KR100724082B1 - 메가소닉 담금 리소그래피 노광 장치 및 방법 - Google Patents

메가소닉 담금 리소그래피 노광 장치 및 방법 Download PDF

Info

Publication number
KR100724082B1
KR100724082B1 KR1020050110654A KR20050110654A KR100724082B1 KR 100724082 B1 KR100724082 B1 KR 100724082B1 KR 1020050110654 A KR1020050110654 A KR 1020050110654A KR 20050110654 A KR20050110654 A KR 20050110654A KR 100724082 B1 KR100724082 B1 KR 100724082B1
Authority
KR
South Korea
Prior art keywords
immersion
liquid
wafer
optical
megasonic
Prior art date
Application number
KR1020050110654A
Other languages
English (en)
Other versions
KR20070052880A (ko
Inventor
칭-유 창
치엔-훙 린
친-시앙 린
딩-충 루
번-젱 린
Original Assignee
타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 filed Critical 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드
Priority to KR1020050110654A priority Critical patent/KR100724082B1/ko
Publication of KR20070052880A publication Critical patent/KR20070052880A/ko
Application granted granted Critical
Publication of KR100724082B1 publication Critical patent/KR100724082B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/06Silver salts
    • G03F7/063Additives or means to improve the lithographic properties; Processing solutions characterised by such additives; Treatment after development or transfer, e.g. finishing, washing; Correction or deletion fluids
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70925Cleaning, i.e. actively freeing apparatus from pollutants, e.g. using plasma cleaning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric
    • G03F9/7053Non-optical, e.g. mechanical, capacitive, using an electron beam, acoustic or thermal waves

Abstract

담금 리소그래피에서 담금액으로부터 마이크로버블들을 실질적으로 제거하기 위한 메가소닉 담금 리소그래피 노출 장치 및 방법이 개시된다. 장치는 마스크를 통하여 웨이퍼 상에 빛을 투사시키기 위한 광학 시스템을 포함한다.
광학 전달 챔버가 담금액을 수용하기 위하여 상기 광학 시스템에 인접하여 제공된다. 적어도 하나의 메가소닉 판이 상기 담금액에 음파를 유도하고 상기 담금액으로부터 마이크로버블들을 제거하기 위하여 상기 광학 전달 챔버에 동작가능하게 맞물린다.
담금 리소그래피, 노광 공정, 담금액, 메가소닉, 음파, 마이크로버블

Description

메가소닉 담금 리소그래피 노광 장치 및 방법{MEGASONIC IMMERSION LITHOGRAPHY EXPOSURE APPARATUS AND METHOD}
도 1은 본 발명의 제1 실시예에 따른 메가소닉 담금 리소그래피 장치의 개략도이다.
도 2는 본 발명의 제2 실시예에 따른 메가소닉 담금 리소그래피 장치의 개략도이다.
도 3a는 본 발명의 방법의 제1 실시예에 따라 수행되는 순차적 처리 단계를 도시하는 흐름도이다.
도 3b는 본 발명의 방법의 제2 실시예에 따라 수행되는 순차적 처리 단계를 도시하는 흐름도이다.
도 3c는 본 발명의 방법의 제3 실시예에 따라 수행되는 순차적 처리 단계를 도시하는 흐름도이다.
도 3d는 본 발명의 방법의 제4 실시예에 따라 수행되는 순차적 처리 단계를 도시하는 흐름도이다.
도 3e는 본 발명의 방법의 제5 실시예에 따라 수행되는 순차적 처리 단계를 도시하는 흐름도이다.
도 3f는 본 발명의 방법의 제6 실시예에 따라 수행되는 순차적 처리 단계를 도시하는 흐름도이다.
본 발명은 반도체 집적 회로 제조에서 포토레지스터 위의 집적 회로(IC) 패턴의 형성에 사용되는 포토리소그래피 공정에 관한 것이다. 좀더 구체적으로, 본 발명은 리소그래픽 노광 단계 동안 액체로부터 거품을 제거하기 위하여 담금액이 메가소닉파를 필요로 하는 메가소닉 담금 리소그래피 노광 장치 및 방법에 관한 것이다.
다양한 공정 단계들이 반도체 웨이퍼 상에 집적 회로를 제조하기 위하여 사용된다. 이러한 단계들은 실리콘 웨이퍼 기판상에 도전층을 증착하는 단계; 표준 리소그래피 또는 포토리소그래피 기술을 사용하여 소정의 금속 연결 패턴의 형태로 감광성 수지 또는 산화 티타늄 또는 산화 실리콘과 같은 다른 마스크를 형성하는 단계; 마스크에 의하여 덮여 있지 않는 영역으로부터 도전층을 제거하기 위하여 건식각 공정에 웨이퍼 기판을 제공함으로써, 상기 기판의 마스크된 패턴의 형태로 상기 도전층을 식각함으로써 도전성 배선층의 상면을 노출시키는 단계; 및 웨이퍼 기판에 물 및 질소 가스를 적용함으로써 웨이퍼 기판을 냉각시키고 건조시키는 단계를 포함한다.
이중 상감(dual damascene) 기술로 알려진 일반적인 IC 제조 기술에서, 상하 유전체층은 기판 상에 순차적으로 적층된다. 비아 개구가 하부 유전층에 패터닝되 어 식각되고, 트랜치 개구가 상부 유전층에 패터닝되어 식각된다. 각 단계에서, 패터닝된 감광층이 각 유전체층에 트랜치 및 비아 개구를 식각하기 위하여 사용된다. 다음으로 기판 상에 수평 및 수직 IC 회로 배선을 형성하기 위하여, 전형적으로 전기화학 도금(ECP) 기술을 사용하여 도전성 구리선이 그 트랜치 및 비아 개구에 형성된다.
웨이퍼가 코터(coater) 컵 또는 고정된 볼 내에서 고속으로 회전함에 따라 전형적으로 웨이퍼의 중심에 감광액을 분배함에 의하여 포토레지스트 물질이 웨이퍼 표면 또는 웨이퍼 위의 유전층 또는 도전층 상에 코팅된다. 코터 컵은 포토레지스트를 적용하는 동안 회전하는 웨이퍼로부터 방출된 잉여액이나 입자들을 받아낸다. 웨이퍼의 중심에 분포된 감광액은 회전하는 웨이퍼의 원심력에 의하여 생성된 표면 장력에 의하여 웨이퍼의 가장자리를 행하여 외부로 펼쳐진다. 이것의 웨이퍼 전체 표면에 감광액의 고른 적용을 가져온다.
반도체 생산의 포토리소그래피 단계에서, 빛 에너지가 회로 패턴을 정의하기 위하여 웨이퍼 상에 미리 증착된 포토레지스트 상에 마스크 또는 레티클(reticle)을 통하여 적용되고, 웨이퍼 상에 회로를 정의하기 위한 다음 공정 단계에서 식각된다. 레티클은 웨이퍼 상에 코팅된 포토레지스트에 형성되어야 하는 회로 이미지로 패터닝된 투과성 판이다. 레티클은 웨이퍼 상에 예를 들면, 4개와 같은 아주 작은 수의 다이만을 위한 회로 패턴 이미지를 포함하고, 따라서, 웨이퍼의 전체 표면을 전역에 걸쳐 단계적으로 반복되어야 한다. 대조적으로, 포토마스크 또는 마스크는 웨이퍼 상의 모든 다이를 위한 회로 패턴 이미지를 포함하고, 웨이퍼 상의 모든 다이에 회로 패턴 이미지를 전사하기 위하여 단 한 번의 노광만을 요구한다.
포토리소그래피 공정에서의 다른 단계뿐 아니라 웨이퍼 상에 포토레지스트의 스핀 코팅은 증기 프라임 레지스트 스핀 코팅, 현상, 베이킹 및 냉각 스테이션과 같은 다양한 포토리소그래피 동작 스테이션 사이에서 웨이퍼를 이동시키는 웨이퍼 조작 장치를 사용하여 자동화된 코팅기/현상기 트랙 시스템에서 수행된다. 웨이퍼의 로봇식 조작은 먼지 발생과 웨이퍼의 손상을 최소화한다. 자동화된 웨이퍼 트랙은 다양한 공정 동작이 동시에 수행될 수 있게 한다. 반도체 산업 분야에서 널리 사용되는 두 가지 형태의 자동화된 트랙 시스템은 TEL(Tokyo Electron Limited) 트랙과 SVG(Sillicon Valley Group) 트랙이다.
웨이퍼 상에 회로 패턴을 형성하는 전형적인 방법은 자동화된 트랙 시스템에 웨이퍼를 가져오는 단계와 다음으로 웨이퍼에 감광층을 스핀-코팅하는 단계를 포함한다. 포토레지스트는 다음으로 약한 베이킹 공정을 수행함에 의하여 경화된다. 웨이퍼는 냉각된 후, 전형적으로 크롬 코팅된 수정 레티클 상에 식각된 다이패턴 배열을 웨이퍼에 배열시키는 스테퍼(stepper)와 같은 노광 장치에 위치된다. 적절하게 배열되고 집속되면, 스테퍼는 웨이퍼의 작은 영역을 노출하고, 다음으로, 다음 영역으로 "진행" 또는 이동하고 전체 웨이퍼 표면이 레티클 상의 다이 패턴에 노출될 때까지 상기 공정을 반복한다. 포토레지스트는 회로 이미지 패턴에서 레티클을 통화여 빛에 노출된다. 이러한 이미지 패턴으로의 포토레지스트의 노광은 회로 패턴 내의 레지스트를 교차결합시켜 경화한다. 배열과 노광 단계 후, 웨이퍼는 노광 후 가열로 노출되고 다음으로 감광 패턴을 현상하기 위하여 현상되어 경화가열된 다. 현상되고 경화된 포토레지스트에 의하여 정의된 회로 패턴은 다음에 에칭 공정을 사용하여 밑에 있는 금속층에 전달되고, 교차결합된 포토레지스트에 의하여 덮이지 않은 금속 층의 금속은 웨이퍼로부터 식각되고 교차결합된 포토레지스트 아래의 금속을 식각제로부터 보호된 소자 특성을 정의한다. 대안으로, 식각된 물질은 이중 삼감 기술과 같이 내부에 회로 패턴에 따라 비아 개구 및 트랜치 개구가 식각된 유전체 층일 수 있다. 비아 및 트랜치 개구는 다음으로 금속 회로 배선을 형성하기 위하여 구리와 같은 도전성 금속으로 채워진다. 결과적으로, 교차결합된 포토레지스트 회로 패턴과 매우 가까운 잘 형성된 금속 마이크로전자 회로의 패턴이 웨이퍼 상에 형성된다.
반도체 제조 산업에서 사용되는 리소그래피의 한 가지 형태는 노광 장치가 광학 전달 챔버에 제공된 마스크와 렌즈를 포함하는 담금 리소그래피(immersion lithography)이다. 광학 전달 챔버를 통하여 물을 포함하는 담금액이 분포된다. 동작 중, 광학 전달 챔버는 감광 코팅된 웨이퍼 상의 노광 영역 위에 위치된다. 담금액이 광학 전달 챔버를 통하여 분포됨에 따라, 빛은 광학 전달 챔버에서 각각 마스크, 렌즈 및 담금액을 통하여 노광 영역의 포토레지스트 상에 전송된다. 마스크에서 회로 패턴 이미지는 담금액을 통하여 전송된 빛에 의하여 포토레지스트에 전사된다. 광학 전달 챔버 내의 담금액은 포토레지스트 상에 전달된 회로 패턴 이미지의 분해능을 향상시킨다.
광학 전달 챔버를 통한 담금액의 분포에 앞서, 수용액은 전형적으로 그 액으로부터 대부분의 마이크로버블(microbubble)의 제거를 위하여 가스가 제거된다. 그러나, 다소의 마이크로버블이 광학 전달 챔버를 통한 분포에서 액체 내에 잔존한다. 잔존하는 마이크로버블은 포토레지스트의 전형적인 소수성 표면에 부착되는 경향을 가지며, 따라서 포토레지스트 표면에 돌출된 회로 패턴 이미지를 왜곡시킨다. 따라서, 노광 영역에서 포토레지스트 상에 돌출된 회로 패턴 이미지의 왜곡을 방지시키기 위하여 담금 리소그래피 동안 담금액 내의 마이크로버블을 실질적으로 제거하기 위한 방법 및 장치가 요구된다.
본 발명의 목적은 담금 리소그래피 전 또는 리소그래피 동안 담금액에서 마이크로버블들을 실질적으로 제거하기 위한 새로운 장치를 제공하고자 하는 것이다.
본 발명의 다른 목적은 담금 리소그래피 전 또는 동안 담금액에서 마이크로버블들을 실질적으로 제거할 수 있는 새로운 메가소닉 노광 장치를 제공하고자 하는 것이다.
본 발명의 또 다른 목적은 담금 리소그래피 동안 포토레지스트 상에 돌출된 회로 패턴 이미지의 질을 향상시키는 새로운 메가소닉 노광 장치를 제공하고자 하는 것이다.
본 발명의 또 다른 목적은 담금 리소그래피 전 또는 동안 담금액에서 마이크로버블들을 실질적으로 제거하기 위하여 음파가 사용되는 새로운 메가소닉 노광 장치를 제공하고자 하는 것이다.
본 발명의 또 다른 목적은 담금 리소그래피 전 또는 동안 담금액에서 마이크로버블들을 실질적으로 제거하기 위하여 음파가 사용되는 새로운 메가소닉 담금 리소그래피 노광 방법을 제공하고자 하는 것이다.
본 발명의 또 다른 목적은 담금 리소그래피 동안 노광 렌즈 상의 마이크로버블들 및 미진들을 실질적으로 제거하기 위하여 음파가 사용되는 새로운 메가소닉 담금 리소그래피 노광 방법을 제공하고자 하는 것이다.
이러한 목적 및 이점에 따라, 본 발명은 일반적으로 담금 리소그래피 동안 또는 이전에 담금액으로부터 마이크로버블들을 실질적으로 제거하기 위한 새로운 메가소닉 담금 리소그래피 노광 장치를 제공하기 위한 것이다.
일 실시예에서 본 장치는 레지스트가 도포된 웨이퍼 위에 위치된 광학 전달 챔버, 상기 광학 전달 챔버 상에 제공된 포토마스크 및 렌즈가 설치된 광학 하우징 및 담금액을 광학 전달 챔버에 공급하기 위한 유입관을 포함한다. 적어도 하나의 메가소닉 판이 상기 담금액이 유입관을 통하여 상기 광학 전달 챔버에 공급될 때 상기 담금액을 통하여 음파를 전파시키기 위하여 상기 유입관과 동작가능하게 맞물린다. 음파는 담금액 내의 마이크로버블들을 실질적으로 제거하고 따라서 노광 단계 동안 담금액은 실질적으로 버블이 없는 상태로 광학 전달 챔버로 들어간다. 다른 실시예에서 장치는 광학 전달 챔버를 둘러싸는 환형 메가소닉 판을 포함한다.
본 발명은 마스크 또는 레티클로부터 레지스트 도포된 웨이퍼로 회로 패턴 이미지를 전달하기 위한 담금 리소그래피 공정에 사용되는 노광 렌즈로부터 마이크로버블들 및 미진들을 실질적으로 제거하기 위한 방법을 더 제공한다. 그 방법은 담금 리소그래피 노광 장치의 광학 전달 챔버를 통하여 담금액을 공급하는 동안 또는 전 및 모두에 담금액을 통하여 음파를 전파시키는 단계를 포함한다. 그 방법은 노광 공전 전, 동안 또는 노광 공전 전과 공정 동안 모두 담금액을 바꾸는 단계를 포함한다. 음파는 실질적으로 렌즈 표면의 마이크로버블들 및 미진들을 제거하고, 그에 의하여 노출 렌즈 표면에 마이크로버블들 및 미진이 부착하는 것 및 장치로부터 담금액을 통하여 레지스트에 전달된 회로 패턴 이미지의 왜곡을 방지한다.
본 발명은 담금 리소그래피 전, 동안 또는 담금 리소그래피 전과 동안 모두에서 담금액으로부터의 마이크로버블들을 실질적으로 제거하기 위한 새로운 메가소닉 담금 리소그래피 노광 장치를 완성시킨다. 일 실시예에서, 그 장치는 포토마사크 및 렌즈가 설치된 광학 하우징을 포함한다. 광학 전달 챔버는 상기 광학 하우징의 렌즈 아래 제공된다. 유입구는 담금액을 챔버에 제공하기 위하여 광학 전달 챔버와 유체 연결되도록 제공된다. 적어도 하나의 메가소닉 판이 상기 액체가 상기 유입구를 통하여 상기 광학 전달 챔버에 공급됨에 따라 상기 담금액을 통하여 음파를 전파시키기 위하여 유입구에 동작가능하게 맞물린다. 다른 실시예에서, 환형 메가소닉 판은 상기 장치의 광학 전달 챔버를 둘러싼다.
장치의 동작 중, 광학 전달 챔버는 포토레지스트 코팅된 웨이퍼 상의 노광 영역 위에 위치된다. 상기 메가소닉 판 또는 판들로부터 발생한 음파는 실질적으로 담금액의 마이크로버블들을 제거하고, 따라서 상기 담금액은 실질적으로 버블이 없는 상태로 상기 광학 전달 챔버에 들어간다. 노광 단계 동안, 빛은 광학 하우징의 포토마스크 및 렌즈를 각각 통하고; 광학 전달 챔버의 담금액을 통하여; 상기 웨이퍼 상에 코팅된 포토레지스트 상에 전달된다. 실질적으로 마이크로버블들을 가지지 않은 담금액은 고해상도로 포토레지스트 위에 실질적으로 왜곡되지 않은 회로 패턴 이미지를 전달한다.
본 발명은 회로 패턴 이미지를 마스크 또는 레티클로부터 레지스트가 덮인 웨이퍼 상의 노광 영역에 전달시키기 위하여 담금 리소그래피 공정 노광 단계에 사용되는 담금액의 마이크로버블들을 실질적으로 제거하기 위한 방법을 더 제공하고자 하는 것이다. 제1 실시예에서, 상기 방법은 노광 단계 전에 담금액 내의 마이크로버블들을 제거하기 위하여 담금액을 통하여 음파를 전파시키는 단계를 포함한다. 제2 실시예에서, 상기 방법은 노광 단계 전과 노광 단계 동안 담금액을 통하여 음파를 전파시키는 단계를 포함한다. 제3 실시예에서, 본 발명은 노광 단계 동안 담금액을 통하여 간헐적으로 음파를 전파시키는 단계를 포함한다. 메가소닉 판 또는 메가소닉 판들에 의하여 담금액에 적용된 메가소닉 파워는 바람직하게는 10-1,000㎑이다.
임의의 다양한 담금액들이 본 발명의 메가소닉 담금 리소그래피 방법에 적당할 수 있다. 일 실시예에서 담금액은 전형적으로 약 1:1:10 내지 1:1:1000의 부피비 농도의 NH4, H2O2 및 H2O를 포함한다. 다른 실시예에서, 담금액은 전형적으로 약 1:10 내지 1:1000의 부피비 농도의 NH4 및 H2O를 포함한다. 또 다른 실시예에서, 담금액은 중성화된(DI) 물이다. 또 다른 실시예에서, 담금액은 전형적으로 약 1 내지 1000ppm의 오존 농도를 갖는 오존화된(O3) 물이다. 담금액은 전형적으로 약 1 내지 1000ppm의 농도 범위를 가진 양이온 계면 활성제, 음이온 계면 활성제 또는 비이온 계면 활성제를 포함할 수 있다.
본 발명은 여기에 첨부된 도면을 참조하여 예를 드는 방식으로 설명될 것이다.
먼저 도 1을 참조하면, 본 발명의 메가소닉 담금 리소그래피 노광 장치, 이하 노광 장치는 일반적으로 참조 부호 10으로 지시된다. 노광 장치(10)는 웨이퍼 상에 증착된 감광층(미도시)을 가진 웨이퍼(34)를 지지하기 위한 웨이퍼 스테이지(28)를 포함한다. 광학 하우징(12)는 레이저(미도시) 및 웨이퍼 스테이지(28) 위에 위치된 최총 대물렌즈(16)를 가진 광학 시스템을 포함한다. 마스크 또는 레티클(미도시)은 상기 렌즈(16) 위에 광학 하우징(12) 내에 제거가능하게 삽입된다. 마스크 또는 레티클은 이후 상세히 설명될 리소그래피 공정 동안 웨이퍼(34) 상의 감광층 위에 전사될 회로 패턴(미도시)을 포함한다. 광학 전달액 담금 챔버(18)가 최종 대물렌즈(16) 아래 제공되고 웨이퍼 스테이지(28) 위에 배치된다. 리소그래피 동안, 마스크 또는 레티클을 통과한 레이저빔은 각각 대물 렌즈(16) 및 광학 전달액 담금 챔버(18)를 통하여 전달되어 웨이퍼(34) 상에 회로 패턴 이미지를 생성한다.
유입관(22)으로부터 연장된 유입액 저장소(20) 담금액(32)의 공급을 포함한다. 방출관(22a)은 유입관(22)으로부터 연장되고, 광학 전달 챔버(18)와 유체 연결된다. 배출액 저장소(26)은 각각 수집관(24a) 및 배출관(24a)을 통하여 광학 전달 챔버(18)와 유체 연결된다. 본 발명에 따르면, 메가소닉 판(30)은 담금액(32)이 유입관(22)을 통하여 공급됨에 따라 담금액(32)에 음파(미도시)를 발생시키기 위하여 그 기술분야에서 잘 알려진 방법에 의하여 유입관(22)에 제공된다.
이후 더 상세히 설명되는 바와 같이, 노광 장치(10)의 동작 중 담금액(32)은 유입액 저장소(20)로부터 각각 유입관(22) 및 방출관(22a)을 통하여 광학 전달액 담금 챔버(18)로 공급된다. 메가소닉 판(30)은 담금액(32)에 음파(미도시)를 발생시켜, 담금액(32) 내의 모든 또는 대부분의 마이크로버블들을 제거한다. 광학 하우징(12)으로부터의 레이져 빔은 각각 광학 전달액 담금 챔버(18)에 포함된 최종 대물렌즈(16) 및 담금액(32)을 통하여 전달되고 웨이퍼(34) 상에 코팅된 포토레지스트 위에 투사되는 회로 패턴 이미지를 생성한다. 담금액(32)은 각각 수집관(24a) 및 방출관(24)을 통하여 광학 전달액 담금 챔버(18)로부터 배출액 저장소(26)로 연속적으로 퍼 올려진다.
다음으로 도 1과 관련하여 도 3a 내지 도3c를 참조하면, 노광 장치(10)는 세 가지 모드 중 하나로 동작한다. 도 3a의 흐름도에 따라, 광학 전달액 담금 장치(18)는 처음에 단계 1에 나타난 바와 같이 웨이퍼(34) 상의 노광 영역 위에 위치된다. 다음으로 메가소닉 판(30)이 켜지고(단계 2), 유입액 저장소(20)로부터 각각 유입관(22)을 통하여 광학 전달액 담금 챔버(18)로의 담금액(32) 공급이 뒤따른다(단계 3). 담금액(32)이 유입관(22)을 통과함에 따라, 메가소닉 판(30)은 담금액(32)에 음파의 형성을 유도한다. 음파는 담금액(32)의 마이크로버블들을 제거하고, 따라서 담금액(32)은 광학 전달 챔버(18)로 들어갈 때 실질적으로 마이크로버블들을 포함하고 있지 않다. 게다가, 음파는 또한 방출관(22a)으로부터 과학 전달액 담금 챔버(18)로의 전달을 통하여 레지스트 표면의 마이크로버블들도 제거한다.
단계 4에 나타난 바와 같이, 메가소닉 판(30)은 웨이퍼(34) 상의 노광 영역을 담금액(32)을 통하여 전송된 푀로 패턴 이미지에 노출시키기(단계 5) 전에 꺼지고, 담금액(32)은 마이크로버블들에 의하여 왜곡되지 않은 고해상도의 회로 패턴 이미지를 웨이퍼(34) 상의 포토레지스트 표면으로 전송한다. 단계 6에 나타난 바와 같이, 노광(5) 단계가 완료된 후, 광학 전달 챔버(18)는 웨이퍼(34) 상의 다음 노광 영역으로 이동되고, 단계 1 내지 5가 반복된다.
도 3b의 흐름도에 따라, 광학 전달액 담금 챔버(18)는 맨 처음 단계 1a에 나타난 바와 같이, 웨이퍼(34) 상의 노광 영역 위에 위치된다. 다음으로 메가소닉 판(30)이 켜지고(단계 2a), 유입액 저장소(20)로부터 각각 유입관(22)을 통하여 광학 전달액 담금 챔버(18)로 담금액(32)의 공급이 뒤따른다(단계 3a). 메가소닉 판(30)에 의하여 발생된 음파는 유입관(22)을 통과하는 담금액(32) 내의 마이크로버블들을 제거하고, 따라서 담금액(32)은 광학 전달 챔버(18)로 들어갈 때 실질적으로 마이크로버블들을 포함하고 있지 않으며, 따라서 웨이퍼(34) 상에 부착된 마이크로버블들도 제거된다.
단계 4a에 나타난 바와 같이, 메가소닉 판(30)이 켜져 있는 동안, 웨이퍼(34) 상의 포토레지스트가 노광된다. 따라서, 노광 단계(단계 4a) 동안, 메가소닉 판(30)은 담금액(32) 및 웨이퍼 레지스트 표면(34) 상의 마이크로버블들을 계속 제거한다. 따라서 광학 전달 챔버(18)를 통하여 광학 하우징(12)으로부터 전달된 회로 이미지 패턴은 마이크로버블들에 의하여 왜곡되지 않고 고해상도로 웨이퍼(34) 상의 포토레지스트 표면에 투사된다. 단계 4a가 완료된 후에, 메가소닉 판(30)은 꺼질 것이다(단계 5a). 다음으로 단계 6a에 도시된 바와 같이, 광학 전달 챔버(18)는 웨이퍼(34) 상의 다음 노광 영역으로 이동하고 단계 1a 내지 5a를 반복한다.
도 3c의 흐름도에 따르면, 광학 전달 챔버(18)는 맨 처음 단계 1b에 나타난 바와 같이, 웨이퍼(34) 상의 노광 영역 위에 위치된다. 다음으로 메가소닉 판(30)이 켜지고(단계 2b), 담금액(32)이 유입액 저장소(20)로부터 각각 유입관(22)을 통하여 광학 전달 챔버(18)로 공급된다(단계 3b). 메가소닉 판(30)에 의하여 발생된 음파는 담금액(32) 및 웨이퍼 레지스트 표면(34) 상의 마이크로버블들을 제거하고, 따라서 담금액(32)은 광학 전달 챔버(18)로 들어갈 때 실질적으로 마이크로버블들을 포함하고 있지 않으며, 레지스트 표면(34) 꼭대기에 부착된 마이크로버블들도 제거된다.
단계 4b에 나타난 바와 같이, 노광 단께는 메가소닉 판(30)이 단속적으로 켜졌다 꺼지는 동안 수행된다. 따라서, 웨이퍼(34)의 노광 동안, 메가소닉 판(30)은 담금액(32) 내의 마이크로버블들을 계속 제거한다. 단계 4b가 완료된 후에, 광학 전달 챔버(18)는 웨이퍼(34) 상의 다음 노광 영역으로 이동하고 도 5b에 나타난 바와 같이 단계 1b 내지 4b를 반복한다.
도 3d의 흐름도에 따라, 광학 전달액 담금 챔버(18)는 맨 처음 단계 1c에 나타난 바와 같이, 웨이퍼(34) 상의 노광 영역 위에 위치된다. 다음으로 메가소닉 판(30)이 켜지고(단계 2c), 유입액 저장소(20)로부터 각각 유입관(22)을 통하여 광학 전달액 담금 챔버(18)로 담금액(32)의 공급이 뒤따른다(단계 3c). 메가소닉 판(30)에 의하여 발생된 음파는 유입관(22)을 통과하는 담금액(32) 내의 마이크로버블들을 제거하고, 따라서 담금액(32)은 광학 전달 챔버(18)로 들어갈 때 실질적으로 마이크로버블들을 포함하고 있지 않으며, 웨이퍼(34) 상에 부착된 마이크로버블들도 제거된다.
단계 4c에 나타난 바와 같이, 메가소닉 판(30)이 켜져 있는 동안, 웨이퍼(34) 상의 포토레지스트가 노광된다. 따라서, 노광 단계(단계 4c) 동안, 메가소닉 판(30)은 담금액(32) 및 웨이퍼 레지스트 표면(34) 상의 마이크로버블들을 계속 제거한다. 따라서 광학 전달 챔버(18)를 통하여 광학 하우징(12)으로부터 전달된 회로 이미지 패턴은 마이크로버블들에 의하여 왜곡되지 않고 고해상도로 웨이퍼(34) 상의 포토레지스트 표면에 투사된다. 단계 4c가 완료된 후에도, 메가소닉 판(30)은 여전히 켜져있을 것이다. 다음으로 단계 6c에 도시된 바와 같이, 광학 전달 챔버(18)는 웨이퍼(34) 상의 다음 노광 영역으로 이동하고 단계 4c 내지 5c를 반복한다.
도 3e의 흐름도에 따라, 광학 전달액 담금 챔버(18)는 맨 처음 단계 1d에 나타난 바와 같이, 웨이퍼(34) 상의 노광 영역 위에 위치된다. 다음으로 메가소닉 판(30)이 켜지고(단계 2d), 유입액 저장소(20)로부터 각각 유입관(22)을 통하여 광학 전달액 담금 챔버(18)로 담금액(32)의 공급이 뒤따른다(단계 3d). 메가소닉 판(30)에 의하여 발생된 음파는 유입관(22)을 통과하는 담금액(32) 내의 마이크로버블들을 제거하고 최종 대물렌즈(108)의 하부 표면상의 미진을 제거하며, 따라서 담금액(32)은 광학 전달 챔버(18)로 들어갈 때 실질적으로 마이크로버블들을 포함하고 있지 않으며, 최종 대물렌즈(108) 상에 부착된 미진도 제거된다.
단계 4d에 나타난 바와 같이, 메가소닉 판(30)이 켜져 있는 동안, 제1 액을 대체하기 위하여 유입액 저장소(20)로부터 유입관(22)을 통하여 광학 전달액 담금 챔버(18)로 제2 액의 공급이 뒤따르고(단계 4d), 웨이퍼(34) 상의 포토레지스트가 노광된다. 따라서, 노광 단계(단계 6d) 동안, 메가소닉 판(30)은 켜져 있지 않다(단계 5d). 광학 전달액 담금 챔버(18)를 통하여 광학 하우징(12)으로부터 전달된 회로 패턴 이미지는 마이크로버블들에 의하여 왜곡되지 않고 고해상도로 웨이퍼(34) 상의 포토레지스트 표면에 투사된다. 단계 6d가 완료된 후에, 단계 7d에 도시된 바와 같이, 광학 전달 챔버(18)는 웨이퍼(34) 상의 다음 노광 영역으로 이동하고 단계 6d 내지 7d를 반복한다.
도 3f의 흐름도에 따라, 광학 전달액 담금 챔버(18)는 맨 처음 단계 1e에 나타난 바와 같이, 웨이퍼(34) 상의 노광 영역 위에 위치된다. 다음으로 메가소닉 판(30)이 켜지고(단계 2e), 유입액 저장소(20)로부터 각각 유입관(22)을 통하여 광학 전달액 담금 챔버(18)로 담금액(32)의 공급이 뒤따른다(단계 3e). 메가소닉 판(30)에 의하여 발생된 음파는 유입관(22)을 통과하는 담금액(32) 내의 마이크로버블들을 제거하고 최종 대물렌즈(16)의 하부 표면상의 미진을 제거하며, 따라서 담금액(32)은 광학 전달 챔버(18)로 들어갈 때 실질적으로 마이크로버블들을 포함하고 있지 않으며, 최종 대물렌즈(16) 상에 부착된 미진도 제거된다.
단계 4e에 나타난 바와 같이, 메가소닉 판(30)이 켜져 있는 동안, 제1 액을 대체하기 위하여 유입액 저장소(20)로부터 유입관(22)을 통하여 광학 전달액 담금 챔버(18)로 제2 액의 공급이 뒤따르고(단계 4e), 웨이퍼(34) 상의 포토레지스트가 노광된다. 따라서, 노광 단계(단계 5e) 동안, 메가소닉 판(30)은 여전히 켜져 있다 (단계 2e). 따라서, 광학 전달액 담금 챔버(18)를 통하여 광학 하우징(12)으로부터 전달된 회로 패턴 이미지는 미진들에 의하여 왜곡되지 않고 고해상도로 웨이퍼(34) 상의 포토레지스트 표면에 투사된다. 단계 5e가 완료된 후에, 단계 5e에 도시된 바와 같이, 광학 전달 챔버(18)는 웨이퍼(34) 상의 다음 노광 영역으로 이동하고 단계 5e 내지 6e를 반복한다.
다음으로, 일반적으로 참조 번호 10a에 의하여 가리켜진 노광 장치의 다른 실시예로 도 2를 참조하면, 환형의 메가소닉 판(30a)이 광학 전달액 담금 챔버(18) 주변에 제공된다. 광학 장치(10a)는 도 3a의 흐름도에 따라 동작할 수 있으며, 여기서 환형 메가소닉 판(30a)은 담금액(32)이 광학 전달액 담금 챔버(18)에 공급된 후에 동작되고, 노광 단계 전에 꺼진다; 도 3b의 흐름도에 따르면, 여기서 환형 메가소닉 판(30a)은 광학 전달액 담금 챔버(18)로 담금액(32)이 공급되는 동안 및 노광 공정 내내 켜져 있다; 또는 도 3c의 흐름도를 따르면, 여기서 환형 메가소닉 판(30a)은 노광 단계 동안 간헐적으로 켜진다. 어떤 경우든, 광학 전달 챔버(18)에 포함된 담금액(32)은 노광 단계 동안 웨이퍼(34)에 전달될 회로 패턴 이미지를 왜곡시킬 수 있는 마이크로버블들을 실질적으로 포함하지 않는다.
본 발명의 실시예가 위에서 설명되고 있지만, 다양한 변형이 본 발명 내에서 수행될 수 있으며, 첨부된 청구항은 본 발명의 사상 및 범위 내에 포함된 모든 그러한 변형을 포함하는 것이라는 점이 주지 및 이해될 것이다.
본 명세서 내에 포함되어 있음

Claims (15)

  1. 담금액을 수용하기 위한 광학 전달 챔버;
    상기 담금액을 통하여 음파를 전파하기 위하여 상기 광한 전달 챔버와 동작가능하게 맞물린 적어도 하나의 메가소닉 판;
    상기 담금액을 상기 광학 전달 챔버에 공급하기 위하여 상기 광학 전달 챔버에 유체 연결되도록 형성되고 상기 적어도 하나의 메가소닉 판이 설치된 유입관; 및
    마스크 및 상기 담금액을 통하여 웨이퍼 상에 빛은 투과시키기 위하여 상기 광학 전달 챔버에 접하여 제공된 광학 시스템을 포함하는 메가소닉 담금 리소그래피 노광 장치.
  2. 삭제
  3. 제1항에 있어서,
    상기 담금액을 상기 광학 전달 챔버에 공급하기 위하여 상기 광학 전달 챔버와 유체 연결되도록 형성된 배출관을 더 포함하는 것을 특징으로 하는 메가소닉 담금 리소그래피 노광 장치.
  4. 제3항에 있어서,
    상기 광학 시스템은 상기 마스크를 통하여 레이저 빔을 방출하기 위한 레이저 및 상기 마스크로부터 회로 패턴 이미지를 수용하고 상기 담금액을 통하여 상기 웨이퍼 상에 회로 패턴 이미지를 전송하기 위한 렌즈를 포함하는 것을 특징으로 하는 메가소닉 담금 리소그래피 노광 장치.
  5. 제1항에 있어서,
    상기 적어도 하나의 메가소닉 판은 일반적으로 상기 광학 전달 챔버 주변에 형성된 환형 메가소닉 판을 포함하는 것을 특징으로 하는 메가소닉 담금 리소그래피 노광 장치.
  6. 회로 패턴을 가진 마스크를 제공하는 단계;
    담금액을 광학 전달 챔버에 제공하는 단계;
    상기 담금액의 유입관에 설치된 적어도 하나의 메가소닉 판에 의해 생성된 음파를 상기 담금액을 통하여 전파시키는 단계; 및
    레이저 빔을 상기 마스크 및 상기 담금액을 각각 통과하여 상기 웨이퍼 상에 전달함에 의하여 감광 코팅된 웨이퍼를 노광시키는 단계를 포함하는 담금 리소그래피 공정에서 담금액으로부터 마이크로버블들을 제거하는 방법.
  7. 제6항에 있어서,
    담금액을 통하여 음파를 전파시키는 단계는 상기 감광 코팅된 웨이퍼를 노광시키기 전 또는 동안 상기 담금액을 통하여 음파를 전파시키는 것을 특징으로 하는 담금액으로부터 마이크로버블들을 제거하는 방법.
  8. 제6항에 있어서,
    상기 담금액은 암모니아, 과산화수소 및 물의 혼합액인 것을 특징으로 하는 담금액으로부터 마이크로버블들을 제거하는 방법.
  9. 제6항에 있어서,
    상기 담금액은 중성화된 물(deionized water) 또는 오존화된 물(ozonated water)인 것을 특징으로 하는 담금액으로부터 마이크로버블들을 제거하는 방법.
  10. 제6항에 있어서,
    상기 담금액에 계면 활성제가 제공되는 것을 특징으로 하는 담금액으로부터 마이크로버블들을 제거하는 방법.
  11. 제6항에 있어서,
    상기 담금액을 통하여 음파를 전파시키는 단계는 10㎑ 내지 1,000㎑의 메가소닉 파워에서 상기 담금액을 통하여 음파를 전파시키는 것을 특징으로 하는 담금액으로부터 마이크로버블들을 제거하는 방법.
  12. 광학 시스템, 상기 광학 시스템의 최종 대물렌즈 및 기판 사이에 제공된 광학 전달 챔버 및 상기 광학 전달 챔버에 맞물린 적어도 하나의 메가소닉 판을 포함하는 메가소닉 담금 리소그래피 노광 장치를 제공하는 단계;
    회로 패턴을 가진 마스크를 제공하는 단계;
    제1 액을 상기 광학 전달 챔버에 제공하는 단계;
    상기 제1 액을 통하여 음파를 전파시키는 단계;
    제2 액을 상기 광학 전달 챔버에 제공하는 단계; 및
    상기 광학 시스템 및 상기 제2 액을 통하여 웨이퍼 상에 광학 빔을 전달시킴에 의하여 감광 코팅된 웨이퍼를 노광시키는 단계를 포함하는 담금 리소그래피 공정.
  13. 제12항에 있어서,
    상기 제1 액은 암모니아, 과산화수소 및 물의 혼합액을 포함하는 것을 특징으로 하는 담금 리소그래피 공정.
  14. 제12항에 있어서,
    상기 제1 액은 중성화된 물 또는 오존화된 물을 포함하는 것을 특징으로 하는 담금 리소그래피 공정.
  15. 제12항에 있어서,
    상기 제2 액은 중성화된 물 또는 계면 활성제를 포함하는 것을 특징으로 하는 담금 리소그래피 공정.
KR1020050110654A 2005-11-18 2005-11-18 메가소닉 담금 리소그래피 노광 장치 및 방법 KR100724082B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050110654A KR100724082B1 (ko) 2005-11-18 2005-11-18 메가소닉 담금 리소그래피 노광 장치 및 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050110654A KR100724082B1 (ko) 2005-11-18 2005-11-18 메가소닉 담금 리소그래피 노광 장치 및 방법

Publications (2)

Publication Number Publication Date
KR20070052880A KR20070052880A (ko) 2007-05-23
KR100724082B1 true KR100724082B1 (ko) 2007-06-04

Family

ID=38275391

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050110654A KR100724082B1 (ko) 2005-11-18 2005-11-18 메가소닉 담금 리소그래피 노광 장치 및 방법

Country Status (1)

Country Link
KR (1) KR100724082B1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050048223A1 (en) 2003-09-02 2005-03-03 Pawloski Adam R. Method and apparatus for elimination of bubbles in immersion medium in immersion lithography systems
JP2005223342A (ja) 2004-02-09 2005-08-18 Koninkl Philips Electronics Nv リソグラフィ装置及びデバイス製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050048223A1 (en) 2003-09-02 2005-03-03 Pawloski Adam R. Method and apparatus for elimination of bubbles in immersion medium in immersion lithography systems
JP2005223342A (ja) 2004-02-09 2005-08-18 Koninkl Philips Electronics Nv リソグラフィ装置及びデバイス製造方法

Also Published As

Publication number Publication date
KR20070052880A (ko) 2007-05-23

Similar Documents

Publication Publication Date Title
US7224427B2 (en) Megasonic immersion lithography exposure apparatus and method
JP2007142217A (ja) イマージョン式リソグラフィ露光装置およびその方法
CN1776531B (zh) 湿浸式光刻系统中用于清洗半导体衬底的方法和设备
JP4571067B2 (ja) メガソニック超音波リンスを使用するイマージョン式フォトリソグラフィ
CN1963673A (zh) 浸润式微影曝光设备及方法
TW556052B (en) Exposure method
JP5516931B2 (ja) レジストパターン形成方法
US7384726B2 (en) Resist collapse prevention using immersed hardening
KR100724082B1 (ko) 메가소닉 담금 리소그래피 노광 장치 및 방법
TWI402891B (zh) 移走一氣泡的方法及氣泡移位裝置
US6162591A (en) Photolithography process with gas-phase pretreatment
US6692164B2 (en) Apparatus for cleaning a substrate on which a resist pattern is formed
NL1030447C2 (nl) Inrichting en werkwijze voor megasonische immersielithografie belichting.
US6106167A (en) Apparatus for photolithography process with gas-phase pretreatment
TWI266356B (en) Effectively water-free immersion lithography background
KR100790253B1 (ko) 감광막 현상 장치 및 방법
US20040188547A1 (en) Developer dispensing nozzle with movable shutter plates
KR100842736B1 (ko) 반도체 소자의 제조 방법
KR100591156B1 (ko) 스핀 코터 및 이를 이용한 반도체 소자의 제조방법
Flack et al. Contrast enhancement materials for thick photoresist applications
JP2005181758A (ja) レジストパターン形成方法
JPH0777810A (ja) 感光性ポリマ被膜の現像装置および現像方法
KR20030039518A (ko) 파티클 제거장치를 가진 반도체 제조용 노광장치
JPH10150018A (ja) 洗浄乾燥方法および洗浄乾燥装置
KR20030037874A (ko) 반도체 포토리소그래피 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20130508

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140513

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150511

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160511

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170515

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190517

Year of fee payment: 13