sides is easily deformed in the boxes.

【0029】本発明に用いられるポリオールとしては、
例えば、多価アルコールがプロピレングリコ−ル、ジプ
ロピレングリコールなどの2価アルコール、グリセリ
ン、トリメチロールプロパンなどの3価アルコール、ジ
グリセリン、メチルグルコシド、ソルビトール、シュー
クローズなどの3価以上の多価アルコールが挙げられ
る。多価アミンのアルキレンポリアミンとしてはエチレ
ンジアミン、ジエチレントリアミンなど、アルカノール
アミンとしてはモノエタノールアミン、ジエタノールア
ミン、トリエタノールアミン、イソプロパノールアミン
など、芳香族多価アミンとしては2,4−トリレンジア
ミン、2,3−トリレンジアミン、2,6−トリレンジ
アミン、3,4−トリレンジアミンなど、ジアミノジフ
ェニルメタン、ビスフェノールA、ポリメチレンポリフ
ェニルポリアミンなどが用いられる。
The polyol used in the present invention includes:
For example, the polyhydric alcohol is a dihydric alcohol such as propylene glycol or dipropylene glycol, a trihydric alcohol such as glycerin or trimethylolpropane, or a trihydric or higher polyhydric alcohol such as diglycerin, methyl glucoside, sorbitol, or sucrose. Is mentioned. Examples of polyalkylene alkylene polyamines include ethylenediamine and diethylenetriamine; examples of alkanolamines include monoethanolamine, diethanolamine, triethanolamine, and isopropanolamine; and examples of aromatic polyamines such as 2,4-tolylenediamine and 2,3- Diaminodiphenylmethane, bisphenol A, polymethylene polyphenylpolyamine, and the like, such as tolylenediamine, 2,6-tolylenediamine, and 3,4-tolylenediamine, are used.

【0030】また、ポリエーテルポリオール混合組成物
の平均OH価が400を下回ると圧縮強度および寸法安
定性が劣り、450を越えるとフォームがもろくなる。
平均OH価は400〜450が安定した硬質ポリウレタ
ンフォームを作製するうえで好ましい結果である。
If the average OH value of the polyether polyol mixed composition is less than 400, the compressive strength and dimensional stability are poor, and if it exceeds 450, the foam becomes brittle.
An average OH value of 400 to 450 is a preferable result for producing a stable rigid polyurethane foam.

【0031】また、反応触媒としては例えばトリメチル
アミノエチルピペラジン、ペンタメチルジエチレントリ
アミン、テトラメチルヘキサメチレンジアミン、トリエ
チレンジアミン、テトラメチルエチレンジアミンなどの
第3級アミン、トリス(3−ジメチルアミノプロピレ
ン)ヘキサヒドロ−S−トリアジンなどの3量化触媒、
ジプロピレングリコール併用の遅効性触媒など反応性が
合致すれば使用することができる。
Examples of the reaction catalyst include tertiary amines such as trimethylaminoethylpiperazine, pentamethyldiethylenetriamine, tetramethylhexamethylenediamine, triethylenediamine and tetramethylethylenediamine, and tris (3-dimethylaminopropylene) hexahydro-S-. Trimerization catalyst such as triazine,
If the reactivity matches, such as a slow-acting catalyst used in combination with dipropylene glycol, it can be used.

【0032】反応触媒の配合量は、ポリオール成分10
0重量部あたり2〜5重量部が好ましい。さらに、整泡
剤は例えばゴールドシュミット製のB−8462、B−
8461など、信越化学製の X −20−1614、F
−392など、日本ユニカ製のSZ−1127などプレ
ミックス相溶性の安定性からSi分子量が1800〜3
000およびSi含有率が25〜30の比較的低い乳化
作用に適したものが好ましい。整泡剤の配合量は、ポリ
オール成分が100重量部あたり1.5〜4重量部であ
る。
The blending amount of the reaction catalyst is 10
2 to 5 parts by weight per 0 parts by weight is preferred. Further, foam stabilizers are, for example, B-8462, B-
8461, X-20-1614, F
For example, SZ-1127 manufactured by Nihon Unica Co., Ltd. has a Si molecular weight of 1800 to 3
Those which are suitable for a relatively low emulsifying action of 000 and a Si content of 25 to 30 are preferable. The compounding amount of the foam stabilizer is 1.5 to 4 parts by weight per 100 parts by weight of the polyol component.

【0033】また、イソシアネートとしてはジフェニル
メタンジイソシアネートの多核体およびプレポリマー変
性トリレンジイソシアネートを主に用いる。トリレンジ
イソシアネートは異性体の混合物、即ち2、4−体10
0%、2、4−体/2、6−体=80/20、65/3
5(重量比)はもちろん、商品名三井コスモネートTR
C 、武田薬品製のタケネート4040などプレポリマ
−のウレタン変性トリレンジイソシアネート、アロファ
ネ−ト変性トリレンジイソシアネート、ビウレット変性
トリレンジイソシアネート、イソシアヌレート変性トリ
レンジイソシアネートなども使用できる。
As the isocyanate, polynuclear diphenylmethane diisocyanate and prepolymer-modified tolylene diisocyanate are mainly used. Tolylene diisocyanate is a mixture of isomers, ie, 2,4-isomer 10
0%, 2,4-form / 2, 6-form = 80/20, 65/3
5 (weight ratio) and Mitsui Cosmonate TR
C. Prepolymer urethane-modified tolylene diisocyanate, allophanate-modified tolylene diisocyanate, biuret-modified tolylene diisocyanate, isocyanurate-modified tolylene diisocyanate and the like such as Takenate 4040 manufactured by Takeda Pharmaceutical Co., Ltd. can also be used.

【0034】また、4、4´−ジフェニルメタンジイソ
シアネ−トとしては、主成分とする純品の他に3核体以
上の多角体を含有する商品名三井コスモネートM−20
0、武田薬品製のミリオネート MR などのジフェニル
メタンジイソシアネート多核体が使用できる。その他、
ポリメチレンポリフェニルイソシアネート、トルイジン
イソシアネート、キシリレンジイソシアネートなどの芳
香族系多官能イソシアネート、カルボジイミド変成ジフ
ェニルメタンジイソシアネートなどのイソシアネートも
使用することができる。
As the 4,4'-diphenylmethane diisocyanate, a Mitsui Cosmonate M-20 (trade name) containing a polyhedron having three or more nuclei in addition to a pure product as a main component.
0, polynuclear diphenylmethane diisocyanate such as Millionate MR manufactured by Takeda Pharmaceutical Co., Ltd. can be used. Others
Aromatic polyfunctional isocyanates such as polymethylene polyphenyl isocyanate, toluidine isocyanate, and xylylene diisocyanate, and isocyanates such as carbodiimide-modified diphenylmethane diisocyanate can also be used.

【0035】本発明の硬質ポリウレタンフォームは、一
般的に用いられている発泡機、例えばプロマート社製P
U−30型発泡機で形成可能である。その発泡条件は発
泡機の種類によって多少異なるが、液温18〜30℃、
吐出圧力80〜150kg/cm2、吐出量15〜30
kg/min、型箱の温度は35〜45℃が好ましい。
さらに好ましくは、液温20℃、吐出圧力100kg/
cm2、吐出量25kg/min、型箱の温度は45℃
付近である。
The rigid polyurethane foam of the present invention can be prepared by using a commonly used foaming machine such as P-Mart
It can be formed with a U-30 type foaming machine. The foaming conditions vary somewhat depending on the type of foaming machine, but the liquid temperature is 18-30 ° C,
Discharge pressure 80-150kg / cm2, discharge amount 15-30
kg / min, and the temperature of the mold box is preferably 35 to 45 ° C.
More preferably, the liquid temperature is 20 ° C. and the discharge pressure is 100 kg /
cm2, discharge rate 25 kg / min, mold box temperature is 45 ° C
It is near.

【0036】このようにして、独立構造の気泡を有し、
シクロペンタンと水の混合発泡剤を用いた硬質ポリウレ
タンフォームであって、充填する際の膨れ量が小さく、
また低密度であり、熱伝導率の低減、圧縮強度、寸法安
定性にも優れる硬質ポリウレタンフォームを、冷蔵庫の
断熱材として充填することによって、熱漏洩量が低減さ
れ消費電力を低減できる。さらに断熱材の充填量が低減
され冷蔵庫のコストを低減できる。また、低温で放置し
ても冷蔵庫の歪み変形を小さくして外観品質の優れた冷
蔵庫を提供できる。
In this way, there are bubbles having an independent structure,
A rigid polyurethane foam using a mixed blowing agent of cyclopentane and water, the amount of swelling when filling is small,
In addition, by filling a rigid polyurethane foam, which is low in density and excellent in thermal conductivity, compressive strength, and dimensional stability, as a heat insulating material for a refrigerator, the amount of heat leakage can be reduced and power consumption can be reduced. Further, the filling amount of the heat insulating material is reduced, and the cost of the refrigerator can be reduced. Further, even if the refrigerator is left at a low temperature, distortion deformation of the refrigerator can be reduced, and a refrigerator having excellent appearance quality can be provided.

【0037】以下に、本発明の実施例並びに比較例を示
して具体的に説明する。なお、以下の実施例および比較
例の中で、部または%はそれぞれ重量部、重量%を表
す。
Now, the present invention will be described in detail with reference to Examples and Comparative Examples. In the following Examples and Comparative Examples, parts and% represent parts by weight and% by weight, respectively.

【0038】〔実施例1〕ポリオ−ル成分としては、平
均水酸基価が450のプロピレンオキサイドおよびプロ
ピレンオキサイドとエチレンオキサイドで付加したm−
トリレンジアミン系ポリエ−テルポリオ−ル(ポリオ−
ルAと称す)を50部、平均水酸基価が480のプロピ
レンオキサイドで付加したo−トリレンジアミン系ポリ
エ−テルポリオ−ル(ポリオ−ルBと称す)を13部、
平均水酸基価が400のプロピレンオキサイドで付加し
たトリエタノ−ルアミン系ポリエ−テルポリオ−ル(ポ
リオ−ルcと称す)を15部、平均水酸基価が460の
プロピレンオキサイドで付加したジエタノ−ルアミン系
ポリエ−テルポリオ−ル(ポリオ−ルDと称す)を4
部、平均水酸基価が280のプロピレンオキサイドで付
加したビスフェノ−ルA系ポリエ−テルポリオ−ル(ポ
リオ−ルEと称す)を15部、平均水酸基価が1256
のトリメチロ−ルプロパン(ポリオ−ルFと称す)を3
部の混合ポリオ−ル成分100部に、シクロペンタン発
泡剤の配合量を16部、水1.5部および反応触媒とし
てトリメチルアミノエチルピペラジン1.7部とペンタ
メチルジエチレントリアミン0.2部、トリス(3−ジ
メチルアミノプロピレン)ヘキサヒドロ−S−トリアジ
ン0.4部、整泡剤として有機シリコ−ンのF−392
を2部配合した。
Example 1 As the polyol component, propylene oxide having an average hydroxyl value of 450 and m-added with propylene oxide and ethylene oxide were used.
Tolylenediamine polyetherpolyol (Polyol)
50 parts of o-tolylenediamine polyetherpolyol (referred to as Polyol B) added with propylene oxide having an average hydroxyl value of 480, and 13 parts.
15 parts of triethanolamine-based polyetherpolyol (referred to as polyol c) added with propylene oxide having an average hydroxyl value of 400, and diethanolamine-based polyetherpolyol added with propylene oxide having an average hydroxyl value of 460. 4 (referred to as polyol D)
Parts, bisphenol A-based polyetherpolyol (referred to as Polyol E) added with propylene oxide having an average hydroxyl value of 280, 15 parts, and an average hydroxyl value of 1256.
Of trimethylolpropane (referred to as Polyol F)
To 100 parts of the mixed polyol component, 16 parts of a cyclopentane blowing agent, 1.5 parts of water, 1.7 parts of trimethylaminoethylpiperazine as a reaction catalyst, 0.2 parts of pentamethyldiethylenetriamine, 0.2 parts of tris ( 3-dimethylaminopropylene) 0.4 parts of hexahydro-S-triazine, F-392 of an organic silicone as a foam stabilizer
Was blended in two parts.

【0039】また、イソシアネ−ト成分としてジフェニ
ルメタンジイソシアネ−ト多核体およびプレポリマ−変
性トリレンジイソシアネ−トの混合物を137部用いて
発泡させた。その時のポリオ−ルとイソシアネ−トの液
温は20℃に調整した。まず、ポリオ−ルとイソシアネ
−トを攪拌し、45℃に調整された600×400×7
5mmのアルミ製のモ−ルド内に注入して、冷蔵庫およ
び冷凍庫箱体の外箱鉄板の歪み変形に影響する膨れ量を
測定した。その際、オ−バ−パックほど膨れ量が大きく
なるため、パック率を115%と125%の両者で5分
後に成型品をモ−ルドから脱型した硬質ポリウレタンフ
ォ−ムの75mmt断熱パネルを用いて、パック率変動
による膨れ量を測定した。その結果を表1に示す。
137 parts of a mixture of a polynuclear diphenylmethane diisocyanate and a prepolymer-modified tolylene diisocyanate were used as the isocyanate component. At that time, the liquid temperature of the polyol and the isocyanate was adjusted to 20 ° C. First, the polyol and the isocyanate were stirred, and the mixture was adjusted to 45.degree.
It was poured into a 5 mm aluminum mold and the amount of swelling affecting the distortion of the outer plate iron plate of the refrigerator and freezer box was measured. At this time, since the bulging amount becomes larger as the overpack becomes larger, the 75% insulated panel made of hard polyurethane foam from which the molded product is removed from the mold after 5 minutes at both the pack ratio of 115% and 125%. The swelling amount due to the change in the pack ratio was measured. Table 1 shows the results.

【0040】[0040]

【表1】 [Table 1]

【0041】この表では、アルミ製モールドパネルおよ
び断熱箱体による断熱材の物性(フォーム膨れ量、コア
層密度、熱伝導率、圧縮強度、低温寸法変化率、高温寸
法変化率、試験前後の歪み量の差、試験後の最大歪み
量)を示す。この表1から、脱型5分後の膨れ量はパッ
ク率115%で2.3mm、パック率125%で2.7
mmと従来の断熱材に比べて低減できることがわかっ
た。
In this table, the physical properties of the heat insulating material (the foam swelling amount, the core layer density, the thermal conductivity, the compressive strength, the low-temperature dimensional change rate, the high-temperature dimensional change rate, the distortion before and after the test, and the distortion before and after the test) The difference in the amount and the maximum strain after the test). From Table 1, the swelling amount after 5 minutes of demolding is 2.3 mm at a pack rate of 115% and 2.7 at a pack rate of 125%.
mm, which is smaller than that of a conventional heat insulating material.

【0042】次に、上記材料を用いて実機の箱体で評価
を行ったのでその結果を以下に説明する。その際、図面
を参照しながら以下説明する。
Next, an evaluation was made on a box of an actual machine using the above materials, and the results will be described below. The description will be made below with reference to the drawings.

【0043】図1は、冷蔵庫および冷凍庫の箱体1に冷
蔵室扉6、野菜室扉7、上段冷凍室扉8、下段冷凍室扉
9を設置した縦断面図である。まず、外箱鉄板と内箱樹
脂壁の箱体をウレタンフォームの発泡雇い治具にセット
後、ポリオールとイソシアネートの液温20℃、治具温
45℃にして、硬質ポリウレタンフォームを空隙部分に
発泡充填する。その時、ウレタンフォームのポリオール
とイソシアネートが化学反応を起こし、発泡圧力による
加圧で発泡ウレタンフォームが箱体の壁内空間に注入充
填され、断熱箱体を作製した。その際、の注入容積は約
200リットルを有する箱体でウレタン材料のゼロパッ
ク(実機充填に必要な最低注入量)を設定後、オーバー
パックの110%パック率で注入した。
FIG. 1 is a longitudinal sectional view in which a refrigerator compartment door 6, a vegetable compartment door 7, an upper freezer compartment door 8, and a lower freezer compartment door 9 are installed on a box 1 of a refrigerator and a freezer. First, after setting the outer box iron plate and the inner box resin wall box in a urethane foam foaming jig, the polyol and isocyanate liquid temperature is set to 20 ° C and the jig temperature is set to 45 ° C, and the rigid polyurethane foam is foamed in the voids. Fill. At that time, the polyol and the isocyanate of the urethane foam caused a chemical reaction, and the foamed urethane foam was injected and filled into the space in the wall of the box by the pressurization by the foaming pressure, thereby producing an insulated box. At that time, a zero-pack (minimum injection amount required for filling in the actual machine) of the urethane material was set in a box having an injection volume of about 200 liters, and then an overpack was injected at a 110% packing ratio.

【0044】また、図2は断熱箱体にウレタンを4点発
泡充填する模式図とウレタン測定サンプル採取の模式図
を示す。冷蔵庫および冷凍庫の断熱箱体の底面中央部分
から断熱材フォームサンプルを採取して種々の物性を評
価した。まず、コア層密度は200mm×200mm×
20mmtのサンプル寸法と重量を測定後、重量を体積
で除した値および熱伝導率も英弘精機社製HC−073型
(熱流計法、平均温度10℃)を用いて評価した。
FIG. 2 shows a schematic diagram of foaming and filling urethane at four points in a heat insulating box and a schematic diagram of collecting a urethane measurement sample. Insulation foam samples were taken from the center of the bottom of the insulation box of the refrigerator and the freezer, and various physical properties were evaluated. First, the core layer density is 200mm x 200mm x
After measuring the sample size and weight of 20 mmt, the value obtained by dividing the weight by volume and the thermal conductivity were also evaluated by using a model HC-073 (Heat Flow Method, average temperature 10 ° C.) manufactured by Eiko Seiki Co., Ltd.

【0045】圧縮強度は50mm×50mm×20mm
tのフォームサンプルを送り速度4mm/minで変形
させて、10%変形時の応力を元の受圧面積で除した値
で評価した。低温寸法変化率および高温寸法変化率は1
50mm×300mm×20mmtのフォームを−20
℃で24時間もしくは70℃で24時間放置した時の厚
さの変化率を評価した。
The compressive strength is 50 mm × 50 mm × 20 mm
The foam sample at t was deformed at a feed rate of 4 mm / min, and the stress at the time of 10% deformation was evaluated by dividing the stress by the original pressure receiving area. Low temperature dimensional change rate and high temperature dimensional change rate are 1
50mm x 300mm x 20mmt foam -20
The rate of change in thickness when left at 24 ° C. for 24 hours or at 70 ° C. for 24 hours was evaluated.

【0046】これらの結果を表1に併せて示す。表1か
ら、コア層密度が29.2kg/m3と低密度で熱伝導
率が17.6mW/m・Kと低くなり、圧縮強度が0.
15MPaと高く、低温寸法変化率が−1.1%、高温
寸法変化率が1.6%と変化が小さいことが判る。
The results are shown in Table 1. From Table 1, it can be seen that the core layer density is as low as 29.2 kg / m 3, the thermal conductivity is as low as 17.6 mW / m · K, and the compressive strength is as low as 0.
It can be seen that the change is as small as 15 MPa, the low-temperature dimensional change is -1.1%, and the high-temperature dimensional change is 1.6%.

【0047】さらに、外箱表鉄板の歪み量は、長さ30
0mmの表面が平滑な角棒の中央部にダイヤルゲージを
取付けた歪み測定器具を用いて行った。測定法は外箱表
鉄板面に測定器具を当てた時の歪みの最大値をもって表
す。箱体側面の歪み量は、まず試験前の歪み量を測定し
その分布を明示した後で、−10℃の恒温室内に48時
間放置する。その後、恒温室内から取出し直ちに試験前
と同様に歪み量を測定して、試験前後の歪み量の差およ
び試験後の最大歪み量を評価した。
Further, the amount of distortion of the outer steel plate is 30 mm in length.
The measurement was carried out using a strain measuring instrument having a dial gauge attached to the center of a square bar having a smooth surface of 0 mm. The measurement method is expressed by the maximum value of the distortion when the measuring instrument is applied to the outer box surface iron plate surface. For the amount of strain on the side of the box, the strain before the test is first measured and its distribution is specified, and then the container is left in a constant temperature room at -10 ° C for 48 hours. Thereafter, the sample was taken out of the constant temperature chamber and immediately measured for the amount of strain in the same manner as before the test, and the difference in the amount of strain before and after the test and the maximum strain after the test were evaluated.

【0048】これらの結果も表1に示す。表1から、試
験前後の歪み量差が0.1mmで最大歪み量が0.3m
mと小さい値を示すことが判る。
Table 1 also shows these results. From Table 1, the difference between the strain amount before and after the test is 0.1 mm and the maximum strain amount is 0.3 m.
It turns out that it shows a small value as m.

【0049】さらに、硬質ポリウレタンフォームの発泡
充填を行った断熱箱体を形成した冷蔵庫および冷凍庫
に、冷凍サイクル部品(圧縮機/コンデンサ/エバポレ
ー)を組み込んで測定した結果、熱漏洩量が4%低減し
て消費電力量も約1Kwh/月の省エネ化が達成され
た。
Further, as a result of incorporating a refrigeration cycle component (compressor / condenser / evaporator) into a refrigerator and a freezer in which a heat insulating box in which a rigid polyurethane foam was foam-filled was formed, the amount of heat leakage was reduced by 4%. As a result, the energy consumption was reduced by about 1 kWh / month.

【0050】このことから、本実施例に係る硬質ポリウ
レタンフォームでは、充填する際の膨れ量が小さく、ま
た低密度であり、熱伝導率の低減、圧縮強度、寸法安定
性にも優れる硬質ポリウレタンフォームとなる。また、
本実施例に係る硬質ポリウレタンフォームを冷蔵庫の断
熱材として充填することによって、熱漏洩量が低減され
消費電力を低減できる。さらに断熱材の充填量が低減さ
れ冷蔵庫のコストを低減できる。また、低温で放置して
も冷蔵庫の歪み変形が小さくなり冷蔵庫の外観品質が優
れたものとなる。
From the above, the rigid polyurethane foam according to the present embodiment has a small swelling amount at the time of filling, has a low density, and has excellent heat conductivity reduction, compressive strength and dimensional stability. Becomes Also,
By filling the rigid polyurethane foam according to the present embodiment as a heat insulating material for a refrigerator, the amount of heat leakage can be reduced and the power consumption can be reduced. Further, the filling amount of the heat insulating material is reduced, and the cost of the refrigerator can be reduced. In addition, even if the refrigerator is left at a low temperature, distortion deformation of the refrigerator is reduced, and the appearance quality of the refrigerator is improved.

【0051】〔比較例1〕表1に示すポリオールA60
部とポリオールC20部およびポリオールD20部とシ
クロペンタン発泡剤を12部、水1.7部および反応触
媒としてテトラメチルヘキサメチレンジアミン1.8部
とペンタメチルジエチレントリアミン0.3部、トリス
(3ージメチルアミノプロピレン)ヘキサヒドロ−S−
トリアジン0.5部、整泡剤として有機シリコーンのB
−8462を1.8部配合した。また、イソシアネート
としてジフェニルメタンジイソシアネート多核体を14
0部用いて発泡させた。その時のポリオールとイソシア
ネートの液温は20℃に調整した。
Comparative Example 1 Polyol A60 shown in Table 1
Parts, 20 parts of polyol C, 20 parts of polyol D, 12 parts of cyclopentane blowing agent, 1.7 parts of water, 1.8 parts of tetramethylhexamethylenediamine and 0.3 parts of pentamethyldiethylenetriamine as a reaction catalyst, tris (3-dimethyl Aminopropylene) hexahydro-S-
0.5 parts of triazine, B of organic silicone as a foam stabilizer
1.846 parts of -8462 was blended. In addition, polynuclear diphenylmethane diisocyanate is used as an isocyanate.
It foamed using 0 parts. The liquid temperature of the polyol and isocyanate at that time was adjusted to 20 ° C.

【0052】まず、ポリオールとイソシアネートを攪拌
し40℃に調整された600×400×75mmtのア
ルミ製モールド内に注入して、オーバーパックの115
%と125%のパック率を用いて、発泡成型品をモール
ドから5分後に脱型させた硬質ポリウレタンフォームの
膨れ量を測定した。
First, the polyol and isocyanate were stirred and poured into a 600 × 400 × 75 mmt aluminum mold adjusted to 40 ° C.
% And 125% of the pack ratio, the swelling amount of the rigid polyurethane foam from which the foam molded article was released after 5 minutes from the mold was measured.

【0053】季語言うその結果を表1に示す。表1か
ら、脱型5分後の膨れ量はパック率115%で4.9m
m、パック率125%で5.6mmと大きくなることが
判る。
The results are shown in Table 1. From Table 1, the swelling amount after 5 minutes of demolding was 4.9 m at a pack ratio of 115%.
m, the packing ratio is 5.6 mm when the packing ratio is 125%.

【0054】次に、実施例1と同様に冷蔵庫および冷凍
庫の外箱鉄板と内箱をウレタンフォームの発泡雇い治具
にセット後、ポリオールとイソシアネートの液温を20
℃、治具温度を40℃にして硬質ポリウレタンフォーム
を空隙部分に発泡充填する。その際、注入容積は約20
0リットルの箱体でゼロパックを設定後、パック率11
0%で発泡充填して冷蔵庫および冷凍庫の断熱箱体を作
製した。断熱箱体の底面中央部分から断熱材フォームサ
ンプルを採取して、コア層密度、熱伝導率、圧縮強度、
低温寸法変化率、高温寸法変化率を評価し、さらに断熱
箱体の低温放置(−10℃/48時間)試験を行い、外
箱表鉄板の歪み試験前後の歪み量の差および試験後の最
大歪み量も評価した。
Next, as in the first embodiment, after the outer case iron plate and the inner case of the refrigerator and the freezer were set on the urethane foam foaming jig, the liquid temperature of the polyol and the isocyanate was lowered to 20.
C. and a jig temperature of 40.degree. At this time, the injection volume is about 20
After setting the zero pack in a 0 liter box, the pack rate is 11
The foam was filled with 0% to produce a heat insulating box for a refrigerator and a freezer. Take a foam sample from the center of the bottom of the heat insulation box and measure the core layer density, thermal conductivity, compressive strength,
The low-temperature dimensional change rate and the high-temperature dimensional change rate were evaluated, and a low-temperature storage test (−10 ° C./48 hours) of the heat-insulating box was performed. The amount of distortion was also evaluated.

【0055】これらの結果を表1に併せて示す。表1か
ら、コア層密度が34.5kg/m3で熱伝導率が1
8.5mW/m・Kと高く、さらに圧縮強度も0.11
MPa、低温寸法変化率が−2.1%、高温寸法変化率
が1.8%と変化が大きいことが判る。
The results are shown in Table 1. From Table 1, it can be seen that the core layer density is 34.5 kg / m 3 and the thermal conductivity is 1
As high as 8.5 mW / m · K, the compressive strength is 0.11
MPa, the low-temperature dimensional change rate is -2.1%, and the high-temperature dimensional change rate is 1.8%.

【0056】さらに、冷蔵庫および冷凍庫の断熱箱体の
低温放置を行った結果、外扉表鉄板の歪み試験前後の歪
み量差は0.22mmで試験後の最大歪み量も0.66
mmと大きくなり、断熱箱体の外扉鉄板に歪み変形が発
生した。
Further, as a result of leaving the heat-insulating boxes of the refrigerator and the freezer at low temperature, the difference in the amount of distortion between the outer door surface iron plate before and after the distortion test was 0.22 mm, and the maximum amount of distortion after the test was 0.66 mm.
mm, and distortion deformation occurred in the outer door iron plate of the heat insulating box.

【0057】〔実施例2〕表1に示すポリオールA40
部とポリオールB30部およびポリオールE28部とポ
リオールF2部とシクロペンタン発泡剤を17部、水
1.3部および反応触媒としてテトラメチルヘキサメチ
レンジアミン1.5部とペンタメチルジエチレントリア
ミン0.2部、トリス(3−ジメチルアミノプロピレ
ン)ヘキサヒドロ−S−トリアジン0.6部、整泡剤と
して有機シリコーンのB−8461を2.2部配合し
た。また、イソシアネートとしてジフェニルメタンジイ
ソシアネート多核体とプレポリマ−変性トリレンジイソ
シアネートを135部を用いて発泡させた。その時のポ
リオールとイソシアネートの液温は25℃に調整した。
Example 2 Polyol A40 shown in Table 1
Parts, 30 parts of polyol B, 28 parts of polyol E, 2 parts of polyol F, 17 parts of cyclopentane blowing agent, 1.3 parts of water, 1.5 parts of tetramethylhexamethylenediamine and 0.2 parts of pentamethyldiethylenetriamine as a reaction catalyst, Tris 0.6 parts of (3-dimethylaminopropylene) hexahydro-S-triazine and 2.2 parts of an organic silicone B-8461 as a foam stabilizer were blended. Further, 135 parts of a polynuclear diphenylmethane diisocyanate and a prepolymer-modified tolylene diisocyanate were foamed as isocyanates. The liquid temperature of the polyol and isocyanate at that time was adjusted to 25 ° C.

【0058】まず、ポリオールとイソシアネートを攪拌
し40℃に調整された600×400×75mmtのア
ルミ製モールド内に注入して、オーバーパックの115
%と125%のパック率を用いて、発泡成型品をモール
ドから5分後に脱型させた硬質ポリウレタンフォームの
膨れ量を測定した。
First, the polyol and isocyanate were stirred and poured into a 600 × 400 × 75 mmt aluminum mold adjusted to 40 ° C.
% And 125% of the pack ratio, the swelling amount of the rigid polyurethane foam from which the foam molded article was released after 5 minutes from the mold was measured.

【0059】その結果を表1に示す。表1から、脱型5
分後の膨れ量はパック率115%で2.4mm、パック
率125%で2.9mmと従来の断熱材に比べて低減で
きることが判る。
Table 1 shows the results. From Table 1, demold 5
It can be seen that the swelling amount after minutes is 2.4 mm at a pack rate of 115% and 2.9 mm at a pack rate of 125%, which can be reduced as compared with the conventional heat insulating material.

【0060】次に、実施例1と同様に冷蔵庫および冷凍
庫の箱体をウレタンフォームの発泡雇い治具にセット
後、ポリオールとイソシアネートの液温を25℃、治具
温度を40℃にして硬質ポリウレタンフォームを空隙部
分に発泡充填する。その際、注入容積は約200リット
ルの箱体でゼロパックを設定後、パック率115%で発
泡充填して断熱箱体を作製した。断熱箱体の底面中央部
分から断熱材フォームサンプルを採取して、コア層密
度、熱伝導率、圧縮強度、低温寸法変化率、高温寸法変
化率を評価した。さらに、断熱箱体の低温放置(−10
℃/48時間)試験を行い、外箱表鉄板の歪み試験前後
の歪み量の差および試験後の最大歪み量も評価した。
Next, after setting the boxes of the refrigerator and the freezer in the urethane foam foaming jig in the same manner as in Example 1, the liquid temperature of the polyol and isocyanate was set at 25.degree. The foam is foam-filled in the voids. At this time, a zero-pack was set in a box having an injection volume of about 200 liters, and then foam-filled at a pack rate of 115% to produce a heat-insulated box. A heat-insulating foam sample was taken from the center of the bottom of the heat-insulating box, and the core layer density, thermal conductivity, compressive strength, low-temperature dimensional change, and high-temperature dimensional change were evaluated. Furthermore, the heat insulation box is left at low temperature (−10
(° C./48 hours) test, and the difference in the amount of strain between the outer box surface iron plate before and after the strain test and the maximum amount of strain after the test were also evaluated.

【0061】これらの結果を表1に併せて示す。表1か
ら、コア層密度が31.8kg/m3と低密度で熱伝導
率が17.8mW/m・Kと低く、圧縮強度も0.14
MPa、低温寸法変化率が−1.3%、高温寸法変化率
が1.5%と小さくなることが判る。
The results are shown in Table 1. From Table 1, the core layer density is as low as 31.8 kg / m 3, the thermal conductivity is as low as 17.8 mW / m · K, and the compressive strength is 0.14.
It can be seen that the MPa, the low-temperature dimensional change rate is -1.3%, and the high-temperature dimensional change rate is as small as 1.5%.

【0062】さらに、断熱箱体の外箱表鉄板の歪み試験
前後の歪み量差は0.09mmで試験後の最大歪み量も
0.29mmと小さい値を示した。さらに、硬質ポリウ
レタンフォームの発泡充填を行った断熱箱体を形成した
冷蔵庫および冷凍庫に、冷凍サイクル部品(圧縮機/コ
ンデンサ/エバポレー)を組み込んで測定した結果、熱
漏洩量が3%低減して消費電力量も約1Kwh/月の省
エネ化が達成された。
Further, the difference in the amount of distortion between the outer box surface iron plate of the heat insulating box body before and after the strain test was 0.09 mm, and the maximum strain amount after the test was as small as 0.29 mm. Furthermore, as a result of incorporating a refrigeration cycle component (compressor / condenser / evaporator) into a refrigerator and a freezer having a heat-insulated box formed by foam-filling a rigid polyurethane foam, the amount of heat leakage was reduced by 3% and consumed. Energy consumption was reduced by about 1Kwh / month.

【0063】このことから、本実施例に係る硬質ポリウ
レタンフォームでは、充填する際の膨れ量が小さく、ま
た低密度であり、熱伝導率の低減、圧縮強度、寸法安定
性にも優れる硬質ポリウレタンフォームとなる。また、
本実施例に係る硬質ポリウレタンフォームを冷蔵庫の断
熱材として充填することによって、熱漏洩量が低減され
消費電力を低減できる。さらに断熱材の充填量が低減さ
れ冷蔵庫のコストを低減できる。また、低温で放置して
も冷蔵庫の歪み変形が小さくなり冷蔵庫の外観品質が優
れたものとなる。
From the above, the rigid polyurethane foam according to the present embodiment has a small amount of swelling at the time of filling and a low density, and has a low thermal conductivity, excellent compressive strength, and excellent dimensional stability. Becomes Also,
By filling the rigid polyurethane foam according to the present embodiment as a heat insulating material for a refrigerator, the amount of heat leakage can be reduced and the power consumption can be reduced. Further, the filling amount of the heat insulating material is reduced, and the cost of the refrigerator can be reduced. In addition, even if the refrigerator is left at a low temperature, distortion deformation of the refrigerator is reduced, and the appearance quality of the refrigerator is improved.

【0064】〔比較例2〕表1に示すポリオールB60
部とポリオールC10部およびポリオールD20部とポ
リオールE10部にシクロペンタン発泡剤を11部、水
1.4部および反応触媒としてテトラメチルヘキサメチ
レンジアミン1.2部とペンタメチルジエチレントリア
ミン0.5部、トリス(3−ジメチルアミノプロピレ
ン)ヘキサヒドロ−S−トリアジン0.6部、整泡剤と
して有機シリコーンのB−8462を1.8部配合し
た。また、イソシアネートとしてジフェニルメタンジイ
ソシアネート多核体およびプレポリマー変性トリレンジ
イソシアネートの混合物を137部用いて発泡させた。
その時のポリオールとイソシアネートの液温は25℃に
調整した。
Comparative Example 2 Polyol B60 shown in Table 1
Parts, 10 parts of polyol C, 20 parts of polyol D, and 10 parts of polyol E, 11 parts of cyclopentane blowing agent, 1.4 parts of water, 1.2 parts of tetramethylhexamethylenediamine and 0.5 part of pentamethyldiethylenetriamine as a reaction catalyst, and tris 0.6 parts of (3-dimethylaminopropylene) hexahydro-S-triazine and 1.8 parts of organic silicone B-8462 as a foam stabilizer were blended. In addition, 137 parts of a mixture of a polynuclear diphenylmethane diisocyanate and a prepolymer-modified tolylene diisocyanate was foamed as the isocyanate.
The liquid temperature of the polyol and isocyanate at that time was adjusted to 25 ° C.

【0065】まず、ポリオールとイソシアネートを攪拌
し40℃に調整された600×400×75mmtのア
ルミ製モールド内に注入して、オーバーパックの115
%と125%のパック率を用いて、発泡成型品をモール
ドから5分後に脱型させた硬質ポリウレタンフォームの
膨れ量を測定した。
First, a polyol and an isocyanate were stirred and poured into a 600 × 400 × 75 mmt aluminum mold adjusted to 40 ° C.
% And 125% of the pack ratio, the swelling amount of the rigid polyurethane foam from which the foam molded article was released after 5 minutes from the mold was measured.

【0066】その結果を表1に示す。表1から、脱型5
分後の膨れ量はパック率115%で4.1mm、パック
率125%で5.2mmと大きくなることが判る。
Table 1 shows the results. From Table 1, demold 5
It can be seen that the swelling amount after one minute increases to 4.1 mm at a pack ratio of 115% and to 5.2 mm at a pack ratio of 125%.

【0067】次に、実施例1と同様に冷蔵庫および冷凍
庫の外箱鉄板と内箱をウレタンフォームの発泡雇い治具
にセット後、ポリオールとイソシアネートの液温を25
℃、治具温度を40℃にして硬質ポリウレタンフォーム
を空隙部分に発泡充填する。その際、注入容積は約20
0リットルの箱体でゼロパックを設定後、パック率11
5%で発泡充填して冷蔵庫および冷凍庫の断熱箱体を作
製した。断熱箱体の底面中央部分から断熱材フォームサ
ンプルを採取して、コア層密度、熱伝導率、圧縮強度、
低温寸法変化率、高温寸法変化率を評価し、さらに断熱
箱体の低温放置(−10℃/48時間)試験を行い、外
箱表鉄板の歪み試験前後の歪み量の差および試験後の最
大歪み量も評価した。
Next, as in the first embodiment, the outer and iron boxes of the refrigerator and the freezer were set on a urethane foam foaming jig, and the liquid temperature of the polyol and isocyanate was lowered to 25%.
C. and a jig temperature of 40.degree. At this time, the injection volume is about 20
After setting the zero pack in a 0 liter box, the pack rate is 11
Insulation boxes for refrigerators and freezers were prepared by foam filling with 5%. Take a foam sample from the center of the bottom of the heat insulation box and measure the core layer density, thermal conductivity, compressive strength,
The low-temperature dimensional change rate and the high-temperature dimensional change rate were evaluated, and a low-temperature storage test (−10 ° C./48 hours) of the heat-insulating box was performed. The amount of distortion was also evaluated.

【0068】これらの結果を表1に併せて示す。表1か
ら、コア層密度が35.2kg/m3で熱伝導率が1
8.8mW/m・Kと高く、さらに圧縮強度も0.09
MPaと低く、低温寸法変化率が−2.3%、高温寸法
変化率が2.2%と変化が大きい値を示すことが判る。
The results are shown in Table 1. From Table 1, it can be seen that the core layer density is 35.2 kg / m 3 and the thermal conductivity is 1
As high as 8.8 mW / m · K, and the compressive strength is 0.09
It can be seen that the temperature change is as low as MPa, the low-temperature dimensional change rate is -2.3%, and the high-temperature dimensional change rate is 2.2%.

【0069】さらに、冷蔵庫および冷凍庫の断熱箱体の
低温放置試験を行った結果、外扉表鉄板の歪み試験前後
の歪み量差は0.16mmで試験後の最大歪み量も0.
56mmと大きくなり、断熱箱体の外扉鉄板に歪み変形
が発生した。
Further, as a result of performing a low-temperature storage test on the heat insulating boxes of the refrigerator and the freezer, the difference in the amount of distortion between the outer door surface iron plate before and after the distortion test was 0.16 mm, and the maximum distortion amount after the test was also 0.
It became as large as 56 mm, and distortion deformation occurred in the outer door iron plate of the heat insulating box.

【0070】〔実施例3〕表1に示すポリオールA30
部とポリオールB20部およびポリオールC20部とポ
リオールD10部とポリオールE20部にシクロペンタ
ン発泡剤を18部、水1.2部および反応触媒としてテ
トラメチルヘキサメチレンジアミン1.7部とペンタメ
チルジエチレントリアミン0.3部、トリス(3−ジメ
チルアミノプロピレン)ヘキサヒドロ−S−トリアジン
0.5部、整泡剤として有機シリコーンのBー8461
を2.2部配合した。また、イソシアネートとしてジフ
ェニルメタンジイソシアネート多核体とプレポリマ−変
性トリレンジイソシアネートを140部を用いて発泡さ
せた。その時のポリオールとイソシアネートの液温は2
0℃に調整した。まず、ポリオールとイソシアネートを
攪拌し45℃に調整された600×400×75mmt
のアルミ製モールド内に注入して、オーバーパックの1
15%と125%のパック率を用いて、発泡成型品をモ
ールドから5分後に脱型させた硬質ポリウレタンフォー
ムの膨れ量を測定した。
Example 3 Polyol A30 shown in Table 1
18 parts of cyclopentane blowing agent, 1.2 parts of water, 1.7 parts of tetramethylhexamethylenediamine and 0.1 part of pentamethyldiethylenetriamine as a reaction catalyst in 20 parts of polyol B, 20 parts of polyol C, 20 parts of polyol C, 10 parts of polyol E, and 20 parts of polyol E. 3 parts, 0.5 part of tris (3-dimethylaminopropylene) hexahydro-S-triazine, B-8461 of an organic silicone as a foam stabilizer
Was blended in 2.2 parts. Also, polynuclear diphenylmethane diisocyanate and 140 parts of a prepolymer-modified tolylene diisocyanate were foamed as isocyanates. The liquid temperature of the polyol and isocyanate at that time is 2
The temperature was adjusted to 0 ° C. First, a polyol and an isocyanate were stirred and adjusted to 45 ° C. at 600 × 400 × 75 mmt.
Into the aluminum mold of
Using the pack ratios of 15% and 125%, the swelling amount of the rigid polyurethane foam obtained by removing the foam molded product 5 minutes after the molding was measured.

【0071】その結果を表1に示す。表1から、脱型5
分後の膨れ量はパック率115%で2.4mm、パック
率125%で3.1mmと従来の断熱材に比べて低減で
きることが判る。
Table 1 shows the results. From Table 1, demold 5
It can be seen that the swelling amount after a minute can be reduced to 2.4 mm at a pack ratio of 115% and to 3.1 mm at a pack ratio of 125%, as compared with the conventional heat insulating material.

【0072】次に、実施例1と同様に冷蔵庫および冷凍
庫の箱体をウレタンフォームの発泡雇い治具にセット
後、ポリオールとイソシアネートの液温を20℃、治具
温度を45℃にして硬質ポリウレタンフォームを空隙部
分に発泡充填する。その際、注入容積は約200リット
ルの箱体でゼロパックを設定後、パック率110%で発
泡充填して断熱箱体を作製した。断熱箱体の底面中央部
分から断熱材フォームサンプルを採取して、コア層密
度、熱伝導率、圧縮強度、低温寸法変化率、高温寸法変
化率を評価した。さらに、断熱箱体の低温放置(−10
℃/48時間)試験を行い、外箱表鉄板の歪み試験前後
の歪み量の差および試験後の最大歪み量も評価した。
Next, the refrigerator and freezer boxes were set in a urethane foam foaming jig in the same manner as in Example 1, and the temperature of the polyol and isocyanate was set to 20 ° C. and the jig temperature was set to 45 ° C. The foam is foam-filled in the voids. At that time, a zero-pack was set in a box having an injection volume of about 200 liters, and then foam-filled at a pack ratio of 110% to produce a heat-insulated box. A heat-insulating foam sample was taken from the center of the bottom of the heat-insulating box, and the core layer density, thermal conductivity, compressive strength, low-temperature dimensional change, and high-temperature dimensional change were evaluated. Furthermore, the heat insulation box is left at low temperature (−10
(° C./48 hours) test, and the difference in the amount of strain between the outer box surface iron plate before and after the strain test and the maximum amount of strain after the test were also evaluated.

【0073】これらの結果を表1に併せて示す。表1か
ら、コア層密度が32.5kg/m3と低密度で熱伝導
率が17.5mW/m・Kと低く、圧縮強度も0.13
MPaと高く、低温寸法変化率が−1.1%、高温寸法
変化率が1.4%と小さい値を示すことが判る。
The results are shown in Table 1. From Table 1, the core layer density is as low as 32.5 kg / m 3, the thermal conductivity is as low as 17.5 mW / m · K, and the compressive strength is 0.13.
It can be seen that the low-temperature dimensional change rate is as low as -1.1% and the high-temperature dimensional change rate is as low as 1.4%.

【0074】さらに、断熱箱体の外箱表鉄板の歪み試験
前後の歪み量差は0.07mmで試験後の最大歪み量も
0.27mmと小さい値を示した。さらに、硬質ポリウ
レタンフォームの発泡充填を行った断熱箱体を形成した
冷蔵庫および冷凍庫に、冷凍サイクル部品(圧縮機/コ
ンデンサ/エバポレー)を組み込んで測定した結果、熱
漏洩量が3.5%低減して消費電力量も約1Kwh/月
の省エネ化が達成された。
Further, the difference between the strain amount of the outer case surface iron plate of the heat insulating box body before and after the strain test was 0.07 mm, and the maximum strain amount after the test was as small as 0.27 mm. Furthermore, as a result of incorporating a refrigeration cycle component (compressor / condenser / evaporator) into a refrigerator and a freezer having a heat insulating box formed by foam filling of a rigid polyurethane foam, the amount of heat leakage was reduced by 3.5%. As a result, energy consumption was reduced by about 1 kWh / month.

【0075】このことから、本実施例に係る硬質ポリウ
レタンフォームでは、充填する際の膨れ量が小さく、ま
た低密度であり、熱伝導率の低減、圧縮強度、寸法安定
性にも優れる硬質ポリウレタンフォームとなる。また、
本実施例に係る硬質ポリウレタンフォームを冷蔵庫の断
熱材として充填することによって、熱漏洩量が低減され
消費電力を低減できる。さらに断熱材の充填量が低減さ
れ冷蔵庫のコストを低減できる。また、低温で放置して
も冷蔵庫の歪み変形が小さくなり冷蔵庫の外観品質が優
れたものとなる。
From the above, the rigid polyurethane foam according to the present embodiment has a small amount of swelling at the time of filling, has a low density, and is excellent in reduction of thermal conductivity, compressive strength and dimensional stability. Becomes Also,
By filling the rigid polyurethane foam according to the present embodiment as a heat insulating material for a refrigerator, the amount of heat leakage can be reduced and the power consumption can be reduced. Further, the filling amount of the heat insulating material is reduced, and the cost of the refrigerator can be reduced. In addition, even if the refrigerator is left at a low temperature, distortion deformation of the refrigerator is reduced, and the appearance quality of the refrigerator is improved.

【0076】〔実施例4〕表1に示すポリオールA45
部とポリオールB15部およびポリオールC10部とポ
リオールD7部ポリオールE20部とポリオールF3部
にシクロペンタン発泡剤を16部、水1.5部および反
応触媒としてテトラメチルヘキサメチレンジアミン1.
5部とペンタメチルジエチレントリアミン0.3部、ト
リス(3−ジメチルアミノプロピレン)ヘキサヒドロー
S−トリアジン0.5部、整泡剤として有機シリコーン
のB−8461を2.2部配合した。また、イソシアネ
ートとしてジフェニルメタンジイソシアネート多核体と
プレポリマ−変性トリレンジイソシアネートを132部
を用いて発泡させた。その時のポリオールとイソシアネ
ートの液温は20℃に調整した。
Example 4 Polyol A45 shown in Table 1
Parts, 15 parts of polyol B, 10 parts of polyol C, 7 parts of polyol D, 20 parts of polyol E and 3 parts of polyol F, 16 parts of cyclopentane blowing agent, 1.5 parts of water, and tetramethylhexamethylenediamine as a reaction catalyst.
5 parts, pentamethyldiethylenetriamine 0.3 part, tris (3-dimethylaminopropylene) hexahydro-S-triazine 0.5 part, and 2.2 parts of organosilicone B-8461 as a foam stabilizer were blended. Further, 132 parts of a polynuclear diphenylmethane diisocyanate and a prepolymer-modified tolylene diisocyanate were foamed as isocyanates. The liquid temperature of the polyol and isocyanate at that time was adjusted to 20 ° C.

【0077】まず、ポリオールとイソシアネートを攪拌
し40℃に調整された600×400×75mmtのア
ルミ製モールド内に注入して、オーバーパックの115
%と125%のパック率を用いて、発泡成型品をモール
ドから5分後に脱型させた硬質ポリウレタンフォームの
膨れ量を測定した。
First, the polyol and the isocyanate were stirred and poured into a 600 × 400 × 75 mmt aluminum mold adjusted to 40 ° C.
% And 125% of the pack ratio, the swelling amount of the rigid polyurethane foam from which the foam molded article was released after 5 minutes from the mold was measured.

【0078】その結果を表1に示す。表1から、脱型5
分後の膨れ量はパック率115%で2.6mm、パック
率125%で3.2mmと従来の断熱材に比べて低減で
きることがわかった。
Table 1 shows the results. From Table 1, demold 5
It was found that the swelling amount after minutes was 2.6 mm at a pack rate of 115% and 3.2 mm at a pack rate of 125%, which was smaller than that of a conventional heat insulating material.

【0079】次に、実施例1と同様に冷蔵庫および冷凍
庫の箱体をウレタンフォームの発泡雇い治具にセット
後、ポリオールとイソシアネートの液温を20℃、治具
温度を40℃にして硬質ポリウレタンフォームを空隙部
分に発泡充填する。その際、注入容積は約200リット
ルの箱体でゼロパックを設定後、パック率110%で発
泡充填して断熱箱体を作製した。断熱箱体の底面中央部
分から断熱材フォームサンプルを採取して、コア層密
度、熱伝導率、圧縮強度、低温寸法変化率、高温寸法変
化率を評価した。さらに、断熱箱体の低温放置(−10
℃/48時間)試験を行い、外箱表鉄板の歪み試験前後
の歪み量の差および試験後の最大歪み量も評価した。
Next, after setting the boxes of the refrigerator and the freezer in the urethane foam foaming jig in the same manner as in Example 1, the liquid temperature of the polyol and isocyanate was set to 20 ° C., and the jig temperature was set to 40 ° C. The foam is foam-filled in the voids. At that time, a zero-pack was set in a box having an injection volume of about 200 liters, and then foam-filled at a pack ratio of 110% to produce a heat-insulated box. A heat-insulating foam sample was taken from the center of the bottom of the heat-insulating box, and the core layer density, thermal conductivity, compressive strength, low-temperature dimensional change, and high-temperature dimensional change were evaluated. Furthermore, the heat insulation box is left at low temperature (−10
(° C./48 hours) test, and the difference in the amount of strain between the outer box surface iron plate before and after the strain test and the maximum amount of strain after the test were also evaluated.

【0080】これらの結果を表1に併せて示す。表1か
ら、コア層密度が30.5kg/m3と低密度で熱伝導
率が17.9mW/m・Kと低く、圧縮強度も0.16
MPaと高く、低温寸法変化率が−0.9%、高温寸法
変化率が1.6%と小さい値を示した。
The results are shown in Table 1. From Table 1, the core layer density is as low as 30.5 kg / m3, the thermal conductivity is as low as 17.9 mW / mK, and the compressive strength is also 0.16.
MPa, the low-temperature dimensional change rate was -0.9%, and the high-temperature dimensional change rate was as small as 1.6%.

【0081】さらに、断熱箱体の外箱表鉄板の歪み試験
前後の歪み量差は0.08mmで試験後の最大歪み量も
0.29mmと小さい値を示した。さらに、硬質ポリウ
レタンフォームの発泡充填を行った断熱箱体を形成した
冷蔵庫および冷凍庫に、冷凍サイクル部品(圧縮機/コ
ンデンサ/エバポレー)を組み込んで測定した結果、熱
漏洩量が3%低減して消費電力量も約1Kwh/月の省
エネ化が達成された。
Further, the difference in the amount of strain between the outer iron plate and the outer iron plate of the heat insulating box before and after the strain test was 0.08 mm, and the maximum strain after the test was a small value of 0.29 mm. Furthermore, as a result of incorporating a refrigeration cycle component (compressor / condenser / evaporator) into a refrigerator and a freezer having a heat-insulated box formed by foam-filling a rigid polyurethane foam, the amount of heat leakage was reduced by 3% and consumed. Energy consumption was reduced by about 1Kwh / month.

【0082】このことから、本実施例に係る硬質ポリウ
レタンフォームでは、充填する際の膨れ量が小さく、ま
た低密度であり、熱伝導率の低減、圧縮強度、寸法安定
性にも優れる硬質ポリウレタンフォームとなる。また、
本実施例に係る硬質ポリウレタンフォームを冷蔵庫の断
熱材として充填することによって、熱漏洩量が低減され
消費電力を低減できる。さらに断熱材の充填量が低減さ
れ冷蔵庫のコストを低減できる。また、低温で放置して
も冷蔵庫の歪み変形が小さくなり冷蔵庫の外観品質が優
れたものとなる。
From the above, the rigid polyurethane foam according to the present embodiment has a small amount of swelling at the time of filling, has a low density, and has excellent heat conductivity reduction, compressive strength and dimensional stability. Becomes Also,
By filling the rigid polyurethane foam according to the present embodiment as a heat insulating material for a refrigerator, the amount of heat leakage can be reduced and the power consumption can be reduced. Further, the filling amount of the heat insulating material is reduced, and the cost of the refrigerator can be reduced. In addition, even if the refrigerator is left at a low temperature, distortion deformation of the refrigerator is reduced, and the appearance quality of the refrigerator is improved.

【0083】〔比較例3〕表1に示すプロピレンオキサ
イドで付加したm−トリレンジアミン系ポリエーテルポ
リオールA20部とポリオールB30部およびポリオー
ルC10部とポリオールD10部とポリオールE20部
とポリオールF10部にシクロペンタン発泡剤を13
部、水1.1部および反応触媒としてテトラメチルヘキ
サメチレンジアミン1.8部とペンタメチルジエチレン
トリアミン0.3部、トリス(3−ジメチルアミノプロ
ピレン)ヘキサヒドロ−S−トリアジン0.3部、整泡
剤として有機シリコーンのB−8462を1.8部配合
した。また、イソシアネートとしてジフェニルメタンジ
イソシアネート多核体およびプレポリマ−変性トリレン
ジイソシアネートを135部を用いて発泡させた。その
時のポリオールとイソシアネートの液温は20℃に調整
した。
Comparative Example 3 20 parts of m-tolylenediamine-based polyether polyol A, 30 parts of polyol B, 10 parts of polyol C, 10 parts of polyol D, 20 parts of polyol E and 10 parts of polyol F added with propylene oxide shown in Table 1 13 pentane blowing agent
Parts, water 1.1 parts, tetramethylhexamethylenediamine 1.8 parts as reaction catalyst and pentamethyldiethylenetriamine 0.3 parts, tris (3-dimethylaminopropylene) hexahydro-S-triazine 0.3 parts, foam stabilizer 1.8 parts of organic silicone B-8462 was blended. Further, 135 parts of polynuclear diphenylmethane diisocyanate and a prepolymer-modified tolylene diisocyanate were foamed as isocyanates. The liquid temperature of the polyol and isocyanate at that time was adjusted to 20 ° C.

【0084】まず、ポリオールとイソシアネートを攪拌
し45℃に調整された600×400×75mmtのア
ルミ製モールド内に注入して、オーバーパックの115
%と125%のパック率を用いて、発泡成型品をモール
ドから5分後に脱型させた硬質ポリウレタンフォームの
膨れ量を測定した。
First, the polyol and the isocyanate were stirred and poured into a 600 × 400 × 75 mmt aluminum mold adjusted to 45 ° C.
% And 125% of the pack ratio, the swelling amount of the rigid polyurethane foam from which the foam molded article was released after 5 minutes from the mold was measured.

【0085】その結果を表1に示す。表1から、脱型5
分後の膨れ量はパック率115%で4.5mm、パック
率125%で5.5mmと大きくなることが判る。
Table 1 shows the results. From Table 1, demold 5
It can be seen that the swelling amount after one minute increases to 4.5 mm at a pack ratio of 115% and 5.5 mm at a pack ratio of 125%.

【0086】次に、実施例1と同様に冷蔵庫および冷凍
庫の外箱鉄板と内箱をウレタンフォームの発泡雇い治具
にセット後、ポリオールとイソシアネートの液温を20
℃、治具温度を45℃にして硬質ポリウレタンフォーム
を空隙部分に発泡充填する。その際、注入容積は約20
0リットルの箱体でゼロパックを設定後、パック率11
5%で発泡充填して冷蔵庫および冷凍庫の断熱箱体を作
製した。断熱箱体の底面中央部分から断熱材フォームサ
ンプルを採取して、コア層密度、熱伝導率、圧縮強度、
低温寸法変化率、高温寸法変化率を評価し、さらに断熱
箱体の低温放置(−10℃/48時間)試験を行い、外
箱表鉄板の歪み試験前後の歪み量の差および試験後の最
大歪み量も評価した。
Next, as in the case of Example 1, after the outer box iron plate and inner box of the refrigerator and the freezer were set on the urethane foam foaming jig, the liquid temperature of the polyol and isocyanate was lowered to 20.
C. and the jig temperature are set to 45.degree. At this time, the injection volume is about 20
After setting the zero pack in a 0 liter box, the pack rate is 11
Insulation boxes for refrigerators and freezers were prepared by foam filling with 5%. Take a foam sample from the center of the bottom of the heat insulation box and measure the core layer density, thermal conductivity, compressive strength,
The low-temperature dimensional change rate and the high-temperature dimensional change rate were evaluated, and a low-temperature storage test (−10 ° C./48 hours) of the heat-insulating box was performed. The amount of distortion was also evaluated.

【0087】これらの結果を表1に併せて示す。表1か
ら、コア層密度が35.8kg/m3で熱伝導率が1
8.3mW/m・Kと高く、さらに圧縮強度も0.12
MPa、低温寸法変化率が−1.9%、高温寸法変化率
が2.1%と変化が大きい値を示すことが判る。
The results are shown in Table 1. From Table 1, the core layer density is 35.8 kg / m 3 and the thermal conductivity is 1
8.3mW / m · K, as high as 0.12
It can be seen that MPa, the low-temperature dimensional change rate is -1.9%, and the high-temperature dimensional change rate is 2.1%, which are large values.

【0088】さらに、冷蔵庫および冷凍庫の断熱箱体の
低温放置試験を行った結果、外扉表鉄板の歪み試験前後
の歪み量差は0.15mmで試験後の最大歪み量も0.
63mmと大きくなり、断熱箱体の外扉鉄板に歪み変形
が発生した。
Further, as a result of performing a low-temperature storage test of the heat insulating boxes of the refrigerator and the freezer, the difference in the amount of distortion between the outer door and front iron plate before and after the distortion test was 0.15 mm, and the maximum distortion after the test was also 0.
As a result, the outer door iron plate of the heat-insulating box was deformed and deformed.

【0089】〔実施例5〕表1に示すポリオールA30
部とポリオールB20部およびポリオールC20部とポ
リオールD10部とポリオールE20部にシクロペンタ
ン発泡剤を14部、水1.6部および反応触媒としてテ
トラメチルヘキサメチレンジアミン1.5部とペンタメ
チルジエチレントリアミン0.3部、トリス(3−ジメ
チルアミノプロピレン)ヘキサヒドロ−S−トリアジン
0.5部、整泡剤として有機シリコーンのB−8461
を2.2部配合した。また、イソシアネートとしてジフ
ェニルメタンジイソシアネート多核体とプレポリマ−変
性トリレンジイソシアネートを140部を用いて発泡さ
せた。その時のポリオールとイソシアネートの液温は2
0℃に調整した。
Example 5 Polyol A30 shown in Table 1
Parts, 20 parts of polyol B, 20 parts of polyol C, 10 parts of polyol D, and 20 parts of polyol E, 14 parts of cyclopentane blowing agent, 1.6 parts of water, 1.5 parts of tetramethylhexamethylenediamine and 0.1 part of pentamethyldiethylenetriamine as a reaction catalyst. 3 parts, 0.5 part of tris (3-dimethylaminopropylene) hexahydro-S-triazine, B-8461 of an organic silicone as a foam stabilizer
Was blended in 2.2 parts. Also, polynuclear diphenylmethane diisocyanate and 140 parts of a prepolymer-modified tolylene diisocyanate were foamed as isocyanates. The liquid temperature of the polyol and isocyanate at that time is 2
The temperature was adjusted to 0 ° C.

【0090】まず、ポリオールとイソシアネートを攪拌
し40℃に調整された600×400×75mmtのア
ルミ製モールド内に注入して、オーバーパックの115
%と125%のパック率を用いて、発泡成型品をモール
ドから5分後に脱型させた硬質ポリウレタンフォームの
膨れ量を測定した。
First, the polyol and the isocyanate were stirred and poured into a 600 × 400 × 75 mmt aluminum mold adjusted to 40 ° C.
% And 125% of the pack ratio, the swelling amount of the rigid polyurethane foam from which the foam molded article was released after 5 minutes from the mold was measured.

【0091】その結果を表1に示す。表1から、脱型5
分後の膨れ量はパック率115%で2.4mm、パック
率125%で2.9mmと従来の断熱材に比べて低減で
きることがわかった。
Table 1 shows the results. From Table 1, demold 5
It was found that the swelling amount after min was 2.4 mm at a pack ratio of 115% and 2.9 mm at a pack ratio of 125%, which was smaller than that of a conventional heat insulating material.

【0092】次に、実施例1と同様に冷蔵庫および冷凍
庫の箱体をウレタンフォ−ムの発泡雇い治具にセット
後、ポリオ−ルとイソシアネ−トの液温を20℃、治具
温度を40℃にして硬質ポリウレタンフォ−ムを空隙部
分に発泡充填する。その際、注入容積は約200リット
ルの箱体でゼロパックを設定後、パック率110%で発
泡充填して断熱箱体を作製した。断熱箱体の底面中央部
分から断熱材フォ−ムサンプルを採取して、コア層密
度、熱伝導率、圧縮強度、低温寸法変化率、高温寸法変
化率を評価した。
Next, after setting the boxes of the refrigerator and the freezer in the foaming jig of urethane foam in the same manner as in Example 1, the liquid temperature of the polyol and isocyanate was set at 20 ° C., and the jig temperature was set. At 40 ° C., the rigid polyurethane foam is foam-filled in the voids. At that time, a zero-pack was set in a box having an injection volume of about 200 liters, and then foam-filled at a pack ratio of 110% to produce a heat-insulated box. A heat insulating foam sample was taken from the center of the bottom of the heat insulating box, and the core layer density, thermal conductivity, compressive strength, low-temperature dimensional change, and high-temperature dimensional change were evaluated.

【0093】さらに、断熱箱体の低温放置(−10℃/
48時間)試験を行い、外箱表鉄板の歪み試験前後の歪
み量の差および試験後の最大歪み量も評価した。
Further, the heat insulating box was left at low temperature (−10 ° C. /
(48 hours) A test was performed, and the difference in the amount of distortion between before and after the distortion test of the outer steel plate and the maximum amount of distortion after the test were also evaluated.

【0094】これらの結果を表1に併せて示す。表1か
ら、コア層密度が32kg/m3と低密度で熱伝導率が
18mW/m・Kと低く、圧縮強度も0.12MPaと
高く、低温寸法変化率が−0.8%、高温寸法変化率が
1.5%と小さい値を示した。さらに、断熱箱体の外箱
表鉄板の歪み試験前後の歪み量差は0.09mmで試験
後の最大歪み量も0.26mmと小さい値を示した。
The results are shown in Table 1. From Table 1, the core layer density is as low as 32 kg / m 3, the thermal conductivity is as low as 18 mW / m · K, the compressive strength is as high as 0.12 MPa, the low-temperature dimensional change rate is -0.8%, and the high-temperature dimensional change. The ratio showed a small value of 1.5%. Further, the difference in the amount of distortion between the outer box surface iron plate before and after the distortion test of the outer insulation box body was 0.09 mm, and the maximum distortion amount after the test was a small value of 0.26 mm.

【0095】さらに、硬質ポリウレタンフォ−ムの発泡
充填を行った断熱箱体を形成した冷蔵庫および冷凍庫
に、冷凍サイクル部品(圧縮機/コンデンサ/エバポレ
−)を組み込んで測定した結果、熱漏洩量が4%低減し
て消費電力量も約1Kwh/月の省エネ化が達成され
た。
Further, a refrigerator and a freezer in which a heat insulating box was formed by foam-filling a rigid polyurethane foam and a refrigeration cycle component (compressor / condenser / evaporator) was incorporated and measured. The energy consumption was reduced by 4% and the power consumption was reduced by about 1 kWh / month.

【0096】このことから、本実施例に係る硬質ポリウ
レタンフォームでは、充填する際の膨れ量が小さく、ま
た低密度であり、熱伝導率の低減、圧縮強度、寸法安定
性にも優れる硬質ポリウレタンフォームとなる。また、
本実施例に係る硬質ポリウレタンフォームを冷蔵庫の断
熱材として充填することによって、熱漏洩量が低減され
消費電力を低減できる。さらに断熱材の充填量が低減さ
れ冷蔵庫のコストを低減できる。また、低温で放置して
も冷蔵庫の歪み変形が小さくなり冷蔵庫の外観品質が優
れたものとなる。
From the above, the rigid polyurethane foam according to the present embodiment has a small amount of swelling at the time of filling, has a low density, and is excellent in reduced heat conductivity, compressive strength and dimensional stability. Becomes Also,
By filling the rigid polyurethane foam according to the present embodiment as a heat insulating material for a refrigerator, the amount of heat leakage can be reduced and the power consumption can be reduced. Further, the filling amount of the heat insulating material is reduced, and the cost of the refrigerator can be reduced. In addition, even if the refrigerator is left at a low temperature, distortion deformation of the refrigerator is reduced, and the appearance quality of the refrigerator is improved.

【0097】〔比較例4〕表1に示すプロピレンオキサ
イドで付加したm−トリレンジアミン系ポリエ−テルポ
リオ−ルA25部とポリオ−ルB35部およびポリオ−
ルC20部とポリオ−ルD10部とポリオ−ルF5部に
シクロペンタン発泡剤を14部、水1.0部および反応
触媒としてテトラメチルヘキサメチレンジアミン1.2
部とペンタメチルジエチレントリアミン0.5部、トリ
ス(3−ジメチルアミノプロピレン)ヘキサヒドロ−S
−トリアジン0.5部、整泡剤として有機シリコ−ンの
B−8462を1.8部配合した。また、イソシアネ−
トとしてジフェニルメタンジイソシアネ−ト多核体とプ
レポリマ−変性トリレンジイソシアネ−トを140部を
用いて発泡させた。その時のポリオ−ルとイソシアネ−
トの液温は20℃に調整した。
Comparative Example 4 25 parts of m-tolylenediamine polyetherpolyol A and 35 parts of polyol B added with propylene oxide shown in Table 1 and 35 parts of polyol
14 parts of cyclopentane blowing agent, 1.0 part of water and 1.2 parts of tetramethylhexamethylenediamine as a reaction catalyst were added to 20 parts of C, 10 parts of D and 5 parts of F.
Part and pentamethyldiethylenetriamine 0.5 part, tris (3-dimethylaminopropylene) hexahydro-S
-0.5 part of triazine and 1.8 parts of organic silicone B-8462 as a foam stabilizer were blended. Also, isocyanate
The polynuclear body of diphenylmethane diisocyanate and the prepolymer-modified tolylene diisocyanate were foamed using 140 parts. Polyol and isocyanate at that time
The liquid temperature of the sample was adjusted to 20 ° C.

【0098】まず、ポリオ−ルとイソシアネ−トを攪拌
し40℃に調整された600×400×75mmtのア
ルミ製モ−ルド内に注入して、オ−バ−パックの115
%と125%のパック率を用いて、発泡成型品をモ−ル
ドから5分後に脱型させた硬質ポリウレタンフォ−ムの
膨れ量を測定した。
First, the polyol and isocyanate were stirred and poured into an aluminum mold of 600 × 400 × 75 mmt adjusted to 40 ° C.
% And 125% of the packing ratio, the swelling amount of the rigid polyurethane foam from which the foam molded article was released after 5 minutes from the molding was measured.

【0099】その結果を表1に示す。表1から、脱型5
分後の膨れ量はパック率115%で4.8mm、パック
率125%で5.7mmと大きくなることが判る。
Table 1 shows the results. From Table 1, demold 5
It can be seen that the swelling amount after one minute increases to 4.8 mm at a pack ratio of 115% and to 5.7 mm at a pack ratio of 125%.

【0100】次に、実施例1と同様に冷蔵庫および冷凍
庫の外箱鉄板と内箱をウレタンフォ−ムの発泡雇い治具
にセット後、ポリオ−ルとイソシアネ−トの液温を20
℃、治具温度を40℃にして硬質ポリウレタンフォ−ム
を空隙部分に発泡充填する。その際、注入容積は約20
0リットルの箱体でゼロパックを設定後、パック率11
0%で発泡充填して冷蔵庫および冷凍庫の断熱箱体を作
製した。断熱箱体の底面中央部分から断熱材フォ−ムサ
ンプルを採取して、コア層密度、熱伝導率、圧縮強度、
低温寸法変化率、高温寸法変化率を評価し、さらに断熱
箱体の低温放置(−10℃/48時間)試験を行い、外
箱表鉄板の歪み試験前後の歪み量の差および試験後の最
大歪み量も評価した。
Next, as in the first embodiment, after the outer box iron plate and inner box of the refrigerator and the freezer were set on the urethane foam foaming jig, the liquid temperature of the polyol and the isocyanate was set at 20.
C. and the jig temperature are set to 40.degree. C., and the rigid polyurethane foam is foam-filled in the voids. At this time, the injection volume is about 20
After setting the zero pack in a 0 liter box, the pack rate is 11
The foam was filled with 0% to produce a heat insulating box for a refrigerator and a freezer. A heat insulating foam sample was taken from the center of the bottom of the heat insulating box, and the core layer density, thermal conductivity, compressive strength,
The low-temperature dimensional change rate and the high-temperature dimensional change rate were evaluated, and a low-temperature storage test (−10 ° C./48 hours) of the heat-insulating box was performed. The amount of distortion was also evaluated.

【0101】これらの結果を表1に併せて示す。表1か
ら、コア層密度が35.5kg/m3で熱伝導率が1
8.4mW/m・Kと高く、さらに圧縮強度も0.11
MPaと低く、低温寸法変化率が−1.8%、高温寸法
変化率が1.9%と変化が大きい値を示す。
The results are shown in Table 1. From Table 1, the core layer density is 35.5 kg / m3 and the thermal conductivity is 1
As high as 8.4 mW / mK, the compressive strength is 0.11
It has a low value of MPa, a low-temperature dimensional change rate of -1.8%, and a high-temperature dimensional change rate of 1.9%.

【0102】さらに、冷蔵庫および冷凍庫の断熱箱体の
低温放置試験を行った結果、外扉表鉄板の歪み試験前後
の歪み量差は0.19mmで試験後の最大歪み量も0.
58mmと大きくなり、断熱箱体の外扉鉄板に歪み変形
が発生した。
Further, as a result of performing a low-temperature storage test on the heat insulating boxes of the refrigerator and the freezer, the difference in the amount of distortion between the outer door surface iron plate before and after the distortion test was 0.19 mm, and the maximum distortion amount after the test was 0.19 mm.
As a result, the outer door iron plate of the heat-insulating box was deformed and deformed.

【0103】〔実施例6〕表1に示すポリオ−ルA40
部とポリオ−ルB23部およびポリオ−ルC15部とポ
リオ−ルD5部とポリオ−ルE15部とポリオ−ルF2
部にシクロペンタン発泡剤を15部、水1.4部および
反応触媒としてテトラメチルヘキサメチレンジアミン
1.5部とペンタメチルジエチレントリアミン0.2
部、トリス(3−ジメチルアミノプロピレン)ヘキサヒ
ドロ−S−トリアジン0.4部、整泡剤として有機シリ
コ−ンのB−8461を2.2部配合した。また、イソ
シアネ−トとしてジフェニルメタンジイソシアネ−ト多
核体とプレポリマ−変性トリレンジイソシアネ−トを1
35部を用いて発泡させた。その時のポリオ−ルとイソ
シアネ−トの液温は20℃に調整した。
Example 6 Polyol A40 shown in Table 1
Part, Polyol B23 part, Polyol C15 part, Polyol D5 part, Polyol E15 part and Polyol F2
15 parts of cyclopentane blowing agent, 1.4 parts of water, 1.5 parts of tetramethylhexamethylenediamine and 0.2 parts of pentamethyldiethylenetriamine as a reaction catalyst.
Parts, tris (3-dimethylaminopropylene) hexahydro-S-triazine, 0.4 part, and 2.2 parts of an organic silicone, B-8461, as a foam stabilizer. Further, as the isocyanate, polynuclear diphenylmethane diisocyanate and a prepolymer-modified tolylene diisocyanate may be used.
It foamed using 35 parts. At that time, the liquid temperature of the polyol and the isocyanate was adjusted to 20 ° C.

【0104】まず、ポリオ−ルとイソシアネ−トを攪拌
し45℃に調整された600×400×75mmtのア
ルミ製モ−ルド内に注入して、オ−バ−パックの115
%と125%のパック率を用いて、発泡成型品をモ−ル
ドから5分後に脱型させた硬質ポリウレタンフォ−ムの
膨れ量を測定した。
First, the polyol and the isocyanate were stirred and poured into an aluminum mold of 600 × 400 × 75 mmt adjusted to 45 ° C.
% And 125% of the packing ratio, the swelling amount of the rigid polyurethane foam from which the foam molded article was released after 5 minutes from the molding was measured.

【0105】その結果を表1に示す。表1から、脱型5
分後の膨れ量はパック率115%で2.6mm、パック
率125%で3.1mmと従来の断熱材に比べて低減で
きることが判る。
Table 1 shows the results. From Table 1, demold 5
It can be seen that the swelling amount after minutes can be reduced to 2.6 mm at a pack rate of 115% and 3.1 mm at a pack rate of 125%, as compared with the conventional heat insulating material.

【0106】次に、実施例1と同様に冷蔵庫および冷凍
庫の箱体をウレタンフォ−ムの発泡雇い治具にセット
後、ポリオ−ルとイソシアネ−トの液温を20℃、治具
温度を45℃にして硬質ポリウレタンフォ−ムを空隙部
分に発泡充填する。その際、注入容積は約200リット
ルの箱体でゼロパックを設定後、パック率115%で発
泡充填して断熱箱体を作製した。断熱箱体の底面中央部
分から断熱材フォ−ムサンプルを採取して、コア層密
度、熱伝導率、圧縮強度、低温寸法変化率、高温寸法変
化率を評価した。さらに、断熱箱体の低温放置(−10
℃/48時間)試験を行い、外箱表鉄板の歪み試験前後
の歪み量の差および試験後の最大歪み量も評価した。
Next, after setting the boxes of the refrigerator and the freezer in the urethane foam foaming jig in the same manner as in the first embodiment, the liquid temperature of the polyol and isocyanate was set at 20 ° C., and the jig temperature was set. At 45 ° C., the rigid polyurethane foam is foam-filled in the voids. At this time, a zero-pack was set in a box having an injection volume of about 200 liters, and then foam-filled at a pack rate of 115% to produce a heat-insulated box. A heat insulating foam sample was taken from the center of the bottom of the heat insulating box, and the core layer density, thermal conductivity, compressive strength, low-temperature dimensional change, and high-temperature dimensional change were evaluated. Furthermore, the heat insulation box is left at low temperature (−10
(° C./48 hours) test, and the difference in the amount of strain between the outer box surface iron plate before and after the strain test and the maximum amount of strain after the test were also evaluated.

【0107】これらの結果を表1に併せて示す。表1か
ら、コア層密度が31.5kg/m3と低密度で熱伝導
率が17.9mW/m・Kと低く、圧縮強度も0.15
MPaと高く、低温寸法変化率が−1.2%、高温寸法
変化率が1.3%と小さい値を示した。さらに、断熱箱
体の外箱表鉄板の歪み試験前後の歪み量差は0.08m
mで試験後の最大歪み量も0.27mmと小さい値を示
した。
The results are shown in Table 1. From Table 1, the core layer density is as low as 31.5 kg / m 3, the thermal conductivity is as low as 17.9 mW / m · K, and the compressive strength is 0.15.
MPa, the low-temperature dimensional change rate was -1.2%, and the high-temperature dimensional change rate was as small as 1.3%. In addition, the difference in the amount of distortion between the outer box surface iron plate before and after the distortion test of the heat insulating box body was 0.08 m.
m, the maximum strain after the test also showed a small value of 0.27 mm.

【0108】さらに、硬質ポリウレタンフォ−ムの発泡
充填を行った断熱箱体を形成した冷蔵庫および冷凍庫
に、冷凍サイクル部品(圧縮機/コンデンサ/エバポレ
−)を組み込んで測定した結果、熱漏洩量が3%低減し
て消費電力量も約1Kwh/月の省エネ化が達成され
た。
Further, as a result of incorporating a refrigeration cycle component (compressor / condenser / evaporator) into a refrigerator and a freezer having a heat-insulated box formed by foam-filling a rigid polyurethane foam, the amount of heat leakage was found to be small. The energy consumption was reduced by 3% and the power consumption was reduced by about 1 kWh / month.

【0109】このことから、本実施例に係る硬質ポリウ
レタンフォームでは、充填する際の膨れ量が小さく、ま
た低密度であり、熱伝導率の低減、圧縮強度、寸法安定
性にも優れる硬質ポリウレタンフォームとなる。また、
本実施例に係る硬質ポリウレタンフォームを冷蔵庫の断
熱材として充填することによって、熱漏洩量が低減され
消費電力を低減できる。さらに断熱材の充填量が低減さ
れ冷蔵庫のコストを低減できる。また、低温で放置して
も冷蔵庫の歪み変形が小さくなり冷蔵庫の外観品質が優
れたものとなる。
From the above, the rigid polyurethane foam according to the present embodiment has a small swelling amount at the time of filling and a low density, and is excellent in reduced thermal conductivity, compressive strength and dimensional stability. Becomes Also,
By filling the rigid polyurethane foam according to the present embodiment as a heat insulating material for a refrigerator, the amount of heat leakage can be reduced and the power consumption can be reduced. Further, the filling amount of the heat insulating material is reduced, and the cost of the refrigerator can be reduced. In addition, even if the refrigerator is left at a low temperature, distortion deformation of the refrigerator is reduced, and the appearance quality of the refrigerator is improved.

【0110】〔実施例7〕表1に示すポリオ−ルA40
部とポリオ−ルB20部およびポリオ−ルC20部とポ
リオ−ルD10部とポリオ−ルE10部にシクロペンタ
ン発泡剤を16部、水1.5部および反応触媒としてテ
トラメチルヘキサメチレンジアミン1.5部とペンタメ
チルジエチレントリアミン0.3部、トリス(3−ジメ
チルアミノプロピレン)ヘキサヒドロ−S−トリアジン
0.5部、整泡剤として有機シリコ−ンのB−8461
を2.2部配合した。また、イソシアネ−トとしてジフ
ェニルメタンジイソシアネ−ト多核体とプレポリマ−変
性トリレンジイソシアネ−トを140部を用いて発泡さ
せた。その時のポリオ−ルとイソシアネ−トの液温は2
0℃に調整した。
Example 7 Polyol A40 shown in Table 1
Parts, 20 parts of Polyol B, 20 parts of Polyol C, 10 parts of Polyol D, and 10 parts of Polyol E, 16 parts of cyclopentane blowing agent, 1.5 parts of water and tetramethylhexamethylenediamine as a reaction catalyst. 5 parts, pentamethyldiethylenetriamine 0.3 part, tris (3-dimethylaminopropylene) hexahydro-S-triazine 0.5 part, an organic silicone B-8461 as a foam stabilizer
Was blended in 2.2 parts. In addition, polynuclear diphenylmethane diisocyanate and 140 parts of a prepolymer-modified tolylene diisocyanate were foamed as isocyanates. At this time, the liquid temperature of the polyol and isocyanate was 2
The temperature was adjusted to 0 ° C.

【0111】まず、ポリオ−ルとイソシアネ−トを攪拌
し45℃に調整された600×400×75mmtのア
ルミ製モ−ルド内に注入して、オ−バ−パックの115
%と125%のパック率を用いて、発泡成型品をモ−ル
ドから5分後に脱型させた硬質ポリウレタンフォ−ムの
膨れ量を測定した。
First, the polyol and isocyanate were stirred and poured into an aluminum mold of 600 × 400 × 75 mmt adjusted to 45 ° C.
% And 125% of the packing ratio, the swelling amount of the rigid polyurethane foam from which the foam molded article was released after 5 minutes from the molding was measured.

【0112】その結果を表1に示す。表1から、脱型5
分後の膨れ量はパック率115%で2.3mm、パック
率125%で2.8mmと従来の断熱材に比べて低減で
きることが判る。
Table 1 shows the results. From Table 1, demold 5
It can be seen that the swelling amount after minutes is 2.3 mm at a pack ratio of 115% and 2.8 mm at a pack ratio of 125%, which can be reduced as compared with the conventional heat insulating material.

【0113】次に、実施例1と同様に冷蔵庫および冷凍
庫の箱体をウレタンフォ−ムの発泡雇い治具にセット
後、ポリオ−ルとイソシアネ−トの液温を20℃、治具
温度を45℃にして硬質ポリウレタンフォ−ムを空隙部
分に発泡充填する。その際、注入容積は約200リット
ルの箱体でゼロパックを設定後、パック率110%で発
泡充填して断熱箱体を作製した。断熱箱体の底面中央部
分から断熱材フォ−ムサンプルを採取して、コア層密
度、熱伝導率、圧縮強度、低温寸法変化率、高温寸法変
化率を評価した。さらに、断熱箱体の低温放置(−10
℃/48時間)試験を行い、外箱表鉄板の歪み試験前後
の歪み量の差および試験後の最大歪み量も評価した。
Next, as in the case of the first embodiment, the boxes of the refrigerator and the freezer were set on a foaming jig of urethane foam, and the temperature of the liquid of polyol and isocyanate was set at 20 ° C., and the temperature of the jig was adjusted. At 45 ° C., the rigid polyurethane foam is foam-filled in the voids. At that time, a zero-pack was set in a box having an injection volume of about 200 liters, and then foam-filled at a pack ratio of 110% to produce a heat-insulated box. A heat insulating foam sample was taken from the center of the bottom of the heat insulating box, and the core layer density, thermal conductivity, compressive strength, low-temperature dimensional change, and high-temperature dimensional change were evaluated. Furthermore, the heat insulation box is left at low temperature (−10
(° C./48 hours) test, and the difference in the amount of strain between the outer box surface iron plate before and after the strain test and the maximum amount of strain after the test were also evaluated.

【0114】これらの結果を表1に併せて示す。表1か
ら、コア層密度が32.9kg/m3と低密度で熱伝導
率が17.8mW/m・Kと低く、圧縮強度も0.14
MPaと高く、低温寸法変化率が−1.4%、高温寸法
変化率が1.1%と小さい値を示すことが判る。
The results are shown in Table 1. From Table 1, the core layer density is as low as 32.9 kg / m3, the thermal conductivity is as low as 17.8 mW / mK, and the compressive strength is also 0.14.
It can be seen that the low-temperature dimensional change rate is as low as 1.4% and the high-temperature dimensional change rate is as low as 1.1%.

【0115】さらに、断熱箱体の外箱表鉄板の歪み試験
前後の歪み量差は0.07mmで試験後の最大歪み量も
0.29mmと小さい値を示した。さらに、硬質ポリウ
レタンフォ−ムの発泡充填を行った断熱箱体を形成した
冷蔵庫および冷凍庫に、冷凍サイクル部品(圧縮機/コ
ンデンサ/エバポレ−)を組み込んで測定した結果、熱
漏洩量が3%低減して消費電力量も約1Kwh/月の省
エネ化が達成された。
Further, the difference between the strain amount of the outer case surface iron plate before and after the strain test was 0.07 mm, and the maximum strain amount after the test was as small as 0.29 mm. Furthermore, as a result of incorporating a refrigeration cycle component (compressor / condenser / evaporator) into a refrigerator and a freezer having a heat-insulated box formed by foam-filling a rigid polyurethane foam, the amount of heat leakage was reduced by 3%. As a result, the energy consumption was reduced by about 1 kWh / month.

【0116】このことから、本実施例に係る硬質ポリウ
レタンフォームでは、充填する際の膨れ量が小さく、ま
た低密度であり、熱伝導率の低減、圧縮強度、寸法安定
性にも優れる硬質ポリウレタンフォームとなる。また、
本実施例に係る硬質ポリウレタンフォームを冷蔵庫の断
熱材として充填することによって、熱漏洩量が低減され
消費電力を低減できる。さらに断熱材の充填量が低減さ
れ冷蔵庫のコストを低減できる。また、低温で放置して
も冷蔵庫の歪み変形が小さくなり冷蔵庫の外観品質が優
れたものとなる。
From the above, the rigid polyurethane foam according to the present example has a small amount of swelling at the time of filling and a low density, and has excellent heat conductivity reduction, compressive strength and dimensional stability. Becomes Also,
By filling the rigid polyurethane foam according to the present embodiment as a heat insulating material for a refrigerator, the amount of heat leakage can be reduced and the power consumption can be reduced. Further, the filling amount of the heat insulating material is reduced, and the cost of the refrigerator can be reduced. In addition, even if the refrigerator is left at a low temperature, distortion deformation of the refrigerator is reduced, and the appearance quality of the refrigerator is improved.

【0117】[0117]

【発明の効果】本発明によれば、表面の歪み変形が防止
され外観品質の優れた冷蔵庫を提供できる。
According to the present invention, it is possible to provide a refrigerator excellent in appearance quality by preventing surface distortion deformation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】冷蔵庫および冷凍庫の断熱箱体および断熱扉に
ウレタンが充填された断熱材の縦断面図である。
FIG. 1 is a longitudinal sectional view of a heat insulating material in which a heat insulating box and a heat insulating door of a refrigerator and a freezer are filled with urethane.

【図2】断熱箱体にウレタンを4点発泡充填する模式図
とウレタン測定サンプル採取の模式図である。
FIG. 2 is a schematic diagram of foaming and filling urethane at four points in a heat insulating box and a schematic diagram of collecting a urethane measurement sample.

【符号の説明】[Explanation of symbols]

1…冷蔵庫本体、 2…内箱、 3…冷蔵室、
4…野菜室、 5…冷凍室、6…冷蔵室扉、 7
…野菜室扉、 8…上段冷凍室扉、 9…下段冷凍
室扉、10…ウレタン断熱材、 11…ウレタン注
入ヘッド、 12…ウレタンの流れ、13…ウレタン
注入口、 14…サンプル採取位置
1 ... refrigerator body, 2 ... inner box, 3 ... refrigerator compartment,
4 ... vegetable room, 5 ... freezer room, 6 ... refrigerator compartment door, 7
... Vegetable compartment door, 8 ... Upper freezer compartment door, 9 ... Lower freezer compartment door, 10 ... Urethane insulation material, 11 ... Urethane injection head, 12 ... Urethane flow, 13 ... Urethane injection port, 14 ... Sample collection position

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小室 淳 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 (72)発明者 横倉 久男 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 伊藤 豊 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 菅野 正義 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 3L102 MB17 4F074 AA79 AA83 AA84 BA34 BA39 BB23 BC05 CA25 DA02 DA07 DA08 DA23 DA32 4J034 BA07 BA08 CA02 CA03 CA04 CA05 CA13 CA15 CA16 CA17 CB03 CB04 CB05 CB07 CB08 CC02 CC03 CC08 CC12 CC61 CC65 CC66 CC67 CD01 CD04 DG03 DG04 DG08 DG09 DG14 DG16 DG22 HA01 HA02 HA06 HA07 HB06 HB07 HB08 HC12 HC26 HC35 HC46 HC61 HC63 HC64 HC67 HC71 HC73 KA01 KB02 KD12 KE02 NA01 NA03 NA06 QA02 QB01 QB16 QB19 QC01 RA15  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Atsushi Komuro, 800, Tomita, Ohira-cho, Shimotsuga-gun, Tochigi Prefecture Inside the Refrigeration Division, Hitachi, Ltd. (72) Hisao Yokokura 7-1-1, Omika-cho, Hitachi, Ibaraki Within Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Yutaka Ito 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Masayoshi Sugano 7, Omikamachi, Hitachi City, Ibaraki Prefecture No. 1-1 F-term in Hitachi Research Laboratory, Hitachi, Ltd. F-term (reference) 3L102 MB17 4F074 AA79 AA83 AA84 BA34 BA39 BB23 BC05 CA25 DA02 DA07 DA08 DA23 DA32 4J034 BA07 BA08 CA02 CA03 CA04 CA05 CA13 CA15 CA16 CA17 CB03 CB04 CB05 CB07 CB04 CB05 CB07 CC03 CC08 CC12 CC61 CC65 CC66 CC67 CD01 CD04 DG03 DG04 DG08 DG09 DG14 DG16 DG22 HA01 HA02 HA06 HA07 HB06 HB07 HB08 H C12 HC26 HC35 HC46 HC61 HC63 HC64 HC67 HC71 HC73 KA01 KB02 KD12 KE02 NA01 NA03 NA06 QA02 QB01 QB16 QB19 QC01 RA15

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】外箱と内箱の間の空間に、少なくともポリ
オール、芳香族イソシアネートと発泡剤としてシクロペ
ンタンと水の混合発泡剤を用いた硬質ポリウレタンフォ
ームが充填された断熱材を備える冷蔵庫において、 ポリオール成分としてm−トリレンジアミンとo−トリ
レンジアミンからなる開始剤をエチレンオキサイドおよ
び/またはプロピレンオキサイドで付加した混合物を3
成分以上含有する硬質ポリウレタンフォームが充填され
た前記断熱材を備える冷蔵庫。
1. A refrigerator comprising a heat insulating material filled in a space between an outer box and an inner box with a rigid polyurethane foam using at least a mixed blowing agent of cyclopentane and water as a foaming agent with an aromatic isocyanate and a foaming agent. A mixture obtained by adding an initiator consisting of m-tolylenediamine and o-tolylenediamine as a polyol component with ethylene oxide and / or propylene oxide;
A refrigerator comprising the heat insulating material filled with a rigid polyurethane foam containing at least one component.
【請求項2】前記硬質ポリウレタンフォームのポリオー
ル成分が、m−トリレンジアミン、o−トリレンジアミ
ン、ビスフェノールA、トリエタノールアミンからなる
開始剤をエチレンオキサイドおよび/またはプロピレン
オキサイドで付加した混合物を90%以上含むポリエー
テルポリオールであり、ウレタン注入口から少なくとも
500mm以上離れた平面部分から厚みが約20〜25
mmのコア層断熱材の密度が29〜33kg/m3、熱
伝導率が平均温度10℃で17.5〜18.0mW/m
・Kを有する前記断熱材を備えた請求項1記載の冷蔵
庫。
2. A mixture obtained by adding an initiator consisting of m-tolylenediamine, o-tolylenediamine, bisphenol A and triethanolamine with ethylene oxide and / or propylene oxide as the polyol component of the rigid polyurethane foam. % Of a polyether polyol having a thickness of at least about 20 to 25 from a plane portion at least 500 mm away from the urethane inlet.
mm core layer heat insulating material has a density of 29 to 33 kg / m3 and a thermal conductivity of 17.5 to 18.0 mW / m at an average temperature of 10C.
The refrigerator according to claim 1, further comprising the heat insulating material having K.
【請求項3】前記硬質ポリウレタンフォームの芳香族イ
ソシアネート成分が、ジフェニルメタンジイソシアネー
ト多核体にプレポリマー変性トリレンジイソシアネート
の混合物を使用し、さらにポリオール100重量部に対
して1.2〜1.6重量部の水と14〜18重量部のシ
クロペンタンを組合わせた混合発泡剤中で反応させて得
られた前記断熱材を備えた請求項2記載の冷蔵庫。
3. An aromatic isocyanate component of the rigid polyurethane foam is a mixture of polynuclear diphenylmethane diisocyanate and a prepolymer-modified tolylene diisocyanate, and 1.2 to 1.6 parts by weight based on 100 parts by weight of polyol. The refrigerator according to claim 2, further comprising the heat insulating material obtained by reacting water in a mixed blowing agent obtained by combining 14 to 18 parts by weight of cyclopentane.
【請求項4】前記硬質ポリウレタンフォームのポリオー
ル成分が、m−トリレンジアミンにプロピレンオキサイ
ドおよびエチレンオキサイドとプロピレンオキサイドを
付加して得られるOH価400〜500のポリオール4
5〜55重量部、o−トリレンジアミンにプロピレンオ
キサイドとエチレンオキサイドで付加して得られるOH
価450〜500のポリオールを10〜20重量部、ト
リエタノールアミンにプロピレンオキサイドで付加して
得られるOH価350〜450のポリオール10〜20
重量部、ビスフェノールAにプロピレンオキサイドで付
加して得られるOH価250〜300のポリオール10
〜20重量部、ジエタノールアミンにプロピレンオキサ
イドで付加して得られるOH価450〜480のポリオ
ール3〜8重量部、トリメチロ−ルプロパンOH価12
56を2〜5重量部の混合物からなり、該ポリオールの
平均OH価が400〜450である硬質ポリウレタンフ
ォームが充填された前記断熱材を備えた請求項3記載の
冷蔵庫。
4. The polyol component of the rigid polyurethane foam is a polyol having an OH value of 400 to 500 obtained by adding propylene oxide and ethylene oxide and propylene oxide to m-tolylenediamine.
5 to 55 parts by weight of OH obtained by adding propylene oxide and ethylene oxide to o-tolylenediamine
10 to 20 parts by weight of a polyol having an OH value of 450 to 500, and a polyol 10 to 20 having an OH value of 350 to 450 obtained by adding propylene oxide to triethanolamine.
Parts by weight, polyol 10 having an OH value of 250 to 300 obtained by adding propylene oxide to bisphenol A
To 20 parts by weight, 3 to 8 parts by weight of a polyol having an OH value of 450 to 480 obtained by adding propylene oxide to diethanolamine, and trimethylolpropane OH value of 12
The refrigerator according to claim 3, comprising the mixture of 2 to 5 parts by weight of 56, and the heat insulating material filled with a rigid polyurethane foam having an average OH value of the polyol of 400 to 450.
JP31474299A 1999-11-05 1999-11-05 refrigerator Expired - Lifetime JP3700499B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP31474299A JP3700499B2 (en) 1999-11-05 1999-11-05 refrigerator
KR1020000045801A KR100354637B1 (en) 1999-11-05 2000-08-08 A Refrigerator
CNB001269402A CN1133676C (en) 1999-11-05 2000-09-08 Electric refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31474299A JP3700499B2 (en) 1999-11-05 1999-11-05 refrigerator

Publications (2)

Publication Number Publication Date
JP2001133135A true JP2001133135A (en) 2001-05-18
JP3700499B2 JP3700499B2 (en) 2005-09-28

Family

ID=18057048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31474299A Expired - Lifetime JP3700499B2 (en) 1999-11-05 1999-11-05 refrigerator

Country Status (3)

Country Link
JP (1) JP3700499B2 (en)
KR (1) KR100354637B1 (en)
CN (1) CN1133676C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7278279B2 (en) 2002-03-13 2007-10-09 Matsushita Refrigeration Co. Refrigerator
JP2013224368A (en) * 2012-04-23 2013-10-31 Hitachi Appliances Inc Premix polyol composition for rigid urethane foam and rigid urethane foam using the same
JP2013224370A (en) * 2012-04-23 2013-10-31 Hitachi Appliances Inc Heat insulation door and heat insulating box

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101128537B1 (en) 2009-10-12 2012-03-23 김영일 The back board for refrigerator using the aerogel
KR101444530B1 (en) * 2012-04-23 2014-10-30 히타치 어플라이언스 가부시키가이샤 Insulation door and insulation box structure
WO2014048777A1 (en) * 2012-09-27 2014-04-03 Basf Se Rigid polyurethane and polyisocyanurate foams based on fatty acid-modified polyether polyols
JP2015075308A (en) * 2013-10-10 2015-04-20 日立アプライアンス株式会社 Tank unit, hot water system, and formable heat insulation material
CN105218713B (en) * 2014-05-27 2018-05-11 中国石油化工集团公司 A kind of polyvinyl alcohol and its preparation method and application
JP6655277B2 (en) * 2014-06-02 2020-02-26 東芝ライフスタイル株式会社 refrigerator
CN107177028B (en) * 2017-06-13 2020-08-04 合肥华凌股份有限公司 Combined polyether, polyurethane foam and preparation method and application thereof
CN109251304A (en) * 2018-08-23 2019-01-22 合肥金菱电器有限公司 A kind of flame-retardant polyurethane foam plastic and preparation method thereof
KR102179630B1 (en) * 2020-04-06 2020-11-17 나성호 Automatic vending machine
KR102548562B1 (en) * 2022-06-10 2023-06-28 케이피엑스케미칼 주식회사 Insulating materials for refrigeration system including rigid polyurethane foams made using polyol initiated by meta-toluenediamine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7278279B2 (en) 2002-03-13 2007-10-09 Matsushita Refrigeration Co. Refrigerator
JP2013224368A (en) * 2012-04-23 2013-10-31 Hitachi Appliances Inc Premix polyol composition for rigid urethane foam and rigid urethane foam using the same
JP2013224370A (en) * 2012-04-23 2013-10-31 Hitachi Appliances Inc Heat insulation door and heat insulating box

Also Published As

Publication number Publication date
CN1133676C (en) 2004-01-07
JP3700499B2 (en) 2005-09-28
KR20010050011A (en) 2001-06-15
CN1295225A (en) 2001-05-16
KR100354637B1 (en) 2002-09-30

Similar Documents

Publication Publication Date Title
US11505670B2 (en) Polyurethane foams co-blown with a mixture of a hydrocarbon and a halogenated olefin
CN104628978B (en) Composition, rigid polyurethane foam and refrigeration plant
CN101351484B (en) Method of molding rigid polyurethane foams with enhanced thermal conductivity
KR101821435B1 (en) Foam insulation unit
CN102079803B (en) Full-water-type combined polyether and application method thereof, and polyurethane rigid foam composition
CN113748150A (en) Rigid polyurethane foams suitable for use as board insulation
CN109762136B (en) Polyurethane foaming composition, polyurethane foam, and preparation method and application thereof
JP5172861B2 (en) Rigid polyurethane foams made from amine-initiated polyols and amine-initiated polyols
CN105985503A (en) Polyurethane reaction composition for negative pressure foaming and method for preparing polyurethane foam by using composition
MX2011010059A (en) Production of rigid polyurethane foams and the use thereof.
WO2017100232A1 (en) Rigid polyurethane foams suitable for wall insulation
JP2001133135A (en) Refrigerator
US20090062415A1 (en) Methods of producing rigid polyurethane foams
JP3475763B2 (en) Insulated box for refrigerator
WO2020146442A1 (en) Hcfo-containing isocyanate-reactive compositions, related foam-forming compositions and polyurethane foams
JP2001122941A (en) Rigid polyurethane foam and refrigerator using the same
JPH11248344A (en) Refrigerator, heat insulating box and door therefor
JPH11201375A (en) Vacuum heat insulating panel insertion type box body for refrigerator/freezer
WO2003027161A1 (en) Composition for preparing rigid polyurethane foam having good demolding property
JP3475762B2 (en) Insulated doors for refrigerators and freezers
JP2004027074A (en) Rigid polyurethane foam and heat insulator
JP4200044B2 (en) Method for producing rigid polyurethane foam insulation molded body
JP3680533B2 (en) Refrigerator insulation box
JP2004131651A (en) Rigid polyurethane foam and method for producing the same foam
JP2003042653A (en) Heat insulation structure of cooling apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050704

R151 Written notification of patent or utility model registration

Ref document number: 3700499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

EXPY Cancellation because of completion of term