JP3700499B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP3700499B2
JP3700499B2 JP31474299A JP31474299A JP3700499B2 JP 3700499 B2 JP3700499 B2 JP 3700499B2 JP 31474299 A JP31474299 A JP 31474299A JP 31474299 A JP31474299 A JP 31474299A JP 3700499 B2 JP3700499 B2 JP 3700499B2
Authority
JP
Japan
Prior art keywords
parts
polyol
rigid polyurethane
amount
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31474299A
Other languages
Japanese (ja)
Other versions
JP2001133135A (en
Inventor
邦成 荒木
克美 福田
淳 小室
久男 横倉
伊藤  豊
正義 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31474299A priority Critical patent/JP3700499B2/en
Priority to KR1020000045801A priority patent/KR100354637B1/en
Priority to CNB001269402A priority patent/CN1133676C/en
Publication of JP2001133135A publication Critical patent/JP2001133135A/en
Application granted granted Critical
Publication of JP3700499B2 publication Critical patent/JP3700499B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/125Water, e.g. hydrated salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/08Parts formed wholly or mainly of plastics materials

Description

【0001】
【発明の属する技術分野】
本発明は、硬質ポリウレタンフォームを充填した冷蔵庫に関する。
【0002】
【従来の技術】
冷蔵庫の断熱箱体には、外箱と内箱の空間に気泡を有する硬質ポリウレタンフォームを用いた断熱材が用いられている。この硬質ポリウレタンフォームは、ポリオール成分とイソシアネート成分を発泡剤、触媒、整泡剤の存在下で反応させることにより得られるものである。これまでの発泡剤としては、ガス熱伝導率が低く難分解性のトリクロロモノフルオロメタンが断熱箱体に使用されてきた。
【0003】
しかし、大気中に放出されると成層園のオゾン層破壊や温室効果による地表の温度上昇が生じるとされ、代替品の1、1−ジクロロ−1−モノフルオロエタンが断熱部材用の発泡剤に用いられたが、これも規制の対象となり2003年には全廃の予定になっている。
【0004】
一方、フロンを用いないことによりオゾン層破壊を少なくした、所謂ノンフロン系の発泡剤は、欧州を中心に炭化水素系化合物、例えばシクロペンタン発泡剤が冷蔵庫の断熱材に使用され始めている。例えば、シクロペンタンとイソペンタンの混合発泡剤を用いた低密度で流動性が改良された硬質ポリウレタンフォームやシクロペンタンと水の混合発泡剤を用いた低密度で高い流動性を有する硬質ポリウレタンフォームを用いた冷蔵庫や冷凍庫の断熱箱体あるいは断熱扉などが提案されている。このような従来の技術は、特開平11−140155号公報や特開平11−201628号公報や特開平11−248344号公報に開示されている。
【0005】
【発明が解決しようとする課題】
しかし、シクロペンタンやイソペンタンの炭化水素系発泡剤は、これまでの従来発泡剤に比べガスの熱伝導率が高く断熱性能が大きく劣る問題がある。特に、シクロペンタンと水の混合発泡剤を用いた硬質ポリウレタンフォームが地球温暖化および地球環境保護の立場から、断熱性向上による省エネ化が可能なウレタン材料の開発が望まれている。
【0006】
一方、冷蔵庫および冷凍庫の大型化や食材、食種に合わせた異なる温度(−18℃、0℃、3℃、5℃等)で設置される貯蔵箱体は、最上段に冷蔵室、中段に野菜室、その下段に上段冷凍室および下段冷凍室が設けられ多様化が進展している。
【0007】
このため、近年では、冷蔵庫および冷凍庫の大型化並びに省スペース化などの要求でキャビネット壁内空間の狭隙間化や複雑形状化も進み、銅パイプ、アルミテープ、紙テープ、ポリスチレン片、配線の障害物が内箱の外側面に数多く有するため、フォームが冷蔵庫壁内部を流動しにくくなり、この部分への充填が不完全になるという問題が生じる。これを解決して天部、底部、背面部、ハンドル部、ヒンジ部で均一フォームを形成するに低密度で流動性の良いウレタン材料が好ましい。このことから、シクロペンタンと水の混合発泡剤のウレタン材料でも代替フロンと同様に、低密度で熱伝導率の低減および強度確保が可能な材料の開発が急務となっている。
【0008】
そのため、シクロペンタンと水の混合発泡剤を用いた低密度の硬質ポリウレタンフォームは、フォームの膨れ量が小さいこと、さらに低温放置での外箱表鉄板の歪み変形が小さいこと、且つ熱伝導率の低減および圧縮強度や寸法安定性も両立可能であることが断熱材料の要件として要求されている。
【0009】
ポリウレタン樹脂中に発泡される気泡の形成には、ポリオールやイソシアネートの化学構造と共に発泡剤の量、水の量、触媒、整泡剤によって調節される気泡の発生や成長といった物理現象のみならず、原料各素材の相溶性、反応性、発泡過程での流動性が大きく影響すると考えられる。このことから、上記の要求を満たすためには、各々素材の最適化が必要になってくる。
【0010】
しかし、シクロペンタンの発泡剤を用いた硬質ポリウレタンフォームは、代替フロンの発泡剤に比べて飽和蒸気圧が低いため気泡のセル内の圧力も低下してしまい、充填後の収縮が発生し易い。このため、充填する密度を低し過ぎると表面の変形が発生して製品の歩留まりが低下したり、箱体や扉の強度が低下してしまったりする。
【0011】
つまり、低密度の硬質ポリウレタンフォームでは、気泡内ガスの膨張・収縮の影響が加わるために、フォームの線膨張係数が大きくなるのである。ここで、低密度の硬質ポリウレタンフォームの充填では、充填後に収縮が生じても製品としての形状を保とうとして充填する量を大きくすると、充填の際の箱体や扉の膨張率、膨れ量が増加することになる。また、これまでは、一般に高密度のウレタン材料が主に使用されてきたが、フォームの流動性が劣るため、発泡圧を高くしウレタン充填量を多くする手法で強度確保を進めてきたが、ウレタンフォームの液もれが発生し易くなるという問題も発生してしまう。
【0012】
本発明者らは、低密度の硬質ポリウレタンフォームを用いて特性の両立化を図るため、主原料のポリオールやイソシアネートおよび気泡を形成する発泡剤と水、反応性を制御する触媒や界面現象を調整する整泡剤について検討した。具体的には、低密度の硬質ポリウレタンフォームがウレタン発泡脱型時の膨れ量を小さくすることおよび発泡時の型温度変動並びに充填量のパック率変動などが生じても、膨れ量が小さく熱伝導率の低減および圧縮強度や寸法安定性も優れる硬質ポリウレタンフォームを見出す原料素材の最適組成化を種々行って、解決する見通しを得た。
【0013】
本発明の目的は、表面の歪み変形が防止され外観品質の優れた冷蔵庫を提供することに有る。
【0014】
【課題を解決するための手段】
上記目的は、外箱と内箱との間の空間に、少なくともポリオール、芳香族イソシアネートと発泡剤としてシクロペンタンと水の混合発泡剤を用いた硬質ポリウレタンフォームが充填された断熱材を備える冷蔵庫において、ポリオール成分としてm−トリレンジアミンとo−トリレンジアミンからなる開始剤をエチレンオキサイドおよび/またはプロピレンオキサイドで付加した混合物を3成分以上含有し、o−トリレンジアミンからなる開始剤をm−トリレンジアミンからなる開始剤より少ない配合量で使用される硬質ポリウレタンフォームが充填された断熱材を備える達成される。
【0015】
さらに、上記硬質ポリウレタンフォームのポリオール成分が、m−トリレンジアミン、o−トリレンジアミン、ビスフェノールA、トリエタノールアミンからなる開始剤をエチレンオキサイドおよび/またはプロピレンオキサイドで付加した混合物を90%以上含むポリエーテルポリオールであり、ウレタン注入口から少なくとも500mm以上離れた平面部分から厚みが約20〜25mmのコア層断熱材の密度が29〜33kg/m3、熱伝導率が平均温度10℃で17.5〜18.0mW/m・Kを有する前記断熱材を用いたことにより達成される。さらに、上記硬質ポリウレタンフォームの芳香族イソシアネート成分が、ジフェニルメタンジイソシアネート多核体にプレポリマー変性トリレンジイソシアネートの混合物を使用し、さらにポリオール100重量部に対して1.2〜1.6重量部の水と14〜18重量部のシクロペンタンを組合わせた混合発泡剤中で反応させた前記断熱材を用いたことにより達成される。
【0016】
上記硬質ポリウレタンフォームのポリオール成分が、m−トリレンジアミンにプロピレンオキサイドおよびエチレンオキサイドとプロピレンオキサイドを付加して得られるOH価400〜500のポリオール45〜55重量部、o−トリレンジアミンにプロピレンオキサイドとエチレンオキサイドで付加して得られるOH価450〜500のポリオールを10〜20重量部、トリエタノールアミンにプロピレンオキサイドで付加して得られるOH価350〜450のポリオール10〜20重量部、ビスフェノールAにプロピレンオキサイドで付加して得られるOH価250〜300のポリオール10〜20重量部、ジエタノールアミンにプロピレンオキサイドで付加して得られるOH価450〜480のポリオール3〜8重量部、トリメチロ−ルプロパンOH価1256を2〜5重量部の混合物からなり、該ポリオールの平均OH価が400〜450である硬質ポリウレタンフォームが充填された前記断熱材を用いたことにより達成される。
【0017】
【発明の実施の形態】
本発明者らは、冷蔵庫および冷凍庫に使用する断熱箱体の最適な低密度の硬質ポリウレタンフォームを開発するため、シクロペンタンと水の混合発泡剤で膨れ量を小さくし、熱伝導率の低減と圧縮強度や寸法安定性が両立可能な最適ポリオ−ルを選定した。
【0018】
先ず、フォームの膨れ量を小さくすると共に熱伝導率の低減並びに圧縮強度や寸法安定性を両立させるため、立体障害を起こし易い芳香環を有する開始剤のポリオールを多く導入することを試みた。
【0019】
しかし、芳香環の付加重合物は単一成分で配合量を多くして用いることや異種成分の例えばポリエステルポリオールなどと混合すると、ポリエーテルポリオール成分の相溶性が極端に低下してくる。その結果、プレミックス時に濁りが発生し易くなり、保存安定時にワニス粘度も変化し発泡時の充填量が変動し易くなる問題がある。
【0020】
そこで、本願で用いる最適なポリオールとしては、種々のアルキレンオキサイドと膨れ量を調べた結果、シクロペンタン発泡剤に溶解しやすいものがフォーム膨れに対して有効であることがわかってきた。このことから、プロピレンオキサイドの付加重合物を主に選定し、その他物性を両立させるため、エチレンオキサイドも併用しポリエステルポリオールなどの異種成分を含まないポリエーテルポリオールとした。
【0021】
さらに、芳香環の中ではm−トリレンジアミンが通常良く使用され諸物性の両立化を得るため、m−トリレンジアミン付加重合物と高反応性でキュアー性が期待されるo−トリレンジアミン付加重合物を併用した3成分系のポリエーテルポリオールが膨れ量に対し有効なことがわかった。
【0022】
しかし、o−トリレンジアミン付加物は、m−トリレンジアミン付加物に比べてワニス粘度が高くなり、高反応性になり易いために断熱箱体の壁内中に発泡充填するとボイドやクラックの発生が起こり易い問題がある。このことから、o−トリレンジアミン付加物を混合する際にはワニス粘度の低減や反応性のバランスを得るため、m−トリレンジアミン付加物より少ない配合量で使用すること並びにm−トリレンジアミン付加物は強度と相溶性を向上するため、プロピレンオキサイド付加物とプロピレンオキサイドおよびエチレンオキサイド付加物の両者を併用した。
【0023】
さらに、芳香環を有する開始剤以外に特性のバランスを得るため、第3成分にビスフェノールA系、第4成分にトリエタノールアミン系の開始剤を用いてプロピレンオキサイドで付加した重合物を最適な母体成分の90%以上に選定した。
【0024】
また、イソシアネート成分は熱伝導率の低減と圧縮強度や寸法安定性を両立させるため、通常使用のジフェニルメタンジイソシアネート多核体にプレポリマー変性トリレンジイソシアネートを混合する成分を選定した。その理由としては、ジフェニルメタンジイソシアネート多核体を使用した場合、初期反応は遅くなるが反応すると急速に増粘される傾向が見られ、流動性への障害や気泡の合体会合が起こり易くなることが判明したためである。そこで、プレポリマー変性トリレンジイソシアネートを混合することにより増粘挙動のマイルド化、ウレタン結合と尿素結合の高濃度化や架橋点間距離を短くして均一微細セルを形成させるため、混合系のイソシアネートを選定した。
【0025】
さらに、シクロペンタンと水の最適配合比、触媒、整泡剤について膨れ量を小さくし、低密度で熱伝導率の低減並びに圧縮強度や寸法安定性の両立を検討した結果、シクロペンタンと水の最適配合比はポリオール100重量部に対し1.2〜1.6重量部の水と14〜18重量部のシクロペンタンを組合わせること、主触媒にトリメチルアミノエチルピペラジン、ペンタメチルジエチレントリアミおよびトリス(3−ジメチルアミノプロピレン)ヘキサヒドロ−S−トリアジンなどの3量化触媒を併用し、速反応化とキュアー性を高め低表面張力の整泡剤を選定して、本発明を完成するに至った。
【0026】
本発明の目的を達成するウレタン材料を得るには、シクロペンタン発泡剤と補助発泡剤の水配合量も大きく影響する。また、一般的には、シクロペンタンと水の配合量が共に多く用いることにより低密度化が容易に図れる。
【0027】
しかし、水配合量を多くした場合気泡セル内の炭酸ガスの分圧増加により膨れ量や熱伝導率も大きくなり、シクロペンタン配合量も多くなると圧縮強度や寸法安定性が劣ってくる傾向が見られる。そのため、シクロペンタンと水の最適配合比は、ポリオール100重量部に対して1.2〜1.6重量部の水および14〜18重量部のシクロペンタンを組合わせることが好ましい。
【0028】
また、フォームの膨れ量を調べた結果、断熱パネルの厚みでも異なり厚いフォーム程膨れ量が大きくなる傾向が見られる。これはパネルが厚くなる程、断熱材が反応する時にフォームの内部温度も高くなり膨張と収縮の温度差も大きくなって、膨れ量が増加すると考えられる。また、実機の冷蔵庫および冷凍庫の箱体にウレタンを注入後、低温放置すると箱体の中で左右側面の表鉄板歪みの外観変形が発生し易い問題がある。
【0029】
本発明に用いられるポリオールとしては、例えば、多価アルコールがプロピレングリコ−ル、ジプロピレングリコールなどの2価アルコール、グリセリン、トリメチロールプロパンなどの3価アルコール、ジグリセリン、メチルグルコシド、ソルビトール、シュークローズなどの3価以上の多価アルコールが挙げられる。多価アミンのアルキレンポリアミンとしてはエチレンジアミン、ジエチレントリアミンなど、アルカノールアミンとしてはモノエタノールアミン、ジエタノールアミン、トリエタノールアミン、イソプロパノールアミンなど、芳香族多価アミンとしては2,4−トリレンジアミン、2,3−トリレンジアミン、2,6−トリレンジアミン、3,4−トリレンジアミンなど、ジアミノジフェニルメタン、ビスフェノールA、ポリメチレンポリフェニルポリアミンなどが用いられる。
【0030】
また、ポリエーテルポリオール混合組成物の平均OH価が400を下回ると圧縮強度および寸法安定性が劣り、450を越えるとフォームがもろくなる。平均OH価は400〜450が安定した硬質ポリウレタンフォームを作製するうえで好ましい結果である。
【0031】
また、反応触媒としては例えばトリメチルアミノエチルピペラジン、ペンタメチルジエチレントリアミン、テトラメチルヘキサメチレンジアミン、トリエチレンジアミン、テトラメチルエチレンジアミンなどの第3級アミン、トリス(3−ジメチルアミノプロピレン)ヘキサヒドロ−S−トリアジンなどの3量化触媒、ジプロピレングリコール併用の遅効性触媒など反応性が合致すれば使用することができる。
【0032】
反応触媒の配合量は、ポリオール成分100重量部あたり2〜5重量部が好ましい。さらに、整泡剤は例えばゴールドシュミット製のB−8462、B−8461など、信越化学製の X −20−1614、F−392など、日本ユニカ製のSZ−1127などプレミックス相溶性の安定性からSi分子量が1800〜3000およびSi含有率が25〜30の比較的低い乳化作用に適したものが好ましい。整泡剤の配合量は、ポリオール成分が100重量部あたり1.5〜4重量部である。
【0033】
また、イソシアネートとしてはジフェニルメタンジイソシアネートの多核体およびプレポリマー変性トリレンジイソシアネートを主に用いる。トリレンジイソシアネートは異性体の混合物、即ち2、4−体100%、2、4−体/2、6−体=80/20、65/35(重量比)はもちろん、商品名三井コスモネートTRC 、武田薬品製のタケネート4040などプレポリマ−のウレタン変性トリレンジイソシアネート、アロファネ−ト変性トリレンジイソシアネート、ビウレット変性トリレンジイソシアネート、イソシアヌレート変性トリレンジイソシアネートなども使用できる。
【0034】
また、4、4´−ジフェニルメタンジイソシアネ−トとしては、主成分とする純品の他に3核体以上の多角体を含有する商品名三井コスモネートM−200、武田薬品製のミリオネート MR などのジフェニルメタンジイソシアネート多核体が使用できる。その他、ポリメチレンポリフェニルイソシアネート、トルイジンイソシアネート、キシリレンジイソシアネートなどの芳香族系多官能イソシアネート、カルボジイミド変成ジフェニルメタンジイソシアネートなどのイソシアネートも使用することができる。
【0035】
本発明の硬質ポリウレタンフォームは、一般的に用いられている発泡機、例えばプロマート社製PU−30型発泡機で形成可能である。その発泡条件は発泡機の種類によって多少異なるが、液温18〜30℃、吐出圧力80〜150kg/cm2、吐出量15〜30kg/min、型箱の温度は35〜45℃が好ましい。さらに好ましくは、液温20℃、吐出圧力100kg/cm2、吐出量25kg/min、型箱の温度は45℃付近である。
【0036】
このようにして、独立構造の気泡を有し、シクロペンタンと水の混合発泡剤を用いた硬質ポリウレタンフォームであって、充填する際の膨れ量が小さく、また低密度であり、熱伝導率の低減、圧縮強度、寸法安定性にも優れる硬質ポリウレタンフォームを、冷蔵庫の断熱材として充填することによって、熱漏洩量が低減され消費電力を低減できる。さらに断熱材の充填量が低減され冷蔵庫のコストを低減できる。また、低温で放置しても冷蔵庫の歪み変形を小さくして外観品質の優れた冷蔵庫を提供できる。
【0037】
以下に、本発明の実施例並びに比較例を示して具体的に説明する。なお、以下の実施例および比較例の中で、部または%はそれぞれ重量部、重量%を表す。
【0038】
〔実施例1〕
ポリオ−ル成分としては、平均水酸基価が450のプロピレンオキサイドおよびプロピレンオキサイドとエチレンオキサイドで付加したm−トリレンジアミン系ポリエ−テルポリオ−ル(ポリオ−ルAと称す)を50部、平均水酸基価が480のプロピレンオキサイドで付加したo−トリレンジアミン系ポリエ−テルポリオ−ル(ポリオ−ルBと称す)を13部、平均水酸基価が400のプロピレンオキサイドで付加したトリエタノ−ルアミン系ポリエ−テルポリオ−ル(ポリオ−ルcと称す)を15部、平均水酸基価が460のプロピレンオキサイドで付加したジエタノ−ルアミン系ポリエ−テルポリオ−ル(ポリオ−ルDと称す)を4部、平均水酸基価が280のプロピレンオキサイドで付加したビスフェノ−ルA系ポリエ−テルポリオ−ル(ポリオ−ルEと称す)を15部、平均水酸基価が1256のトリメチロ−ルプロパン(ポリオ−ルFと称す)を3部の混合ポリオ−ル成分100部に、シクロペンタン発泡剤の配合量を16部、水1.5部および反応触媒としてトリメチルアミノエチルピペラジン1.7部とペンタメチルジエチレントリアミン0.2部、トリス(3−ジメチルアミノプロピレン)ヘキサヒドロ−S−トリアジン0.4部、整泡剤として有機シリコ−ンのF−392を2部配合した。
【0039】
また、イソシアネ−ト成分としてジフェニルメタンジイソシアネ−ト多核体およびプレポリマ−変性トリレンジイソシアネ−トの混合物を137部用いて発泡させた。その時のポリオ−ルとイソシアネ−トの液温は20℃に調整した。まず、ポリオ−ルとイソシアネ−トを攪拌し、45℃に調整された600×400×75mmのアルミ製のモ−ルド内に注入して、冷蔵庫および冷凍庫箱体の外箱鉄板の歪み変形に影響する膨れ量を測定した。その際、オ−バ−パックほど膨れ量が大きくなるため、パック率を115%と125%の両者で5分後に成型品をモ−ルドから脱型した硬質ポリウレタンフォ−ムの75mmt断熱パネルを用いて、パック率変動による膨れ量を測定した。その結果を表1に示す。
【0040】
【表1】

Figure 0003700499
【0041】
この表では、アルミ製モールドパネルおよび断熱箱体による断熱材の物性(フォーム膨れ量、コア層密度、熱伝導率、圧縮強度、低温寸法変化率、高温寸法変化率、試験前後の歪み量の差、試験後の最大歪み量)を示す。この表1から、脱型5分後の膨れ量はパック率115%で2.3mm、パック率125%で2.7mmと従来の断熱材に比べて低減できることがわかった。
【0042】
次に、上記材料を用いて実機の箱体で評価を行ったのでその結果を以下に説明する。その際、図面を参照しながら以下説明する。
【0043】
図1は、冷蔵庫および冷凍庫の箱体1に冷蔵室扉6、野菜室扉7、上段冷凍室扉8、下段冷凍室扉9を設置した縦断面図である。まず、外箱鉄板と内箱樹脂壁の箱体をウレタンフォームの発泡雇い治具にセット後、ポリオールとイソシアネートの液温20℃、治具温45℃にして、硬質ポリウレタンフォームを空隙部分に発泡充填する。その時、ウレタンフォームのポリオールとイソシアネートが化学反応を起こし、発泡圧力による加圧で発泡ウレタンフォームが箱体の壁内空間に注入充填され、断熱箱体を作製した。その際、の注入容積は約200リットルを有する箱体でウレタン材料のゼロパック(実機充填に必要な最低注入量)を設定後、オーバーパックの110%パック率で注入した。
【0044】
また、図2は断熱箱体にウレタンを4点発泡充填する模式図とウレタン測定サンプル採取の模式図を示す。冷蔵庫および冷凍庫の断熱箱体の底面中央部分から断熱材フォームサンプルを採取して種々の物性を評価した。まず、コア層密度は200mm×200mm×20mmtのサンプル寸法と重量を測定後、重量を体積で除した値および熱伝導率も英弘精機社製HC−073型(熱流計法、平均温度10℃)を用いて評価した。
【0045】
圧縮強度は50mm×50mm×20mmtのフォームサンプルを送り速度4mm/minで変形させて、10%変形時の応力を元の受圧面積で除した値で評価した。低温寸法変化率および高温寸法変化率は150mm×300mm×20mmtのフォームを−20℃で24時間もしくは70℃で24時間放置した時の厚さの変化率を評価した。
【0046】
これらの結果を表1に併せて示す。表1から、コア層密度が29.2kg/m3と低密度で熱伝導率が17.6mW/m・Kと低くなり、圧縮強度が0.15MPaと高く、低温寸法変化率が−1.1%、高温寸法変化率が1.6%と変化が小さいことが判る。
【0047】
さらに、外箱表鉄板の歪み量は、長さ300mmの表面が平滑な角棒の中央部にダイヤルゲージを取付けた歪み測定器具を用いて行った。測定法は外箱表鉄板面に測定器具を当てた時の歪みの最大値をもって表す。箱体側面の歪み量は、まず試験前の歪み量を測定しその分布を明示した後で、−10℃の恒温室内に48時間放置する。その後、恒温室内から取出し直ちに試験前と同様に歪み量を測定して、試験前後の歪み量の差および試験後の最大歪み量を評価した。
【0048】
これらの結果も表1に示す。表1から、試験前後の歪み量差が0.1mmで最大歪み量が0.3mmと小さい値を示すことが判る。
【0049】
さらに、硬質ポリウレタンフォームの発泡充填を行った断熱箱体を形成した冷蔵庫および冷凍庫に、冷凍サイクル部品(圧縮機/コンデンサ/エバポレー)を組み込んで測定した結果、熱漏洩量が4%低減して消費電力量も約1Kwh/月の省エネ化が達成された。
【0050】
このことから、本実施例に係る硬質ポリウレタンフォームでは、充填する際の膨れ量が小さく、また低密度であり、熱伝導率の低減、圧縮強度、寸法安定性にも優れる硬質ポリウレタンフォームとなる。また、本実施例に係る硬質ポリウレタンフォームを冷蔵庫の断熱材として充填することによって、熱漏洩量が低減され消費電力を低減できる。さらに断熱材の充填量が低減され冷蔵庫のコストを低減できる。また、低温で放置しても冷蔵庫の歪み変形が小さくなり冷蔵庫の外観品質が優れたものとなる。
【0051】
〔比較例1〕
表1に示すポリオールA60部とポリオールC20部およびポリオールD20部とシクロペンタン発泡剤を12部、水1.7部および反応触媒としてテトラメチルヘキサメチレンジアミン1.8部とペンタメチルジエチレントリアミン0.3部、トリス(3ージメチルアミノプロピレン)ヘキサヒドロ−S−トリアジン0.5部、整泡剤として有機シリコーンのB−8462を1.8部配合した。また、イソシアネートとしてジフェニルメタンジイソシアネート多核体を140部用いて発泡させた。その時のポリオールとイソシアネートの液温は20℃に調整した。
【0052】
まず、ポリオールとイソシアネートを攪拌し40℃に調整された600×400×75mmtのアルミ製モールド内に注入して、オーバーパックの115%と125%のパック率を用いて、発泡成型品をモールドから5分後に脱型させた硬質ポリウレタンフォームの膨れ量を測定した。
【0053】
季語言うその結果を表1に示す。表1から、脱型5分後の膨れ量はパック率115%で4.9mm、パック率125%で5.6mmと大きくなることが判る。
【0054】
次に、実施例1と同様に冷蔵庫および冷凍庫の外箱鉄板と内箱をウレタンフォームの発泡雇い治具にセット後、ポリオールとイソシアネートの液温を20℃、治具温度を40℃にして硬質ポリウレタンフォームを空隙部分に発泡充填する。その際、注入容積は約200リットルの箱体でゼロパックを設定後、パック率110%で発泡充填して冷蔵庫および冷凍庫の断熱箱体を作製した。断熱箱体の底面中央部分から断熱材フォームサンプルを採取して、コア層密度、熱伝導率、圧縮強度、低温寸法変化率、高温寸法変化率を評価し、さらに断熱箱体の低温放置(−10℃/48時間)試験を行い、外箱表鉄板の歪み試験前後の歪み量の差および試験後の最大歪み量も評価した。
【0055】
これらの結果を表1に併せて示す。表1から、コア層密度が34.5kg/m3で熱伝導率が18.5mW/m・Kと高く、さらに圧縮強度も0.11MPa、低温寸法変化率が−2.1%、高温寸法変化率が1.8%と変化が大きいことが判る。
【0056】
さらに、冷蔵庫および冷凍庫の断熱箱体の低温放置を行った結果、外扉表鉄板の歪み試験前後の歪み量差は0.22mmで試験後の最大歪み量も0.66mmと大きくなり、断熱箱体の外扉鉄板に歪み変形が発生した。
【0057】
〔実施例2〕
表1に示すポリオールA40部とポリオールB30部およびポリオールE28部とポリオールF2部とシクロペンタン発泡剤を17部、水1.3部および反応触媒としてテトラメチルヘキサメチレンジアミン1.5部とペンタメチルジエチレントリアミン0.2部、トリス(3−ジメチルアミノプロピレン)ヘキサヒドロ−S−トリアジン0.6部、整泡剤として有機シリコーンのB−8461を2.2部配合した。また、イソシアネートとしてジフェニルメタンジイソシアネート多核体とプレポリマ−変性トリレンジイソシアネートを135部を用いて発泡させた。その時のポリオールとイソシアネートの液温は25℃に調整した。
【0058】
まず、ポリオールとイソシアネートを攪拌し40℃に調整された600×400×75mmtのアルミ製モールド内に注入して、オーバーパックの115%と125%のパック率を用いて、発泡成型品をモールドから5分後に脱型させた硬質ポリウレタンフォームの膨れ量を測定した。
【0059】
その結果を表1に示す。表1から、脱型5分後の膨れ量はパック率115%で2.4mm、パック率125%で2.9mmと従来の断熱材に比べて低減できることが判る。
【0060】
次に、実施例1と同様に冷蔵庫および冷凍庫の箱体をウレタンフォームの発泡雇い治具にセット後、ポリオールとイソシアネートの液温を25℃、治具温度を40℃にして硬質ポリウレタンフォームを空隙部分に発泡充填する。その際、注入容積は約200リットルの箱体でゼロパックを設定後、パック率115%で発泡充填して断熱箱体を作製した。断熱箱体の底面中央部分から断熱材フォームサンプルを採取して、コア層密度、熱伝導率、圧縮強度、低温寸法変化率、高温寸法変化率を評価した。さらに、断熱箱体の低温放置(−10℃/48時間)試験を行い、外箱表鉄板の歪み試験前後の歪み量の差および試験後の最大歪み量も評価した。
【0061】
これらの結果を表1に併せて示す。表1から、コア層密度が31.8kg/m3と低密度で熱伝導率が17.8mW/m・Kと低く、圧縮強度も0.14MPa、低温寸法変化率が−1.3%、高温寸法変化率が1.5%と小さくなることが判る。
【0062】
さらに、断熱箱体の外箱表鉄板の歪み試験前後の歪み量差は0.09mmで試験後の最大歪み量も0.29mmと小さい値を示した。さらに、硬質ポリウレタンフォームの発泡充填を行った断熱箱体を形成した冷蔵庫および冷凍庫に、冷凍サイクル部品(圧縮機/コンデンサ/エバポレー)を組み込んで測定した結果、熱漏洩量が3%低減して消費電力量も約1Kwh/月の省エネ化が達成された。
【0063】
このことから、本実施例に係る硬質ポリウレタンフォームでは、充填する際の膨れ量が小さく、また低密度であり、熱伝導率の低減、圧縮強度、寸法安定性にも優れる硬質ポリウレタンフォームとなる。また、本実施例に係る硬質ポリウレタンフォームを冷蔵庫の断熱材として充填することによって、熱漏洩量が低減され消費電力を低減できる。さらに断熱材の充填量が低減され冷蔵庫のコストを低減できる。また、低温で放置しても冷蔵庫の歪み変形が小さくなり冷蔵庫の外観品質が優れたものとなる。
【0064】
〔比較例2〕
表1に示すポリオールB60部とポリオールC10部およびポリオールD20部とポリオールE10部にシクロペンタン発泡剤を11部、水1.4部および反応触媒としてテトラメチルヘキサメチレンジアミン1.2部とペンタメチルジエチレントリアミン0.5部、トリス(3−ジメチルアミノプロピレン)ヘキサヒドロ−S−トリアジン0.6部、整泡剤として有機シリコーンのB−8462を1.8部配合した。また、イソシアネートとしてジフェニルメタンジイソシアネート多核体およびプレポリマー変性トリレンジイソシアネートの混合物を137部用いて発泡させた。その時のポリオールとイソシアネートの液温は25℃に調整した。
【0065】
まず、ポリオールとイソシアネートを攪拌し40℃に調整された600×400×75mmtのアルミ製モールド内に注入して、オーバーパックの115%と125%のパック率を用いて、発泡成型品をモールドから5分後に脱型させた硬質ポリウレタンフォームの膨れ量を測定した。
【0066】
その結果を表1に示す。表1から、脱型5分後の膨れ量はパック率115%で4.1mm、パック率125%で5.2mmと大きくなることが判る。
【0067】
次に、実施例1と同様に冷蔵庫および冷凍庫の外箱鉄板と内箱をウレタンフォームの発泡雇い治具にセット後、ポリオールとイソシアネートの液温を25℃、治具温度を40℃にして硬質ポリウレタンフォームを空隙部分に発泡充填する。その際、注入容積は約200リットルの箱体でゼロパックを設定後、パック率115%で発泡充填して冷蔵庫および冷凍庫の断熱箱体を作製した。断熱箱体の底面中央部分から断熱材フォームサンプルを採取して、コア層密度、熱伝導率、圧縮強度、低温寸法変化率、高温寸法変化率を評価し、さらに断熱箱体の低温放置(−10℃/48時間)試験を行い、外箱表鉄板の歪み試験前後の歪み量の差および試験後の最大歪み量も評価した。
【0068】
これらの結果を表1に併せて示す。表1から、コア層密度が35.2kg/m3で熱伝導率が18.8mW/m・Kと高く、さらに圧縮強度も0.09MPaと低く、低温寸法変化率が−2.3%、高温寸法変化率が2.2%と変化が大きい値を示すことが判る。
【0069】
さらに、冷蔵庫および冷凍庫の断熱箱体の低温放置試験を行った結果、外扉表鉄板の歪み試験前後の歪み量差は0.16mmで試験後の最大歪み量も0.56mmと大きくなり、断熱箱体の外扉鉄板に歪み変形が発生した。
【0070】
〔実施例3〕
表1に示すポリオールA30部とポリオールB20部およびポリオールC20部とポリオールD10部とポリオールE20部にシクロペンタン発泡剤を18部、水1.2部および反応触媒としてテトラメチルヘキサメチレンジアミン1.7部とペンタメチルジエチレントリアミン0.3部、トリス(3−ジメチルアミノプロピレン)ヘキサヒドロ−S−トリアジン0.5部、整泡剤として有機シリコーンのBー8461を2.2部配合した。また、イソシアネートとしてジフェニルメタンジイソシアネート多核体とプレポリマ−変性トリレンジイソシアネートを140部を用いて発泡させた。その時のポリオールとイソシアネートの液温は20℃に調整した。まず、ポリオールとイソシアネートを攪拌し45℃に調整された600×400×75mmtのアルミ製モールド内に注入して、オーバーパックの115%と125%のパック率を用いて、発泡成型品をモールドから5分後に脱型させた硬質ポリウレタンフォームの膨れ量を測定した。
【0071】
その結果を表1に示す。表1から、脱型5分後の膨れ量はパック率115%で2.4mm、パック率125%で3.1mmと従来の断熱材に比べて低減できることが判る。
【0072】
次に、実施例1と同様に冷蔵庫および冷凍庫の箱体をウレタンフォームの発泡雇い治具にセット後、ポリオールとイソシアネートの液温を20℃、治具温度を45℃にして硬質ポリウレタンフォームを空隙部分に発泡充填する。その際、注入容積は約200リットルの箱体でゼロパックを設定後、パック率110%で発泡充填して断熱箱体を作製した。断熱箱体の底面中央部分から断熱材フォームサンプルを採取して、コア層密度、熱伝導率、圧縮強度、低温寸法変化率、高温寸法変化率を評価した。さらに、断熱箱体の低温放置(−10℃/48時間)試験を行い、外箱表鉄板の歪み試験前後の歪み量の差および試験後の最大歪み量も評価した。
【0073】
これらの結果を表1に併せて示す。表1から、コア層密度が32.5kg/m3と低密度で熱伝導率が17.5mW/m・Kと低く、圧縮強度も0.13MPaと高く、低温寸法変化率が−1.1%、高温寸法変化率が1.4%と小さい値を示すことが判る。
【0074】
さらに、断熱箱体の外箱表鉄板の歪み試験前後の歪み量差は0.07mmで試験後の最大歪み量も0.27mmと小さい値を示した。さらに、硬質ポリウレタンフォームの発泡充填を行った断熱箱体を形成した冷蔵庫および冷凍庫に、冷凍サイクル部品(圧縮機/コンデンサ/エバポレー)を組み込んで測定した結果、熱漏洩量が3.5%低減して消費電力量も約1Kwh/月の省エネ化が達成された。
【0075】
このことから、本実施例に係る硬質ポリウレタンフォームでは、充填する際の膨れ量が小さく、また低密度であり、熱伝導率の低減、圧縮強度、寸法安定性にも優れる硬質ポリウレタンフォームとなる。また、本実施例に係る硬質ポリウレタンフォームを冷蔵庫の断熱材として充填することによって、熱漏洩量が低減され消費電力を低減できる。さらに断熱材の充填量が低減され冷蔵庫のコストを低減できる。また、低温で放置しても冷蔵庫の歪み変形が小さくなり冷蔵庫の外観品質が優れたものとなる。
【0076】
〔実施例4〕
表1に示すポリオールA45部とポリオールB15部およびポリオールC10部とポリオールD7部ポリオールE20部とポリオールF3部にシクロペンタン発泡剤を16部、水1.5部および反応触媒としてテトラメチルヘキサメチレンジアミン1.5部とペンタメチルジエチレントリアミン0.3部、トリス(3−ジメチルアミノプロピレン)ヘキサヒドローS−トリアジン0.5部、整泡剤として有機シリコーンのB−8461を2.2部配合した。また、イソシアネートとしてジフェニルメタンジイソシアネート多核体とプレポリマ−変性トリレンジイソシアネートを132部を用いて発泡させた。その時のポリオールとイソシアネートの液温は20℃に調整した。
【0077】
まず、ポリオールとイソシアネートを攪拌し40℃に調整された600×400×75mmtのアルミ製モールド内に注入して、オーバーパックの115%と125%のパック率を用いて、発泡成型品をモールドから5分後に脱型させた硬質ポリウレタンフォームの膨れ量を測定した。
【0078】
その結果を表1に示す。表1から、脱型5分後の膨れ量はパック率115%で2.6mm、パック率125%で3.2mmと従来の断熱材に比べて低減できることがわかった。
【0079】
次に、実施例1と同様に冷蔵庫および冷凍庫の箱体をウレタンフォームの発泡雇い治具にセット後、ポリオールとイソシアネートの液温を20℃、治具温度を40℃にして硬質ポリウレタンフォームを空隙部分に発泡充填する。その際、注入容積は約200リットルの箱体でゼロパックを設定後、パック率110%で発泡充填して断熱箱体を作製した。断熱箱体の底面中央部分から断熱材フォームサンプルを採取して、コア層密度、熱伝導率、圧縮強度、低温寸法変化率、高温寸法変化率を評価した。さらに、断熱箱体の低温放置(−10℃/48時間)試験を行い、外箱表鉄板の歪み試験前後の歪み量の差および試験後の最大歪み量も評価した。
【0080】
これらの結果を表1に併せて示す。表1から、コア層密度が30.5kg/m3と低密度で熱伝導率が17.9mW/m・Kと低く、圧縮強度も0.16MPaと高く、低温寸法変化率が−0.9%、高温寸法変化率が1.6%と小さい値を示した。
【0081】
さらに、断熱箱体の外箱表鉄板の歪み試験前後の歪み量差は0.08mmで試験後の最大歪み量も0.29mmと小さい値を示した。さらに、硬質ポリウレタンフォームの発泡充填を行った断熱箱体を形成した冷蔵庫および冷凍庫に、冷凍サイクル部品(圧縮機/コンデンサ/エバポレー)を組み込んで測定した結果、熱漏洩量が3%低減して消費電力量も約1Kwh/月の省エネ化が達成された。
【0082】
このことから、本実施例に係る硬質ポリウレタンフォームでは、充填する際の膨れ量が小さく、また低密度であり、熱伝導率の低減、圧縮強度、寸法安定性にも優れる硬質ポリウレタンフォームとなる。また、本実施例に係る硬質ポリウレタンフォームを冷蔵庫の断熱材として充填することによって、熱漏洩量が低減され消費電力を低減できる。さらに断熱材の充填量が低減され冷蔵庫のコストを低減できる。また、低温で放置しても冷蔵庫の歪み変形が小さくなり冷蔵庫の外観品質が優れたものとなる。
【0083】
〔比較例3〕
表1に示すプロピレンオキサイドで付加したm−トリレンジアミン系ポリエーテルポリオールA20部とポリオールB30部およびポリオールC10部とポリオールD10部とポリオールE20部とポリオールF10部にシクロペンタン発泡剤を13部、水1.1部および反応触媒としてテトラメチルヘキサメチレンジアミン1.8部とペンタメチルジエチレントリアミン0.3部、トリス(3−ジメチルアミノプロピレン)ヘキサヒドロ−S−トリアジン0.3部、整泡剤として有機シリコーンのB−8462を1.8部配合した。また、イソシアネートとしてジフェニルメタンジイソシアネート多核体およびプレポリマ−変性トリレンジイソシアネートを135部を用いて発泡させた。その時のポリオールとイソシアネートの液温は20℃に調整した。
【0084】
まず、ポリオールとイソシアネートを攪拌し45℃に調整された600×400×75mmtのアルミ製モールド内に注入して、オーバーパックの115%と125%のパック率を用いて、発泡成型品をモールドから5分後に脱型させた硬質ポリウレタンフォームの膨れ量を測定した。
【0085】
その結果を表1に示す。表1から、脱型5分後の膨れ量はパック率115%で4.5mm、パック率125%で5.5mmと大きくなることが判る。
【0086】
次に、実施例1と同様に冷蔵庫および冷凍庫の外箱鉄板と内箱をウレタンフォームの発泡雇い治具にセット後、ポリオールとイソシアネートの液温を20℃、治具温度を45℃にして硬質ポリウレタンフォームを空隙部分に発泡充填する。その際、注入容積は約200リットルの箱体でゼロパックを設定後、パック率115%で発泡充填して冷蔵庫および冷凍庫の断熱箱体を作製した。断熱箱体の底面中央部分から断熱材フォームサンプルを採取して、コア層密度、熱伝導率、圧縮強度、低温寸法変化率、高温寸法変化率を評価し、さらに断熱箱体の低温放置(−10℃/48時間)試験を行い、外箱表鉄板の歪み試験前後の歪み量の差および試験後の最大歪み量も評価した。
【0087】
これらの結果を表1に併せて示す。表1から、コア層密度が35.8kg/m3で熱伝導率が18.3mW/m・Kと高く、さらに圧縮強度も0.12MPa、低温寸法変化率が−1.9%、高温寸法変化率が2.1%と変化が大きい値を示すことが判る。
【0088】
さらに、冷蔵庫および冷凍庫の断熱箱体の低温放置試験を行った結果、外扉表鉄板の歪み試験前後の歪み量差は0.15mmで試験後の最大歪み量も0.63mmと大きくなり、断熱箱体の外扉鉄板に歪み変形が発生した。
【0089】
〔実施例5〕
表1に示すポリオールA30部とポリオールB20部およびポリオールC20部とポリオールD10部とポリオールE20部にシクロペンタン発泡剤を14部、水1.6部および反応触媒としてテトラメチルヘキサメチレンジアミン1.5部とペンタメチルジエチレントリアミン0.3部、トリス(3−ジメチルアミノプロピレン)ヘキサヒドロ−S−トリアジン0.5部、整泡剤として有機シリコーンのB−8461を2.2部配合した。また、イソシアネートとしてジフェニルメタンジイソシアネート多核体とプレポリマ−変性トリレンジイソシアネートを140部を用いて発泡させた。その時のポリオールとイソシアネートの液温は20℃に調整した。
【0090】
まず、ポリオールとイソシアネートを攪拌し40℃に調整された600×400×75mmtのアルミ製モールド内に注入して、オーバーパックの115%と125%のパック率を用いて、発泡成型品をモールドから5分後に脱型させた硬質ポリウレタンフォームの膨れ量を測定した。
【0091】
その結果を表1に示す。表1から、脱型5分後の膨れ量はパック率115%で2.4mm、パック率125%で2.9mmと従来の断熱材に比べて低減できることがわかった。
【0092】
次に、実施例1と同様に冷蔵庫および冷凍庫の箱体をウレタンフォ−ムの発泡雇い治具にセット後、ポリオ−ルとイソシアネ−トの液温を20℃、治具温度を40℃にして硬質ポリウレタンフォ−ムを空隙部分に発泡充填する。その際、注入容積は約200リットルの箱体でゼロパックを設定後、パック率110%で発泡充填して断熱箱体を作製した。断熱箱体の底面中央部分から断熱材フォ−ムサンプルを採取して、コア層密度、熱伝導率、圧縮強度、低温寸法変化率、高温寸法変化率を評価した。
【0093】
さらに、断熱箱体の低温放置(−10℃/48時間)試験を行い、外箱表鉄板の歪み試験前後の歪み量の差および試験後の最大歪み量も評価した。
【0094】
これらの結果を表1に併せて示す。表1から、コア層密度が32kg/m3と低密度で熱伝導率が18mW/m・Kと低く、圧縮強度も0.12MPaと高く、低温寸法変化率が−0.8%、高温寸法変化率が1.5%と小さい値を示した。さらに、断熱箱体の外箱表鉄板の歪み試験前後の歪み量差は0.09mmで試験後の最大歪み量も0.26mmと小さい値を示した。
【0095】
さらに、硬質ポリウレタンフォ−ムの発泡充填を行った断熱箱体を形成した冷蔵庫および冷凍庫に、冷凍サイクル部品(圧縮機/コンデンサ/エバポレ−)を組み込んで測定した結果、熱漏洩量が4%低減して消費電力量も約1Kwh/月の省エネ化が達成された。
【0096】
このことから、本実施例に係る硬質ポリウレタンフォームでは、充填する際の膨れ量が小さく、また低密度であり、熱伝導率の低減、圧縮強度、寸法安定性にも優れる硬質ポリウレタンフォームとなる。また、本実施例に係る硬質ポリウレタンフォームを冷蔵庫の断熱材として充填することによって、熱漏洩量が低減され消費電力を低減できる。さらに断熱材の充填量が低減され冷蔵庫のコストを低減できる。また、低温で放置しても冷蔵庫の歪み変形が小さくなり冷蔵庫の外観品質が優れたものとなる。
【0097】
〔比較例4〕
表1に示すプロピレンオキサイドで付加したm−トリレンジアミン系ポリエ−テルポリオ−ルA25部とポリオ−ルB35部およびポリオ−ルC20部とポリオ−ルD10部とポリオ−ルF5部にシクロペンタン発泡剤を14部、水1.0部および反応触媒としてテトラメチルヘキサメチレンジアミン1.2部とペンタメチルジエチレントリアミン0.5部、トリス(3−ジメチルアミノプロピレン)ヘキサヒドロ−S−トリアジン0.5部、整泡剤として有機シリコ−ンのB−8462を1.8部配合した。また、イソシアネ−トとしてジフェニルメタンジイソシアネ−ト多核体とプレポリマ−変性トリレンジイソシアネ−トを140部を用いて発泡させた。その時のポリオ−ルとイソシアネ−トの液温は20℃に調整した。
【0098】
まず、ポリオ−ルとイソシアネ−トを攪拌し40℃に調整された600×400×75mmtのアルミ製モ−ルド内に注入して、オ−バ−パックの115%と125%のパック率を用いて、発泡成型品をモ−ルドから5分後に脱型させた硬質ポリウレタンフォ−ムの膨れ量を測定した。
【0099】
その結果を表1に示す。表1から、脱型5分後の膨れ量はパック率115%で4.8mm、パック率125%で5.7mmと大きくなることが判る。
【0100】
次に、実施例1と同様に冷蔵庫および冷凍庫の外箱鉄板と内箱をウレタンフォ−ムの発泡雇い治具にセット後、ポリオ−ルとイソシアネ−トの液温を20℃、治具温度を40℃にして硬質ポリウレタンフォ−ムを空隙部分に発泡充填する。その際、注入容積は約200リットルの箱体でゼロパックを設定後、パック率110%で発泡充填して冷蔵庫および冷凍庫の断熱箱体を作製した。断熱箱体の底面中央部分から断熱材フォ−ムサンプルを採取して、コア層密度、熱伝導率、圧縮強度、低温寸法変化率、高温寸法変化率を評価し、さらに断熱箱体の低温放置(−10℃/48時間)試験を行い、外箱表鉄板の歪み試験前後の歪み量の差および試験後の最大歪み量も評価した。
【0101】
これらの結果を表1に併せて示す。表1から、コア層密度が35.5kg/m3で熱伝導率が18.4mW/m・Kと高く、さらに圧縮強度も0.11MPaと低く、低温寸法変化率が−1.8%、高温寸法変化率が1.9%と変化が大きい値を示す。
【0102】
さらに、冷蔵庫および冷凍庫の断熱箱体の低温放置試験を行った結果、外扉表鉄板の歪み試験前後の歪み量差は0.19mmで試験後の最大歪み量も0.58mmと大きくなり、断熱箱体の外扉鉄板に歪み変形が発生した。
【0103】
〔実施例6〕
表1に示すポリオ−ルA40部とポリオ−ルB23部およびポリオ−ルC15部とポリオ−ルD5部とポリオ−ルE15部とポリオ−ルF2部にシクロペンタン発泡剤を15部、水1.4部および反応触媒としてテトラメチルヘキサメチレンジアミン1.5部とペンタメチルジエチレントリアミン0.2部、トリス(3−ジメチルアミノプロピレン)ヘキサヒドロ−S−トリアジン0.4部、整泡剤として有機シリコ−ンのB−8461を2.2部配合した。また、イソシアネ−トとしてジフェニルメタンジイソシアネ−ト多核体とプレポリマ−変性トリレンジイソシアネ−トを135部を用いて発泡させた。その時のポリオ−ルとイソシアネ−トの液温は20℃に調整した。
【0104】
まず、ポリオ−ルとイソシアネ−トを攪拌し45℃に調整された600×400×75mmtのアルミ製モ−ルド内に注入して、オ−バ−パックの115%と125%のパック率を用いて、発泡成型品をモ−ルドから5分後に脱型させた硬質ポリウレタンフォ−ムの膨れ量を測定した。
【0105】
その結果を表1に示す。表1から、脱型5分後の膨れ量はパック率115%で2.6mm、パック率125%で3.1mmと従来の断熱材に比べて低減できることが判る。
【0106】
次に、実施例1と同様に冷蔵庫および冷凍庫の箱体をウレタンフォ−ムの発泡雇い治具にセット後、ポリオ−ルとイソシアネ−トの液温を20℃、治具温度を45℃にして硬質ポリウレタンフォ−ムを空隙部分に発泡充填する。その際、注入容積は約200リットルの箱体でゼロパックを設定後、パック率115%で発泡充填して断熱箱体を作製した。断熱箱体の底面中央部分から断熱材フォ−ムサンプルを採取して、コア層密度、熱伝導率、圧縮強度、低温寸法変化率、高温寸法変化率を評価した。さらに、断熱箱体の低温放置(−10℃/48時間)試験を行い、外箱表鉄板の歪み試験前後の歪み量の差および試験後の最大歪み量も評価した。
【0107】
これらの結果を表1に併せて示す。表1から、コア層密度が31.5kg/m3と低密度で熱伝導率が17.9mW/m・Kと低く、圧縮強度も0.15MPaと高く、低温寸法変化率が−1.2%、高温寸法変化率が1.3%と小さい値を示した。さらに、断熱箱体の外箱表鉄板の歪み試験前後の歪み量差は0.08mmで試験後の最大歪み量も0.27mmと小さい値を示した。
【0108】
さらに、硬質ポリウレタンフォ−ムの発泡充填を行った断熱箱体を形成した冷蔵庫および冷凍庫に、冷凍サイクル部品(圧縮機/コンデンサ/エバポレ−)を組み込んで測定した結果、熱漏洩量が3%低減して消費電力量も約1Kwh/月の省エネ化が達成された。
【0109】
このことから、本実施例に係る硬質ポリウレタンフォームでは、充填する際の膨れ量が小さく、また低密度であり、熱伝導率の低減、圧縮強度、寸法安定性にも優れる硬質ポリウレタンフォームとなる。また、本実施例に係る硬質ポリウレタンフォームを冷蔵庫の断熱材として充填することによって、熱漏洩量が低減され消費電力を低減できる。さらに断熱材の充填量が低減され冷蔵庫のコストを低減できる。また、低温で放置しても冷蔵庫の歪み変形が小さくなり冷蔵庫の外観品質が優れたものとなる。
【0110】
〔実施例7〕
表1に示すポリオ−ルA40部とポリオ−ルB20部およびポリオ−ルC20部とポリオ−ルD10部とポリオ−ルE10部にシクロペンタン発泡剤を16部、水1.5部および反応触媒としてテトラメチルヘキサメチレンジアミン1.5部とペンタメチルジエチレントリアミン0.3部、トリス(3−ジメチルアミノプロピレン)ヘキサヒドロ−S−トリアジン0.5部、整泡剤として有機シリコ−ンのB−8461を2.2部配合した。また、イソシアネ−トとしてジフェニルメタンジイソシアネ−ト多核体とプレポリマ−変性トリレンジイソシアネ−トを140部を用いて発泡させた。その時のポリオ−ルとイソシアネ−トの液温は20℃に調整した。
【0111】
まず、ポリオ−ルとイソシアネ−トを攪拌し45℃に調整された600×400×75mmtのアルミ製モ−ルド内に注入して、オ−バ−パックの115%と125%のパック率を用いて、発泡成型品をモ−ルドから5分後に脱型させた硬質ポリウレタンフォ−ムの膨れ量を測定した。
【0112】
その結果を表1に示す。表1から、脱型5分後の膨れ量はパック率115%で2.3mm、パック率125%で2.8mmと従来の断熱材に比べて低減できることが判る。
【0113】
次に、実施例1と同様に冷蔵庫および冷凍庫の箱体をウレタンフォ−ムの発泡雇い治具にセット後、ポリオ−ルとイソシアネ−トの液温を20℃、治具温度を45℃にして硬質ポリウレタンフォ−ムを空隙部分に発泡充填する。その際、注入容積は約200リットルの箱体でゼロパックを設定後、パック率110%で発泡充填して断熱箱体を作製した。断熱箱体の底面中央部分から断熱材フォ−ムサンプルを採取して、コア層密度、熱伝導率、圧縮強度、低温寸法変化率、高温寸法変化率を評価した。さらに、断熱箱体の低温放置(−10℃/48時間)試験を行い、外箱表鉄板の歪み試験前後の歪み量の差および試験後の最大歪み量も評価した。
【0114】
これらの結果を表1に併せて示す。表1から、コア層密度が32.9kg/m3と低密度で熱伝導率が17.8mW/m・Kと低く、圧縮強度も0.14MPaと高く、低温寸法変化率が−1.4%、高温寸法変化率が1.1%と小さい値を示すことが判る。
【0115】
さらに、断熱箱体の外箱表鉄板の歪み試験前後の歪み量差は0.07mmで試験後の最大歪み量も0.29mmと小さい値を示した。さらに、硬質ポリウレタンフォ−ムの発泡充填を行った断熱箱体を形成した冷蔵庫および冷凍庫に、冷凍サイクル部品(圧縮機/コンデンサ/エバポレ−)を組み込んで測定した結果、熱漏洩量が3%低減して消費電力量も約1Kwh/月の省エネ化が達成された。
【0116】
このことから、本実施例に係る硬質ポリウレタンフォームでは、充填する際の膨れ量が小さく、また低密度であり、熱伝導率の低減、圧縮強度、寸法安定性にも優れる硬質ポリウレタンフォームとなる。また、本実施例に係る硬質ポリウレタンフォームを冷蔵庫の断熱材として充填することによって、熱漏洩量が低減され消費電力を低減できる。さらに断熱材の充填量が低減され冷蔵庫のコストを低減できる。また、低温で放置しても冷蔵庫の歪み変形が小さくなり冷蔵庫の外観品質が優れたものとなる。
【0117】
【発明の効果】
本発明によれば、表面の歪み変形が防止され外観品質の優れた冷蔵庫を提供できる。
【図面の簡単な説明】
【図1】冷蔵庫および冷凍庫の断熱箱体および断熱扉にウレタンが充填された断熱材の縦断面図である。
【図2】断熱箱体にウレタンを4点発泡充填する模式図とウレタン測定サンプル採取の模式図である。
【符号の説明】
1…冷蔵庫本体、 2…内箱、 3…冷蔵室、 4…野菜室、 5…冷凍室、6…冷蔵室扉、 7…野菜室扉、 8…上段冷凍室扉、 9…下段冷凍室扉、10…ウレタン断熱材、 11…ウレタン注入ヘッド、 12…ウレタンの流れ、13…ウレタン注入口、 14…サンプル採取位置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerator filled with rigid polyurethane foam.
[0002]
[Prior art]
A heat insulating material using a rigid polyurethane foam having air bubbles in the space between the outer box and the inner box is used for the heat insulating box of the refrigerator. This rigid polyurethane foam is obtained by reacting a polyol component and an isocyanate component in the presence of a foaming agent, a catalyst, and a foam stabilizer. As a conventional foaming agent, trichloromonofluoromethane having low gas thermal conductivity and hardly decomposable has been used for a heat insulating box.
[0003]
However, if it is released into the atmosphere, the ozone layer in the stratified garden will be destroyed and the surface temperature will rise due to the greenhouse effect. The alternative 1,1-dichloro-1-monofluoroethane will be used as a foaming agent for heat insulation members. Although it was used, it is also subject to regulation and is scheduled to be abolished in 2003.
[0004]
On the other hand, as for the so-called non-fluorocarbon foaming agent, in which the destruction of the ozone layer is reduced by not using chlorofluorocarbon, hydrocarbon compounds such as cyclopentane foaming agents have begun to be used as heat insulating materials for refrigerators mainly in Europe. For example, low density, high-rigidity rigid polyurethane foam using a mixed foaming agent of cyclopentane and isopentane, and rigid polyurethane foam having low density and high fluidity, using a mixed foaming agent of cyclopentane and water are used. Insulation boxes and insulation doors for refrigerators and freezers have been proposed. Such conventional techniques are disclosed in JP-A-11-140155, JP-A-11-201628, and JP-A-11-248344.
[0005]
[Problems to be solved by the invention]
However, cyclopentane and isopentane hydrocarbon-based blowing agents have a problem that the thermal conductivity of the gas is high and the heat insulation performance is greatly inferior compared with conventional blowing agents. In particular, a rigid polyurethane foam using a mixed foaming agent of cyclopentane and water is desired to develop a urethane material capable of saving energy by improving heat insulation properties from the viewpoint of global warming and protection of the global environment.
[0006]
On the other hand, storage boxes installed at different temperatures (−18 ° C., 0 ° C., 3 ° C., 5 ° C., etc.) according to the size of the refrigerator and the freezer, the ingredients, and the type of food are in the refrigerator at the top and in the middle. Diversification is progressing with a vegetable room and an upper freezer room and a lower freezer room at the bottom.
[0007]
For this reason, in recent years, with the demands for larger refrigerators and freezers and space saving, the space in the cabinet walls has become narrower and more complicated, and copper pipes, aluminum tape, paper tape, polystyrene pieces, and wiring obstacles Has a large number on the outer surface of the inner box, the foam is less likely to flow inside the refrigerator wall, resulting in incomplete filling of this portion. Solve this and heaven well A urethane material having a low density and good fluidity is preferable for forming a uniform foam at the bottom, bottom, back, handle, and hinge. For this reason, there is an urgent need to develop a material that can reduce the thermal conductivity and secure the strength of the urethane material, which is a mixed foaming agent of cyclopentane and water, as in the case of alternative chlorofluorocarbon.
[0008]
Therefore, the low-density rigid polyurethane foam using a mixed foaming agent of cyclopentane and water has a small amount of foam expansion, a small distortion deformation of the outer case iron plate when left at low temperature, and a thermal conductivity. It is required as a requirement for a heat insulating material that both reduction and compressive strength and dimensional stability are compatible.
[0009]
The formation of bubbles foamed in the polyurethane resin is not only the physical structure such as the generation and growth of bubbles controlled by the amount of foaming agent, the amount of water, catalyst, foam stabilizer, along with the chemical structure of polyol and isocyanate, The compatibility, reactivity, and fluidity during the foaming process of each raw material are thought to have a significant effect. For this reason, in order to satisfy the above requirements, it is necessary to optimize each material.
[0010]
However, a rigid polyurethane foam using a cyclopentane foaming agent has a lower saturated vapor pressure than an alternative fluorocarbon foaming agent, so that the pressure in the cells of the cells is also reduced, and shrinkage after filling tends to occur. For this reason, if the density to be filled is too low, the surface is deformed and the yield of the product is lowered, or the strength of the box and the door is lowered.
[0011]
That is, in the low-density rigid polyurethane foam, the influence of the expansion / contraction of the gas in the bubbles is added, so that the linear expansion coefficient of the foam increases. Here, in filling low-density rigid polyurethane foam, if the amount of filling is increased in order to maintain the shape of the product even if shrinkage occurs after filling, the expansion rate and swelling amount of the box and door during filling will be increased. Will increase. In addition, until now, high-density urethane materials have been mainly used, but due to poor foam fluidity, strength has been promoted by increasing the foaming pressure and increasing the urethane filling amount. There is also a problem that liquid leakage of the urethane foam is likely to occur.
[0012]
In order to achieve compatibility between characteristics using low-density rigid polyurethane foams, the present inventors adjusted the main raw material polyol and isocyanate, foaming agent that forms bubbles, water, the catalyst controlling the reactivity, and interfacial phenomena. The foam stabilizer was examined. Specifically, low-density rigid polyurethane foam reduces the amount of expansion during urethane foam demolding, changes in mold temperature during foaming, and changes in the packing rate of the filling amount. Various proposals were made to optimize the composition of raw materials to find a rigid polyurethane foam with a reduced rate and excellent compressive strength and dimensional stability.
[0013]
An object of the present invention is to provide a refrigerator having excellent appearance quality in which distortion of the surface is prevented from being deformed.
[0014]
[Means for Solving the Problems]
The above object is provided in a refrigerator provided with a heat insulating material filled with a rigid polyurethane foam using at least a polyol, an aromatic isocyanate, and a mixed foaming agent of cyclopentane and water as a blowing agent in a space between the outer box and the inner box. Contains 3 or more components in which an initiator composed of m-tolylenediamine and o-tolylenediamine as a polyol component is added with ethylene oxide and / or propylene oxide In addition, an initiator composed of o-tolylenediamine is used in a smaller amount than an initiator composed of m-tolylenediamine. Filled with rigid polyurethane foam Interruption Achieved with thermal material.
[0015]
Furthermore, the polyol component of the rigid polyurethane foam contains 90% or more of a mixture obtained by adding an initiator composed of m-tolylenediamine, o-tolylenediamine, bisphenol A, and triethanolamine with ethylene oxide and / or propylene oxide. It is a polyether polyol, and the density of the core layer heat insulating material having a thickness of about 20 to 25 mm from a plane portion at least 500 mm or more away from the urethane inlet is 29 to 33 kg / m 3, and the thermal conductivity is 17.5 at an average temperature of 10 ° C. This is achieved by using the heat insulating material having ˜18.0 mW / m · K. Furthermore, the aromatic isocyanate component of the rigid polyurethane foam uses a mixture of prepolymer-modified tolylene diisocyanate with diphenylmethane diisocyanate polynuclear, and 1.2 to 1.6 parts by weight of water with respect to 100 parts by weight of polyol. This is achieved by using the thermal insulation reacted in a mixed blowing agent combined with 14-18 parts by weight of cyclopentane.
[0016]
The polyol component of the rigid polyurethane foam is 45 to 55 parts by weight of a polyol having an OH number of 400 to 500 obtained by adding propylene oxide and ethylene oxide and propylene oxide to m-tolylenediamine, and propylene oxide to o-tolylenediamine. 10 to 20 parts by weight of a polyol having an OH number of 450 to 500 obtained by addition with ethylene oxide and 10 to 20 parts by weight of a polyol having an OH number of 350 to 450 obtained by adding propylene oxide to triethanolamine, bisphenol A 10 to 20 parts by weight of a polyol having an OH number of 250 to 300 obtained by adding propylene oxide to triethanol, 3 to 8 parts by weight of a polyol having an OH number of 450 to 480 obtained by adding propylene oxide to diethanolamine, trimethylo The trimethylolpropane OH number 1256 consists of a mixture of 2 to 5 parts by weight, rigid polyurethane foams average OH number of the polyol is 400 to 450 is achieved by using the heat insulating material filled.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
In order to develop an optimal low-density rigid polyurethane foam for a heat insulating box used for a refrigerator and a freezer, the present inventors reduced the amount of swelling with a mixed foaming agent of cyclopentane and water, and reduced thermal conductivity. The optimum polyol that can achieve both compressive strength and dimensional stability was selected.
[0018]
First, in order to reduce the amount of swelling of the foam and to achieve both reduction in thermal conductivity and compression strength and dimensional stability, an attempt was made to introduce a large amount of an initiator polyol having an aromatic ring that easily causes steric hindrance.
[0019]
However, when the aromatic ring addition polymer is used as a single component in a large amount or mixed with a different component such as polyester polyol, the compatibility of the polyether polyol component is extremely lowered. As a result, there is a problem that turbidity is likely to occur during premixing, the varnish viscosity changes during storage stability, and the filling amount during foaming tends to fluctuate.
[0020]
Therefore, as the optimum polyol used in the present application, as a result of examining various alkylene oxides and the amount of swelling, it has been found that those which are easily dissolved in the cyclopentane blowing agent are effective for foam swelling. Accordingly, an addition polymerization product of propylene oxide was mainly selected, and in order to make other physical properties compatible, ethylene oxide was also used in combination, and a polyether polyol containing no different components such as polyester polyol was obtained.
[0021]
Furthermore, m-tolylenediamine is normally used in aromatic rings, and in order to achieve compatibility of various properties, o-tolylenediamine, which is expected to be highly reactive and cure with m-tolylenediamine addition polymer. It was found that a three-component polyether polyol combined with an addition polymer was effective for the amount of swelling.
[0022]
However, the o-tolylenediamine adduct has a higher varnish viscosity than the m-tolylenediamine adduct, and is likely to be highly reactive. There is a problem that is likely to occur. Therefore, when mixing the o-tolylenediamine adduct, in order to obtain a reduction in varnish viscosity and a balance in reactivity, it should be used in a smaller amount than the m-tolylenediamine adduct and m-tolylenediamine. In order to improve the strength and compatibility of the amine adduct, a propylene oxide adduct and both propylene oxide and ethylene oxide adduct were used in combination.
[0023]
Furthermore, in order to obtain a balance of properties in addition to the initiator having an aromatic ring, an optimal matrix is obtained by adding a polymer added with propylene oxide using a bisphenol A-based initiator as the third component and a triethanolamine-based initiator as the fourth component. Selected over 90% of the ingredients.
[0024]
In order to achieve both reduction of thermal conductivity and compressive strength and dimensional stability, the isocyanate component was selected as a component in which prepolymer-modified tolylene diisocyanate was mixed with a commonly used diphenylmethane diisocyanate polynuclear body. The reason for this is that when diphenylmethane diisocyanate polynuclear body is used, the initial reaction is slow, but the reaction tends to increase the viscosity rapidly, and it turns out that obstacles to fluidity and bubble coalescence are likely to occur. This is because. Therefore, by mixing prepolymer-modified tolylene diisocyanate, the thickening behavior is mild, the concentration of urethane bonds and urea bonds is increased, and the distance between crosslink points is shortened to form uniform fine cells. Was selected.
[0025]
Furthermore, the optimum blending ratio of cyclopentane and water, the amount of swelling of the catalyst and foam stabilizer were reduced, and as a result of studying both low density, reduced thermal conductivity, compression strength and dimensional stability, cyclopentane and water The optimum blending ratio is that 1.2 to 1.6 parts by weight of water and 14 to 18 parts by weight of cyclopentane are combined with 100 parts by weight of polyol, and the main catalyst is trimethylaminoethylpiperazine, pentamethyldiethylenetriami and tris ( A trimerization catalyst such as 3-dimethylaminopropylene) hexahydro-S-triazine was used in combination, and a foam stabilizer having a low surface tension was selected by increasing the rapid reaction and curing properties, thereby completing the present invention.
[0026]
In order to obtain a urethane material that achieves the object of the present invention, the amount of water added to the cyclopentane blowing agent and the auxiliary blowing agent is greatly affected. In general, the density can be easily reduced by using a large amount of both cyclopentane and water.
[0027]
However, when the water content is increased, the amount of blistering and thermal conductivity increases due to an increase in the partial pressure of carbon dioxide in the bubble cell, and when the amount of cyclopentane increases, the compressive strength and dimensional stability tend to be poor. It is done. Therefore, the optimum blending ratio of cyclopentane and water is preferably a combination of 1.2 to 1.6 parts by weight of water and 14 to 18 parts by weight of cyclopentane with respect to 100 parts by weight of polyol.
[0028]
Further, as a result of examining the amount of expansion of the foam, there is a tendency that the amount of expansion of the foam becomes larger as the thickness of the heat insulation panel differs. It is considered that the thicker the panel, the higher the internal temperature of the foam when the heat-insulating material reacts, and the larger the temperature difference between expansion and contraction. Further, when urethane is poured into a box of an actual refrigerator and a freezer and left at a low temperature, there is a problem that appearance deformation of the left and right side iron plate distortion is likely to occur in the box.
[0029]
Examples of the polyol used in the present invention include polyhydric alcohols such as dihydric alcohols such as propylene glycol and dipropylene glycol, trihydric alcohols such as glycerin and trimethylolpropane, diglycerin, methyl glucoside, sorbitol, and sucrose. And trihydric or higher polyhydric alcohols. Alkylene polyamines such as ethylenediamine and diethylenetriamine are used as polyvalent amines, monoethanolamine, diethanolamine, triethanolamine, isopropanolamine and the like as alkanolamines, 2,4-tolylenediamine as aromatic polyvalent amines, 2,3- Tolylenediamine, 2,6-tolylenediamine, 3,4-tolylenediamine, and the like, diaminodiphenylmethane, bisphenol A, polymethylene polyphenylpolyamine, and the like are used.
[0030]
When the average OH value of the polyether polyol mixture composition is less than 400, the compressive strength and dimensional stability are poor, and when it exceeds 450, the foam becomes brittle. The average OH value is a preferable result in producing a rigid polyurethane foam having a stable 400-450.
[0031]
Examples of the reaction catalyst include tertiary amines such as trimethylaminoethylpiperazine, pentamethyldiethylenetriamine, tetramethylhexamethylenediamine, triethylenediamine and tetramethylethylenediamine, and tris (3-dimethylaminopropylene) hexahydro-S-triazine. If the reactivity matches, such as a trimerization catalyst and a slow-acting catalyst used in combination with dipropylene glycol, they can be used.
[0032]
The compounding amount of the reaction catalyst is preferably 2 to 5 parts by weight per 100 parts by weight of the polyol component. Furthermore, for example, B-8462 and B-8461 manufactured by Goldschmidt, X-20-1614 and F-392 manufactured by Shin-Etsu Chemical, and SZ-1127 manufactured by Nihon Unica, Inc. Therefore, those suitable for relatively low emulsifying action with Si molecular weight of 1800 to 3000 and Si content of 25 to 30 are preferable. The blending amount of the foam stabilizer is 1.5 to 4 parts by weight per 100 parts by weight of the polyol component.
[0033]
As the isocyanate, polynuclear diphenylmethane diisocyanate and prepolymer-modified tolylene diisocyanate are mainly used. Tolylene diisocyanate is a mixture of isomers, namely 2,4-isomer 100%, 2,4-isomer / 2, 6-isomer = 80/20, 65/35 (weight ratio) as well as trade name Mitsui Cosmonate TRC Also, prepolymer urethane-modified tolylene diisocyanate, allophanate-modified tolylene diisocyanate, biuret-modified tolylene diisocyanate, isocyanurate-modified tolylene diisocyanate, such as Takenate 4040 manufactured by Takeda Pharmaceutical Co., Ltd. can be used.
[0034]
In addition, as the 4,4′-diphenylmethane diisocyanate, in addition to a pure product as a main component, trade name Mitsui Cosmonate M-200 containing a polyhedron of three or more nuclei, Millionate MR manufactured by Takeda Pharmaceutical Co., Ltd. Diphenylmethane diisocyanate polynuclear materials such as can be used. In addition, isocyanates such as aromatic polyfunctional isocyanates such as polymethylene polyphenyl isocyanate, toluidine isocyanate, and xylylene diisocyanate, and carbodiimide-modified diphenylmethane diisocyanate can also be used.
[0035]
The rigid polyurethane foam of the present invention can be formed by a commonly used foaming machine, for example, a PU-30 type foaming machine manufactured by Promart. Although the foaming conditions vary somewhat depending on the type of foaming machine, the liquid temperature is preferably 18 to 30 ° C., the discharge pressure is 80 to 150 kg / cm 2, the discharge amount is 15 to 30 kg / min, and the mold box temperature is preferably 35 to 45 ° C. More preferably, the liquid temperature is 20 ° C., the discharge pressure is 100 kg / cm 2, the discharge amount is 25 kg / min, and the mold box temperature is around 45 ° C.
[0036]
In this way, it is a rigid polyurethane foam having bubbles of independent structure and using a mixed foaming agent of cyclopentane and water, which has a small amount of swelling when filled, low density, and thermal conductivity. By filling a rigid polyurethane foam excellent in reduction, compressive strength, and dimensional stability as a heat insulating material for a refrigerator, the amount of heat leakage can be reduced and power consumption can be reduced. Furthermore, the filling amount of the heat insulating material is reduced, and the cost of the refrigerator can be reduced. In addition, a refrigerator having excellent appearance quality can be provided by reducing distortion of the refrigerator even when left at a low temperature.
[0037]
Examples of the present invention and comparative examples will be described below in detail. In the following Examples and Comparative Examples, parts or% represents parts by weight and% by weight, respectively.
[0038]
[Example 1]
As the polyol component, 50 parts of propylene oxide having an average hydroxyl value of 450 and m-tolylenediamine-based polyether polyol (referred to as polyol A) added with propylene oxide and ethylene oxide, average hydroxyl value. 13 parts of o-tolylenediamine-based polyether polyol (referred to as polyol B) added with propylene oxide of 480 and triethanolamine-based polyether polyol added with propylene oxide having an average hydroxyl value of 400 15 parts of polyol (referred to as polyol c), 4 parts of a diethylamine-based polyether polyol (referred to as polyol D) added with propylene oxide having an average hydroxyl value of 460, and an average hydroxyl value of 280 Bisphenol A-based polyester polyol added with propylene oxide The blending amount of the cyclopentane blowing agent is 100 parts of a mixed polyol component of 15 parts (referred to as Polyol E) and 3 parts of trimethylolpropane having an average hydroxyl value of 1256 (referred to as Polyol F). 16 parts, 1.5 parts of water and 1.7 parts of trimethylaminoethylpiperazine as reaction catalyst, 0.2 part of pentamethyldiethylenetriamine, 0.4 part of tris (3-dimethylaminopropylene) hexahydro-S-triazine, foam stabilizer 2 parts of organic silicone F-392 was blended.
[0039]
Further, 137 parts of a mixture of diphenylmethane diisocyanate polynuclear substance and prepolymer-modified tolylene diisocyanate were foamed as an isocyanate component. The liquid temperature of the polyol and isocyanate at that time was adjusted to 20 ° C. First, the polyol and isocyanate are stirred and poured into a 600 × 400 × 75 mm aluminum mold adjusted to 45 ° C. to deform the outer case iron plate of the refrigerator and freezer box. The amount of blistering affected was measured. At that time, since the amount of swelling increases with the overpack, a 75 mmt insulation panel made of hard polyurethane foam was removed from the mold after 5 minutes at both pack rates of 115% and 125%. Using this, the amount of swelling due to fluctuations in the pack rate was measured. The results are shown in Table 1.
[0040]
[Table 1]
Figure 0003700499
[0041]
This table shows the physical properties of the insulation material (mold swell amount, core layer density, thermal conductivity, compressive strength, low temperature dimensional change rate, high temperature dimensional change rate, difference in strain before and after the test, using aluminum mold panels and heat insulation boxes. , The maximum strain after the test). From Table 1, it was found that the amount of swelling after 5 minutes from demolding can be reduced to 2.3 mm at a pack rate of 115% and 2.7 mm at a pack rate of 125% as compared with a conventional heat insulating material.
[0042]
Next, since the evaluation was performed with the actual box using the above materials, the results will be described below. In that case, it demonstrates below, referring drawings.
[0043]
FIG. 1 is a longitudinal sectional view in which a refrigerator compartment door 6, a vegetable compartment door 7, an upper freezer compartment door 8, and a lower freezer compartment door 9 are installed in a box 1 of a refrigerator and a freezer. First, after setting the outer box iron plate and the inner box resin wall box to a urethane foam foaming jig, the liquid temperature of polyol and isocyanate is set to 20 ° C and the jig temperature is set to 45 ° C, and the rigid polyurethane foam is foamed in the gap. Fill. At that time, the polyol and isocyanate of the urethane foam caused a chemical reaction, and the foamed urethane foam was injected and filled into the space in the wall of the box by pressurization by the foaming pressure, thereby producing a heat insulating box. At that time, after setting a zero pack of urethane material (minimum injection amount necessary for actual machine filling) with a box having an injection volume of about 200 liters, injection was performed at a 110% pack rate of overpack.
[0044]
FIG. 2 shows a schematic diagram in which urethane is filled into a heat-insulated box by four-point foaming and a schematic diagram of collecting a urethane measurement sample. A thermal insulation foam sample was collected from the bottom center part of the thermal insulation box of the refrigerator and freezer, and various physical properties were evaluated. First, the core layer density is 200 mm × 200 mm × 20 mmt after measuring the sample size and weight, and the value obtained by dividing the weight by volume and the thermal conductivity are also HC-073 type manufactured by Eihiro Seiki Co., Ltd. (heat flow meter method, average temperature 10 ° C.) Was used to evaluate.
[0045]
The compressive strength was evaluated by a value obtained by deforming a foam sample of 50 mm × 50 mm × 20 mmt at a feeding speed of 4 mm / min and dividing the stress at the time of 10% deformation by the original pressure receiving area. The low temperature dimensional change rate and the high temperature dimensional change rate were evaluated by changing the thickness when a 150 mm × 300 mm × 20 mmt foam was left at −20 ° C. for 24 hours or 70 ° C. for 24 hours.
[0046]
These results are also shown in Table 1. From Table 1, the core layer density is as low as 29.2 kg / m 3, the thermal conductivity is as low as 17.6 mW / m · K, the compressive strength is as high as 0.15 MPa, and the low temperature dimensional change rate is −1.1. %, The high temperature dimensional change rate is 1.6%, and the change is small.
[0047]
Furthermore, the amount of strain on the outer box surface iron plate was measured using a strain measuring instrument in which a dial gauge was attached to the center of a square bar having a smooth surface of 300 mm in length. The measurement method is represented by the maximum value of strain when a measuring instrument is applied to the outer box surface iron plate surface. As for the amount of strain on the side of the box, first, the amount of strain before the test is measured and its distribution is clearly shown, and then left in a thermostatic chamber at -10 ° C for 48 hours. Thereafter, the amount of strain was measured immediately after taking out from the temperature-controlled room in the same manner as before the test, and the difference in strain amount before and after the test and the maximum strain amount after the test were evaluated.
[0048]
These results are also shown in Table 1. From Table 1, it can be seen that the strain difference before and after the test is 0.1 mm and the maximum strain is as small as 0.3 mm.
[0049]
Furthermore, as a result of measuring by incorporating a refrigeration cycle component (compressor / condenser / evaporator) into a refrigerator and freezer with a heat insulation box filled with rigid polyurethane foam, the amount of heat leakage was reduced by 4% and consumed. Energy savings of about 1 Kwh / month were achieved.
[0050]
For this reason, the rigid polyurethane foam according to the present example is a rigid polyurethane foam that has a small amount of swelling when filled, has a low density, and has excellent thermal conductivity reduction, compressive strength, and dimensional stability. Moreover, by filling the rigid polyurethane foam according to the present embodiment as a heat insulating material for a refrigerator, the amount of heat leakage can be reduced and the power consumption can be reduced. Furthermore, the filling amount of the heat insulating material is reduced, and the cost of the refrigerator can be reduced. Further, even when left at low temperature, the distortion of the refrigerator is reduced, and the appearance quality of the refrigerator is excellent.
[0051]
[Comparative Example 1]
60 parts of polyol A shown in Table 1, 20 parts of polyol C, 20 parts of polyol D, 12 parts of cyclopentane blowing agent, 1.7 parts of water and 1.8 parts of tetramethylhexamethylenediamine and 0.3 part of pentamethyldiethylenetriamine as a reaction catalyst , 0.5 parts of tris (3-dimethylaminopropylene) hexahydro-S-triazine and 1.8 parts of organic silicone B-8462 as a foam stabilizer were blended. Moreover, it foamed using 140 parts of diphenylmethane diisocyanate polynuclear bodies as isocyanate. The liquid temperature of the polyol and isocyanate at that time was adjusted to 20 ° C.
[0052]
First, the polyol and isocyanate are stirred and poured into a 600 × 400 × 75 mmt aluminum mold adjusted to 40 ° C., and the foam-molded product is removed from the mold using a pack ratio of 115% and 125% of the overpack. The amount of swelling of the rigid polyurethane foam demolded after 5 minutes was measured.
[0053]
Table 1 shows the results of the term. From Table 1, it can be seen that the amount of swelling after 5 minutes from demolding increases to 4.9 mm at a pack rate of 115% and 5.6 mm at a pack rate of 125%.
[0054]
Next, as in Example 1, after setting the outer box iron plate and inner box of the refrigerator and freezer on a urethane foam foaming jig, the polyol and isocyanate liquid temperatures were set to 20 ° C. and the jig temperature was set to 40 ° C. Polyurethane foam is foam-filled in the voids. At that time, a zero pack was set in a box body with an injection volume of about 200 liters, and foam filling was performed at a pack rate of 110% to produce a heat insulating box body for a refrigerator and a freezer. A heat insulation foam sample is taken from the center of the bottom of the heat insulation box, and the core layer density, thermal conductivity, compressive strength, low temperature dimensional change rate, high temperature dimensional change rate are evaluated. (10 ° C./48 hours) test was performed, and the difference in strain amount before and after the strain test of the outer case front iron plate and the maximum strain amount after the test were also evaluated.
[0055]
These results are also shown in Table 1. From Table 1, the core layer density is 34.5 kg / m 3, the thermal conductivity is as high as 18.5 mW / m · K, the compressive strength is also 0.11 MPa, the low temperature dimensional change is -2.1%, and the high temperature dimensional change It can be seen that the rate is as large as 1.8%.
[0056]
Furthermore, as a result of leaving the heat insulation box of the refrigerator and the freezer at a low temperature, the difference in distortion amount between the outer door front iron plate and the distortion test is 0.22 mm, and the maximum distortion amount after the test is as large as 0.66 mm. Distortion deformation occurred in the outer door iron plate of the body.
[0057]
[Example 2]
40 parts of polyol A, 30 parts of polyol B, 28 parts of polyol E, 2 parts of polyol F, 17 parts of cyclopentane blowing agent, 1.3 parts of water and 1.5 parts of tetramethylhexamethylenediamine and pentamethyldiethylenetriamine as reaction catalysts shown in Table 1 0.2 part, 0.6 part of tris (3-dimethylaminopropylene) hexahydro-S-triazine, and 2.2 parts of organic silicone B-8461 as a foam stabilizer were blended. Further, 135 parts of diphenylmethane diisocyanate polynuclear body and prepolymer-modified tolylene diisocyanate were foamed as isocyanate. The liquid temperature of the polyol and isocyanate at that time was adjusted to 25 ° C.
[0058]
First, the polyol and isocyanate are stirred and poured into a 600 × 400 × 75 mmt aluminum mold adjusted to 40 ° C., and the foam-molded product is removed from the mold using a pack ratio of 115% and 125% of the overpack. The amount of swelling of the rigid polyurethane foam demolded after 5 minutes was measured.
[0059]
The results are shown in Table 1. From Table 1, it can be seen that the amount of swelling after 5 minutes of demolding can be reduced to 2.4 mm at a pack rate of 115% and 2.9 mm at a pack rate of 125%, compared to a conventional heat insulating material.
[0060]
Next, after setting the refrigerator and freezer box in a urethane foam foaming jig as in Example 1, the liquid temperature of the polyol and isocyanate was 25 ° C., the jig temperature was 40 ° C., and the rigid polyurethane foam was voided. Fill the part with foam. At that time, a zero pack was set in a box body having an injection volume of about 200 liters, and then foam filling was performed at a pack rate of 115% to produce a heat insulating box body. A heat insulating material foam sample was collected from the bottom center part of the heat insulating box, and the core layer density, thermal conductivity, compressive strength, low temperature dimensional change rate, and high temperature dimensional change rate were evaluated. Furthermore, a low-temperature standing test (−10 ° C./48 hours) of the heat insulation box was performed, and the difference in strain amount before and after the strain test of the outer box surface iron plate and the maximum strain amount after the test were also evaluated.
[0061]
These results are also shown in Table 1. From Table 1, the core layer density is as low as 31.8 kg / m 3, the thermal conductivity is as low as 17.8 mW / m · K, the compressive strength is also 0.14 MPa, the low temperature dimensional change is −1.3%, and the high temperature It can be seen that the dimensional change rate is as small as 1.5%.
[0062]
Further, the strain difference between before and after the strain test of the outer box surface iron plate of the heat insulation box was 0.09 mm, and the maximum strain after the test was as small as 0.29 mm. Furthermore, as a result of measuring by incorporating a refrigeration cycle component (compressor / condenser / evaporator) into a refrigerator and freezer with a heat insulation box filled with rigid polyurethane foam, the amount of heat leakage was reduced by 3% and consumed. Energy savings of about 1 Kwh / month were achieved.
[0063]
For this reason, the rigid polyurethane foam according to the present example is a rigid polyurethane foam that has a small amount of swelling when filled, has a low density, and has excellent thermal conductivity reduction, compressive strength, and dimensional stability. Moreover, by filling the rigid polyurethane foam according to the present embodiment as a heat insulating material for a refrigerator, the amount of heat leakage can be reduced and the power consumption can be reduced. Furthermore, the filling amount of the heat insulating material is reduced, and the cost of the refrigerator can be reduced. Further, even when left at low temperature, the distortion of the refrigerator is reduced, and the appearance quality of the refrigerator is excellent.
[0064]
[Comparative Example 2]
In Table 1, 60 parts of polyol B, 10 parts of polyol C, 20 parts of polyol D, 10 parts of polyol E, 11 parts of cyclopentane blowing agent, 1.4 parts of water, and 1.2 parts of tetramethylhexamethylenediamine as a reaction catalyst and pentamethyldiethylenetriamine 0.5 parts, 0.6 parts of tris (3-dimethylaminopropylene) hexahydro-S-triazine, and 1.8 parts of organic silicone B-8462 as a foam stabilizer were blended. Further, 137 parts of a mixture of diphenylmethane diisocyanate polynuclear and prepolymer-modified tolylene diisocyanate was used as the isocyanate for foaming. The liquid temperature of the polyol and isocyanate at that time was adjusted to 25 ° C.
[0065]
First, the polyol and isocyanate are stirred and poured into a 600 × 400 × 75 mmt aluminum mold adjusted to 40 ° C., and the foam-molded product is removed from the mold using a pack ratio of 115% and 125% of the overpack. The amount of swelling of the rigid polyurethane foam demolded after 5 minutes was measured.
[0066]
The results are shown in Table 1. From Table 1, it can be seen that the swelling amount after 5 minutes from demolding increases to 4.1 mm at a pack rate of 115% and 5.2 mm at a pack rate of 125%.
[0067]
Next, as in Example 1, after setting the outer box iron plate and inner box of the refrigerator and freezer to a urethane foam foaming jig, the liquid temperature of polyol and isocyanate was set to 25 ° C. and the jig temperature was set to 40 ° C. Polyurethane foam is foam-filled in the voids. At that time, a zero pack was set in a box body having an injection volume of about 200 liters, and foam filling was performed at a pack rate of 115% to produce a heat insulating box body for a refrigerator and a freezer. A heat insulation foam sample is taken from the center of the bottom of the heat insulation box, and the core layer density, thermal conductivity, compressive strength, low temperature dimensional change rate, high temperature dimensional change rate are evaluated. (10 ° C./48 hours) test was performed, and the difference in strain amount before and after the strain test of the outer case front iron plate and the maximum strain amount after the test were also evaluated.
[0068]
These results are also shown in Table 1. From Table 1, the core layer density is 35.2 kg / m 3, the thermal conductivity is as high as 18.8 mW / m · K, the compressive strength is as low as 0.09 MPa, the low temperature dimensional change rate is −2.3%, and the high temperature It can be seen that the dimensional change rate is as large as 2.2%.
[0069]
Furthermore, as a result of conducting a low temperature standing test of the heat insulation box of the refrigerator and freezer, the difference in strain amount before and after the strain test of the outer door front iron plate is 0.16 mm and the maximum strain amount after the test is as large as 0.56 mm. Distortion deformation occurred in the outer door iron plate of the box.
[0070]
Example 3
30 parts of polyol A, 20 parts of polyol B, 20 parts of polyol C, 10 parts of polyol D and 20 parts of polyol E shown in Table 1, 18 parts of cyclopentane blowing agent, 1.2 parts of water and 1.7 parts of tetramethylhexamethylenediamine as a reaction catalyst And 0.3 parts of pentamethyldiethylenetriamine, 0.5 parts of tris (3-dimethylaminopropylene) hexahydro-S-triazine, and 2.2 parts of organic silicone B-8461 as a foam stabilizer were blended. Further, diphenylmethane diisocyanate polynuclear substance and prepolymer-modified tolylene diisocyanate were foamed using 140 parts as isocyanate. The liquid temperature of the polyol and isocyanate at that time was adjusted to 20 ° C. First, the polyol and isocyanate are stirred and poured into a 600 × 400 × 75 mmt aluminum mold adjusted to 45 ° C., and the foam molded product is removed from the mold using a pack ratio of 115% and 125% of the overpack. The amount of swelling of the rigid polyurethane foam demolded after 5 minutes was measured.
[0071]
The results are shown in Table 1. From Table 1, it can be seen that the amount of swelling after 5 minutes of demolding can be reduced to 2.4 mm at a pack rate of 115% and 3.1 mm at a pack rate of 125% as compared with the conventional heat insulating material.
[0072]
Next, after setting the refrigerator and freezer box on a urethane foam foaming jig as in Example 1, the liquid temperature of the polyol and isocyanate was set to 20 ° C., the jig temperature was set to 45 ° C., and the rigid polyurethane foam was voided. Fill the part with foam. At that time, a zero pack was set in a box body having an injection volume of about 200 liters, and then foam filling was performed at a pack rate of 110% to produce a heat insulating box body. A heat insulating material foam sample was collected from the bottom center part of the heat insulating box, and the core layer density, thermal conductivity, compressive strength, low temperature dimensional change rate, and high temperature dimensional change rate were evaluated. Furthermore, a low-temperature standing test (−10 ° C./48 hours) of the heat insulation box was performed, and the difference in strain amount before and after the strain test of the outer box surface iron plate and the maximum strain amount after the test were also evaluated.
[0073]
These results are also shown in Table 1. From Table 1, the core layer density is as low as 32.5 kg / m3, the thermal conductivity is as low as 17.5 mW / m · K, the compressive strength is as high as 0.13 MPa, and the low temperature dimensional change rate is -1.1%. It can be seen that the high temperature dimensional change rate is as small as 1.4%.
[0074]
Further, the difference in strain amount before and after the strain test of the outer box surface iron plate of the heat insulation box was 0.07 mm, and the maximum strain amount after the test was as small as 0.27 mm. Furthermore, as a result of measuring by incorporating a refrigeration cycle component (compressor / condenser / evaporator) into a refrigerator and freezer with a heat insulation box filled with rigid polyurethane foam, the amount of heat leakage was reduced by 3.5%. Energy savings of about 1 Kwh / month were achieved.
[0075]
For this reason, the rigid polyurethane foam according to the present example is a rigid polyurethane foam that has a small amount of swelling when filled, has a low density, and has excellent thermal conductivity reduction, compressive strength, and dimensional stability. Moreover, by filling the rigid polyurethane foam according to the present embodiment as a heat insulating material for a refrigerator, the amount of heat leakage can be reduced and the power consumption can be reduced. Furthermore, the filling amount of the heat insulating material is reduced, and the cost of the refrigerator can be reduced. Further, even when left at low temperature, the distortion of the refrigerator is reduced, and the appearance quality of the refrigerator is excellent.
[0076]
Example 4
45 parts of polyol A, 15 parts of polyol B, 10 parts of polyol C, 7 parts of polyol D, 20 parts of polyol E, 3 parts of polyol F, 16 parts of cyclopentane blowing agent, 1.5 parts of water and tetramethylhexamethylenediamine 1 as a reaction catalyst shown in Table 1 0.5 part, 0.3 part of pentamethyldiethylenetriamine, 0.5 part of tris (3-dimethylaminopropylene) hexahydro-S-triazine, and 2.2 parts of organic silicone B-8461 as a foam stabilizer were blended. Further, diphenylmethane diisocyanate polynuclear substance and prepolymer-modified tolylene diisocyanate were foamed using 132 parts as isocyanate. The liquid temperature of the polyol and isocyanate at that time was adjusted to 20 ° C.
[0077]
First, the polyol and isocyanate are stirred and poured into a 600 × 400 × 75 mmt aluminum mold adjusted to 40 ° C., and the foam-molded product is removed from the mold using a pack ratio of 115% and 125% of the overpack. The amount of swelling of the rigid polyurethane foam demolded after 5 minutes was measured.
[0078]
The results are shown in Table 1. From Table 1, it was found that the amount of swelling after 5 minutes from demolding can be reduced to 2.6 mm at a pack rate of 115% and 3.2 mm at a pack rate of 125% as compared with the conventional heat insulating material.
[0079]
Next, after setting the refrigerator and freezer box on the urethane foam foaming jig as in Example 1, the liquid temperature of the polyol and isocyanate was set to 20 ° C., the jig temperature was set to 40 ° C., and the rigid polyurethane foam was voided. Fill the part with foam. At that time, a zero pack was set in a box body having an injection volume of about 200 liters, and then foam filling was performed at a pack rate of 110% to produce a heat insulating box body. A heat insulating material foam sample was collected from the bottom center part of the heat insulating box, and the core layer density, thermal conductivity, compressive strength, low temperature dimensional change rate, and high temperature dimensional change rate were evaluated. Furthermore, a low-temperature standing test (−10 ° C./48 hours) of the heat insulation box was performed, and the difference in strain amount before and after the strain test of the outer box surface iron plate and the maximum strain amount after the test were also evaluated.
[0080]
These results are also shown in Table 1. From Table 1, the core layer density is as low as 30.5 kg / m 3, the thermal conductivity is as low as 17.9 mW / m · K, the compressive strength is as high as 0.16 MPa, and the low temperature dimensional change is −0.9%. The high temperature dimensional change rate was as small as 1.6%.
[0081]
Further, the difference in strain amount before and after the strain test of the outer box surface iron plate of the heat insulation box was 0.08 mm, and the maximum strain amount after the test was as small as 0.29 mm. Furthermore, as a result of measuring by incorporating a refrigeration cycle component (compressor / condenser / evaporator) into a refrigerator and freezer with a heat insulation box filled with rigid polyurethane foam, the amount of heat leakage was reduced by 3% and consumed. Energy savings of about 1 Kwh / month were achieved.
[0082]
For this reason, the rigid polyurethane foam according to the present example is a rigid polyurethane foam that has a small amount of swelling when filled, has a low density, and has excellent thermal conductivity reduction, compressive strength, and dimensional stability. Moreover, by filling the rigid polyurethane foam according to the present embodiment as a heat insulating material for a refrigerator, the amount of heat leakage can be reduced and the power consumption can be reduced. Furthermore, the filling amount of the heat insulating material is reduced, and the cost of the refrigerator can be reduced. Further, even when left at low temperature, the distortion of the refrigerator is reduced, and the appearance quality of the refrigerator is excellent.
[0083]
[Comparative Example 3]
13 parts of cyclopentane foaming agent in 20 parts of m-tolylenediamine-based polyether polyol A, 30 parts of polyol B, 10 parts of polyol C, 10 parts of polyol D, 20 parts of polyol E and 10 parts of polyol F shown in Table 1 and water 1.1 parts, 1.8 parts of tetramethylhexamethylenediamine as a reaction catalyst, 0.3 parts of pentamethyldiethylenetriamine, 0.3 parts of tris (3-dimethylaminopropylene) hexahydro-S-triazine, organosilicone as a foam stabilizer Of B-8462 was blended. Further, 135 parts of diphenylmethane diisocyanate polynuclear body and prepolymer-modified tolylene diisocyanate were foamed as isocyanate. The liquid temperature of the polyol and isocyanate at that time was adjusted to 20 ° C.
[0084]
First, the polyol and isocyanate are stirred and poured into a 600 × 400 × 75 mmt aluminum mold adjusted to 45 ° C., and the foam molded product is removed from the mold using a pack ratio of 115% and 125% of the overpack. The amount of swelling of the rigid polyurethane foam demolded after 5 minutes was measured.
[0085]
The results are shown in Table 1. From Table 1, it can be seen that the amount of swelling after 5 minutes of demolding increases to 4.5 mm at a pack rate of 115% and 5.5 mm at a pack rate of 125%.
[0086]
Next, as in Example 1, after setting the outer box iron plate and inner box of the refrigerator and freezer to a urethane foam foaming jig, the liquid temperature of polyol and isocyanate was set to 20 ° C. and the jig temperature was set to 45 ° C. Polyurethane foam is foam-filled in the voids. At that time, a zero pack was set in a box body having an injection volume of about 200 liters, and foam filling was performed at a pack rate of 115% to produce a heat insulating box body for a refrigerator and a freezer. A heat insulation foam sample is taken from the center of the bottom of the heat insulation box, and the core layer density, thermal conductivity, compressive strength, low temperature dimensional change rate, high temperature dimensional change rate are evaluated. (10 ° C./48 hours) test was performed, and the difference in strain amount before and after the strain test of the outer case front iron plate and the maximum strain amount after the test were also evaluated.
[0087]
These results are also shown in Table 1. From Table 1, the core layer density is 35.8 kg / m 3, the thermal conductivity is as high as 18.3 mW / m · K, the compressive strength is also 0.12 MPa, the low temperature dimensional change rate is -1.9%, and the high temperature dimensional change. It can be seen that the rate is as large as 2.1%.
[0088]
Furthermore, as a result of conducting a low temperature standing test of the heat insulation box of the refrigerator and the freezer, the difference in strain amount before and after the strain test of the outer door front iron plate is 0.15 mm and the maximum strain amount after the test is as large as 0.63 mm. Distortion deformation occurred in the outer door iron plate of the box.
[0089]
Example 5
30 parts of polyol A, 20 parts of polyol B, 20 parts of polyol C, 10 parts of polyol D and 20 parts of polyol E shown in Table 1, 14 parts of cyclopentane blowing agent, 1.6 parts of water and 1.5 parts of tetramethylhexamethylenediamine as a reaction catalyst And 0.3 part of pentamethyldiethylenetriamine, 0.5 part of tris (3-dimethylaminopropylene) hexahydro-S-triazine, and 2.2 parts of organic silicone B-8461 as a foam stabilizer were blended. Further, diphenylmethane diisocyanate polynuclear substance and prepolymer-modified tolylene diisocyanate were foamed using 140 parts as isocyanate. The liquid temperature of the polyol and isocyanate at that time was adjusted to 20 ° C.
[0090]
First, the polyol and isocyanate are stirred and poured into a 600 × 400 × 75 mmt aluminum mold adjusted to 40 ° C., and the foam-molded product is removed from the mold using a pack ratio of 115% and 125% of the overpack. The amount of swelling of the rigid polyurethane foam demolded after 5 minutes was measured.
[0091]
The results are shown in Table 1. From Table 1, it was found that the amount of swelling after 5 minutes from demolding can be reduced to 2.4 mm at a pack rate of 115% and 2.9 mm at a pack rate of 125% as compared with the conventional heat insulating material.
[0092]
Next, after setting the refrigerator and freezer box on a urethane foam foaming jig as in Example 1, the liquid temperature of the polyol and isocyanate was 20 ° C, and the jig temperature was 40 ° C. Then, the rigid polyurethane foam is foam-filled in the voids. At that time, a zero pack was set in a box body having an injection volume of about 200 liters, and then foam filling was performed at a pack rate of 110% to produce a heat insulating box body. A thermal insulation form sample was taken from the bottom center part of the heat insulation box, and the core layer density, thermal conductivity, compressive strength, low temperature dimensional change rate, and high temperature dimensional change rate were evaluated.
[0093]
Furthermore, a low-temperature standing test (−10 ° C./48 hours) of the heat insulation box was performed, and the difference in strain amount before and after the strain test of the outer box surface iron plate and the maximum strain amount after the test were also evaluated.
[0094]
These results are also shown in Table 1. From Table 1, the core layer density is as low as 32 kg / m3, the thermal conductivity is as low as 18 mW / m · K, the compressive strength is as high as 0.12 MPa, the low-temperature dimensional change rate is -0.8%, and the high-temperature dimensional change is high. The rate was as small as 1.5%. Furthermore, the difference in strain amount before and after the strain test of the outer box surface iron plate of the heat insulation box was 0.09 mm, and the maximum strain amount after the test was as small as 0.26 mm.
[0095]
Furthermore, as a result of measuring by incorporating a refrigeration cycle component (compressor / condenser / evaporator) into a refrigerator and freezer with a heat insulation box filled with rigid polyurethane foam, the amount of heat leakage was reduced by 4%. As a result, energy savings of about 1 Kwh / month were achieved.
[0096]
For this reason, the rigid polyurethane foam according to the present example is a rigid polyurethane foam that has a small amount of swelling when filled, has a low density, and has excellent thermal conductivity reduction, compressive strength, and dimensional stability. Moreover, by filling the rigid polyurethane foam according to the present embodiment as a heat insulating material for a refrigerator, the amount of heat leakage can be reduced and the power consumption can be reduced. Furthermore, the filling amount of the heat insulating material is reduced, and the cost of the refrigerator can be reduced. Further, even when left at low temperature, the distortion of the refrigerator is reduced, and the appearance quality of the refrigerator is excellent.
[0097]
[Comparative Example 4]
Cyclopentane foamed on m-tolylenediamine-based polyol A25 parts, polyol B35 parts, polyol C20 parts, polyol D10 parts and polyol F5 parts added with propylene oxide as shown in Table 1 14 parts of agent, 1.0 part of water and 1.2 parts of tetramethylhexamethylenediamine and 0.5 part of pentamethyldiethylenetriamine as reaction catalyst, 0.5 part of tris (3-dimethylaminopropylene) hexahydro-S-triazine, As a foam stabilizer, 1.8 parts of organic silicone B-8462 was blended. Further, 140 parts of diphenylmethane diisocyanate polynuclear substance and prepolymer-modified tolylene diisocyanate were foamed as isocyanate. The liquid temperature of the polyol and isocyanate at that time was adjusted to 20 ° C.
[0098]
First, the polyol and isocyanate are stirred and injected into a 600 × 400 × 75 mmt aluminum mold adjusted to 40 ° C., and the packing ratio of 115% and 125% of the overpack is obtained. Using the foamed molded product, the amount of swelling of the rigid polyurethane foam obtained by removing the mold after 5 minutes from the mold was measured.
[0099]
The results are shown in Table 1. From Table 1, it can be seen that the amount of swelling after 5 minutes of demolding increases to 4.8 mm at a pack rate of 115% and 5.7 mm at a pack rate of 125%.
[0100]
Next, after setting the outer box iron plate and the inner box of the refrigerator and freezer to the foaming jig of urethane foam in the same manner as in Example 1, the liquid temperature of the polyol and isocyanate was set to 20 ° C., the jig temperature. Is set to 40 ° C., and the rigid polyurethane foam is foam-filled in the voids. At that time, a zero pack was set in a box body with an injection volume of about 200 liters, and foam filling was performed at a pack rate of 110% to produce a heat insulating box body for a refrigerator and a freezer. A thermal insulation foam sample is collected from the bottom center of the heat insulation box, and the core layer density, thermal conductivity, compressive strength, low temperature dimensional change rate, high temperature dimensional change rate are evaluated, and the heat insulation box is left at low temperature. A test was performed (−10 ° C./48 hours), and the difference in strain amount before and after the strain test of the outer case front iron plate and the maximum strain amount after the test were also evaluated.
[0101]
These results are also shown in Table 1. From Table 1, the core layer density is 35.5 kg / m 3, the thermal conductivity is as high as 18.4 mW / m · K, the compressive strength is also as low as 0.11 MPa, the low-temperature dimensional change rate is −1.8%, and the high temperature The dimensional change rate is 1.9%, indicating a large change.
[0102]
Furthermore, as a result of conducting a low-temperature standing test of the heat insulation box of the refrigerator and freezer, the difference in strain amount before and after the strain test of the outer door front iron plate is 0.19 mm and the maximum strain amount after the test is as large as 0.58 mm. Distortion deformation occurred in the outer door iron plate of the box.
[0103]
Example 6
Table 1 Polyol A 40 parts, Polyol B 23 parts, Polyol C 15 parts, Polyol D 5 parts, Polyol E 15 parts and Polyol F 2 parts 15 parts cyclopentane blowing agent, water 1 .4 parts and 1.5 parts of tetramethylhexamethylenediamine as a reaction catalyst, 0.2 parts of pentamethyldiethylenetriamine, 0.4 parts of tris (3-dimethylaminopropylene) hexahydro-S-triazine, and organic silico as a foam stabilizer 2.2 parts of B-8461. Further, 135 parts of diphenylmethane diisocyanate polynucleate and prepolymer-modified tolylene diisocyanate were foamed as isocyanate. The liquid temperature of the polyol and isocyanate at that time was adjusted to 20 ° C.
[0104]
First, the polyol and isocyanate are stirred and poured into a 600 × 400 × 75 mmt aluminum mold adjusted to 45 ° C., and the packing ratio of 115% and 125% of the overpack is obtained. Using the foamed molded product, the amount of swelling of the rigid polyurethane foam obtained by removing the mold after 5 minutes from the mold was measured.
[0105]
The results are shown in Table 1. From Table 1, it can be seen that the amount of swelling after 5 minutes of demolding can be reduced to 2.6 mm at a pack rate of 115% and 3.1 mm at a pack rate of 125% as compared with the conventional heat insulating material.
[0106]
Next, after setting the refrigerator and freezer box on a urethane foam foaming jig as in Example 1, the liquid temperature of the polyol and isocyanate was 20 ° C, and the jig temperature was 45 ° C. Then, the rigid polyurethane foam is foam-filled in the voids. At that time, a zero pack was set in a box body having an injection volume of about 200 liters, and then foam filling was performed at a pack rate of 115% to produce a heat insulating box body. A thermal insulation form sample was taken from the bottom center part of the heat insulation box, and the core layer density, thermal conductivity, compressive strength, low temperature dimensional change rate, and high temperature dimensional change rate were evaluated. Furthermore, a low-temperature standing test (−10 ° C./48 hours) of the heat insulation box was performed, and the difference in strain amount before and after the strain test of the outer box surface iron plate and the maximum strain amount after the test were also evaluated.
[0107]
These results are also shown in Table 1. From Table 1, the core layer density is as low as 31.5 kg / m 3, the thermal conductivity is as low as 17.9 mW / m · K, the compressive strength is as high as 0.15 MPa, and the low temperature dimensional change is −1.2%. The high temperature dimensional change rate was as small as 1.3%. Further, the strain difference between before and after the strain test of the outer box surface iron plate of the heat insulation box was 0.08 mm, and the maximum strain after the test was as small as 0.27 mm.
[0108]
Furthermore, as a result of measuring by incorporating a refrigeration cycle component (compressor / condenser / evaporator) into a refrigerator and freezer with a heat insulation box filled with rigid polyurethane foam, the amount of heat leakage was reduced by 3%. As a result, energy savings of about 1 Kwh / month were achieved.
[0109]
For this reason, the rigid polyurethane foam according to the present example is a rigid polyurethane foam that has a small amount of swelling when filled, has a low density, and has excellent thermal conductivity reduction, compressive strength, and dimensional stability. Moreover, by filling the rigid polyurethane foam according to the present embodiment as a heat insulating material for a refrigerator, the amount of heat leakage can be reduced and the power consumption can be reduced. Furthermore, the filling amount of the heat insulating material is reduced, and the cost of the refrigerator can be reduced. Further, even when left at low temperature, the distortion of the refrigerator is reduced, and the appearance quality of the refrigerator is excellent.
[0110]
Example 7
Table 1 Polyol A 40 parts, Polyol B 20 parts, Polyol C 20 parts, Polyol D 10 parts and Polyol E 10 parts 16 parts cyclopentane blowing agent, 1.5 parts water and reaction catalyst Tetramethylhexamethylenediamine 1.5 parts, pentamethyldiethylenetriamine 0.3 parts, tris (3-dimethylaminopropylene) hexahydro-S-triazine 0.5 parts, and organic silicone B-8461 as a foam stabilizer. 2.2 parts were blended. Further, 140 parts of diphenylmethane diisocyanate polynuclear substance and prepolymer-modified tolylene diisocyanate were foamed as isocyanate. The liquid temperature of the polyol and isocyanate at that time was adjusted to 20 ° C.
[0111]
First, the polyol and isocyanate are stirred and poured into a 600 × 400 × 75 mmt aluminum mold adjusted to 45 ° C., and the packing ratio of 115% and 125% of the overpack is obtained. Using the foamed molded product, the amount of swelling of the rigid polyurethane foam obtained by removing the mold after 5 minutes from the mold was measured.
[0112]
The results are shown in Table 1. From Table 1, it can be seen that the amount of swelling after 5 minutes of demolding can be reduced to 2.3 mm at a pack rate of 115% and 2.8 mm at a pack rate of 125%, compared to a conventional heat insulating material.
[0113]
Next, after setting the refrigerator and freezer box on a urethane foam foaming jig as in Example 1, the liquid temperature of the polyol and isocyanate was 20 ° C, and the jig temperature was 45 ° C. Then, the rigid polyurethane foam is foam-filled in the voids. At that time, a zero pack was set in a box body having an injection volume of about 200 liters, and then foam filling was performed at a pack rate of 110% to produce a heat insulating box body. A thermal insulation form sample was taken from the bottom center part of the heat insulation box, and the core layer density, thermal conductivity, compressive strength, low temperature dimensional change rate, and high temperature dimensional change rate were evaluated. Furthermore, a low-temperature standing test (−10 ° C./48 hours) of the heat insulation box was performed, and the difference in strain amount before and after the strain test of the outer box surface iron plate and the maximum strain amount after the test were also evaluated.
[0114]
These results are also shown in Table 1. From Table 1, the core layer density is as low as 32.9 kg / m3, the thermal conductivity is as low as 17.8 mW / mK, the compressive strength is as high as 0.14 MPa, and the low temperature dimensional change rate is -1.4%. It can be seen that the high temperature dimensional change rate is as small as 1.1%.
[0115]
Further, the difference in strain amount before and after the strain test of the outer box surface iron plate of the heat insulation box was 0.07 mm, and the maximum strain amount after the test was as small as 0.29 mm. Furthermore, as a result of measuring by incorporating a refrigeration cycle component (compressor / condenser / evaporator) into a refrigerator and freezer with a heat insulation box filled with rigid polyurethane foam, the amount of heat leakage was reduced by 3%. As a result, energy savings of about 1 Kwh / month were achieved.
[0116]
For this reason, the rigid polyurethane foam according to the present example is a rigid polyurethane foam that has a small amount of swelling when filled, has a low density, and has excellent thermal conductivity reduction, compressive strength, and dimensional stability. Moreover, by filling the rigid polyurethane foam according to the present embodiment as a heat insulating material for a refrigerator, the amount of heat leakage can be reduced and the power consumption can be reduced. Furthermore, the filling amount of the heat insulating material is reduced, and the cost of the refrigerator can be reduced. Further, even when left at low temperature, the distortion of the refrigerator is reduced, and the appearance quality of the refrigerator is excellent.
[0117]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the distortion deformation of the surface is prevented and the refrigerator excellent in external appearance quality can be provided.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a heat insulating material in which urethane is filled in a heat insulating box and a heat insulating door of a refrigerator and a freezer.
FIG. 2 is a schematic diagram in which urethane is filled into a heat-insulating box by four-point foaming, and a schematic diagram of sampling of a urethane measurement sample.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Refrigerator main body, 2 ... Inner box, 3 ... Cold room, 4 ... Vegetable room, 5 ... Freezer room, 6 ... Cold room door, 7 ... Vegetable room door, 8 ... Upper freezer door, 9 ... Lower freezer door DESCRIPTION OF SYMBOLS 10 ... Urethane heat insulating material, 11 ... Urethane injection head, 12 ... Flow of urethane, 13 ... Urethane inlet, 14 ... Sample collection position

Claims (4)

外箱と内箱の間の空間に、少なくともポリオール、芳香族イソシアネートと発泡剤としてシクロペンタンと水の混合発泡剤を用いた硬質ポリウレタンフォームが充填された断熱材を備える冷蔵庫において、
ポリオール成分としてm−トリレンジアミンとo−トリレンジアミンからなる開始剤をエチレンオキサイドおよび/またはプロピレンオキサイドで付加した混合物を3成分以上含有し、o−トリレンジアミンからなる開始剤をm−トリレンジアミンからなる開始剤より少ない配合量で使用される硬質ポリウレタンフォームが充填された断熱材を備える冷蔵庫。
In a refrigerator provided with a heat insulating material filled with a rigid polyurethane foam using at least a polyol, an aromatic isocyanate and a mixed foaming agent of cyclopentane and water as a blowing agent in a space between the outer box and the inner box,
As a polyol component, it contains at least 3 components of a mixture obtained by adding an initiator composed of m-tolylenediamine and o-tolylenediamine with ethylene oxide and / or propylene oxide, and an initiator composed of o-tolylenediamine is m-triylene. refrigerators rigid polyurethane foams used in smaller amounts than the initiator consisting of diamine comprises a cross heat material filled.
前記硬質ポリウレタンフォームのポリオール成分が、m−トリレンジアミン、o−トリレンジアミン、ビスフェノールA、トリエタノールアミンからなる開始剤をエチレンオキサイドおよび/またはプロピレンオキサイドで付加した混合物を90%以上含むポリエーテルポリオールであり、ウレタン注入口から少なくとも500mm以上離れた平面部分から厚みが約20〜25mmのコア層断熱材の密度が29〜33kg/m3、熱伝導率が平均温度10℃で17.5〜18.0mW/m・Kを有する前記断熱材を備えた請求項1記載の冷蔵庫。  Polyether containing 90% or more of a mixture in which an initiator composed of m-tolylenediamine, o-tolylenediamine, bisphenol A, and triethanolamine is added with ethylene oxide and / or propylene oxide as the polyol component of the rigid polyurethane foam. A density of a core layer heat insulating material having a thickness of about 20 to 25 mm from a plane portion at least 500 mm or more away from a urethane injection port is 29 to 33 kg / m 3, and a thermal conductivity is 17.5 to 18 at an average temperature of 10 ° C. The refrigerator of Claim 1 provided with the said heat insulating material which has 0.0 mW / m * K. 前記硬質ポリウレタンフォームの芳香族イソシアネート成分が、ジフェニルメタンジイソシアネート多核体にプレポリマー変性トリレンジイソシアネートの混合物を使用し、さらにポリオール100重量部に対して1.2〜1.6重量部の水と14〜18重量部のシクロペンタンを組合わせた混合発泡剤中で反応させて得られた前記断熱材を備えた請求項2記載の冷蔵庫。  The aromatic isocyanate component of the rigid polyurethane foam uses diphenylmethane diisocyanate polynuclear mixture of prepolymer-modified tolylene diisocyanate, and further, 1.2 to 1.6 parts by weight of water and 14 to 14 parts by weight per 100 parts by weight of polyol. The refrigerator according to claim 2, comprising the heat insulating material obtained by reacting in a mixed foaming agent in which 18 parts by weight of cyclopentane is combined. 前記硬質ポリウレタンフォームのポリオール成分が、m−トリレンジアミンにプロピレンオキサイドおよびエチレンオキサイドとプロピレンオキサイドを付加して得られるOH価400〜500のポリオール45〜55重量部、o−トリレンジアミンにプロピレンオキサイドとエチレンオキサイドで付加して得られるOH価450〜500のポリオールを10〜20重量部、トリエタノールアミンにプロピレンオキサイドで付加して得られるOH価350〜450のポリオール10〜20重量部、ビスフェノールAにプロピレンオキサイドで付加して得られるOH価250〜300のポリオール10〜20重量部、ジエタノールアミンにプロピレンオキサイドで付加して得られるOH価450〜480のポリオール3〜8重量部、トリメチロ−ルプロパンOH価1256を2〜5重量部の混合物からなり、該ポリオールの平均OH価が400〜450である硬質ポリウレタンフォームが充填された前記断熱材を備えた請求項3記載の冷蔵庫。  The polyol component of the rigid polyurethane foam is 45 to 55 parts by weight of a polyol having an OH number of 400 to 500 obtained by adding propylene oxide and ethylene oxide and propylene oxide to m-tolylenediamine, and propylene oxide to o-tolylenediamine. 10 to 20 parts by weight of a polyol having an OH number of 450 to 500 obtained by addition with ethylene oxide and 10 to 20 parts by weight of a polyol having an OH number of 350 to 450 obtained by adding propylene oxide to triethanolamine, bisphenol A 10 to 20 parts by weight of a polyol having an OH number of 250 to 300 obtained by adding propylene oxide to diethanolamine, 3 to 8 parts by weight of a polyol having an OH number of 450 to 480 obtained by adding propylene oxide to diethanolamine, trimethylo Trimethylolpropane OH number 1256 and consists of a mixture of 2 to 5 parts by weight, the refrigerator according to claim 3, wherein the average OH value of the polyol with the insulation rigid polyurethane foam is filled is 400 to 450.
JP31474299A 1999-11-05 1999-11-05 refrigerator Expired - Lifetime JP3700499B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP31474299A JP3700499B2 (en) 1999-11-05 1999-11-05 refrigerator
KR1020000045801A KR100354637B1 (en) 1999-11-05 2000-08-08 A Refrigerator
CNB001269402A CN1133676C (en) 1999-11-05 2000-09-08 Electric refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31474299A JP3700499B2 (en) 1999-11-05 1999-11-05 refrigerator

Publications (2)

Publication Number Publication Date
JP2001133135A JP2001133135A (en) 2001-05-18
JP3700499B2 true JP3700499B2 (en) 2005-09-28

Family

ID=18057048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31474299A Expired - Lifetime JP3700499B2 (en) 1999-11-05 1999-11-05 refrigerator

Country Status (3)

Country Link
JP (1) JP3700499B2 (en)
KR (1) KR100354637B1 (en)
CN (1) CN1133676C (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002238861A1 (en) * 2002-03-13 2003-09-22 Matsushita Refrigeration Company Refrigerator
KR101128537B1 (en) 2009-10-12 2012-03-23 김영일 The back board for refrigerator using the aerogel
JP5889707B2 (en) * 2012-04-23 2016-03-22 日立アプライアンス株式会社 Premix polyol composition for rigid urethane foam, method for producing rigid urethane foam using the same, and insulated door body
KR101444530B1 (en) * 2012-04-23 2014-10-30 히타치 어플라이언스 가부시키가이샤 Insulation door and insulation box structure
JP5801247B2 (en) * 2012-04-23 2015-10-28 日立アプライアンス株式会社 Heat insulation door, heat insulation box and method for manufacturing heat insulation door
EP2900719B1 (en) * 2012-09-27 2016-11-09 Basf Se Improved rigid polyurethane and polyisocyanurate foams
JP2015075308A (en) * 2013-10-10 2015-04-20 日立アプライアンス株式会社 Tank unit, hot water system, and formable heat insulation material
CN105218713B (en) * 2014-05-27 2018-05-11 中国石油化工集团公司 A kind of polyvinyl alcohol and its preparation method and application
JP6655277B2 (en) * 2014-06-02 2020-02-26 東芝ライフスタイル株式会社 refrigerator
CN107177028B (en) * 2017-06-13 2020-08-04 合肥华凌股份有限公司 Combined polyether, polyurethane foam and preparation method and application thereof
CN109251304A (en) * 2018-08-23 2019-01-22 合肥金菱电器有限公司 A kind of flame-retardant polyurethane foam plastic and preparation method thereof
KR102179630B1 (en) * 2020-04-06 2020-11-17 나성호 Automatic vending machine
KR102548562B1 (en) * 2022-06-10 2023-06-28 케이피엑스케미칼 주식회사 Insulating materials for refrigeration system including rigid polyurethane foams made using polyol initiated by meta-toluenediamine

Also Published As

Publication number Publication date
CN1133676C (en) 2004-01-07
KR100354637B1 (en) 2002-09-30
JP2001133135A (en) 2001-05-18
KR20010050011A (en) 2001-06-15
CN1295225A (en) 2001-05-16

Similar Documents

Publication Publication Date Title
US11505670B2 (en) Polyurethane foams co-blown with a mixture of a hydrocarbon and a halogenated olefin
JP3700499B2 (en) refrigerator
CN102079803B (en) Full-water-type combined polyether and application method thereof, and polyurethane rigid foam composition
CN104628978A (en) Composition, rigid polyurethane foam material and refrigeration equipment
CA2245291A1 (en) Thermally stable rigid foams based on isocyanate and having low brittleness and low thermal conductivity
EP0372539B1 (en) Polyol composition, polyisocyanate-based foams prepared therefrom and process for preparing the same
EP1682598B1 (en) Rigid polyurethane foam based on toluene diamine-initiated polyols
KR100323504B1 (en) Refrigerator
US20090062415A1 (en) Methods of producing rigid polyurethane foams
MXPA04002807A (en) Rigid, dimensionally stable polyurethane foams and a process for the production of such foams in which the foam pressure is reduced.
ES2378504T3 (en) Procedure for preparing a rigid polyurethane foam from polyols initiated with methylenebis (cyclohexylamine)
KR20010051304A (en) Rigid Polyurethane Foam and Refrigerator using It
JPH0391522A (en) Rigid polyurethane foam, its production, heat insulating material, and refrigerator made by using same
KR100771910B1 (en) Rigid polyurethane foam having a good demolding property
JPH11248344A (en) Refrigerator, heat insulating box and door therefor
JPH07110097A (en) Heat insulation material
JP4054615B2 (en) Rigid polyurethane foam and insulation
US6617368B2 (en) Isotropic rigid foams
KR100850995B1 (en) A composition for preparing rigid polyurethane foam and rigid polyurethane foam made therefrom
CN111372963B (en) Method for producing open-celled rigid foams containing urethane and isocyanurate groups
JP4200044B2 (en) Method for producing rigid polyurethane foam insulation molded body
JP3475762B2 (en) Insulated doors for refrigerators and freezers
JP2003042653A (en) Heat insulation structure of cooling apparatus
JP3680533B2 (en) Refrigerator insulation box
JPH09143240A (en) Production of hard polyurethane foam

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050704

R151 Written notification of patent or utility model registration

Ref document number: 3700499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

EXPY Cancellation because of completion of term