KR100712416B1 - 오스뮴 클러스터로 작용화된 탄소나노튜브 및 그 제조방법 - Google Patents

오스뮴 클러스터로 작용화된 탄소나노튜브 및 그 제조방법 Download PDF

Info

Publication number
KR100712416B1
KR100712416B1 KR1020040104924A KR20040104924A KR100712416B1 KR 100712416 B1 KR100712416 B1 KR 100712416B1 KR 1020040104924 A KR1020040104924 A KR 1020040104924A KR 20040104924 A KR20040104924 A KR 20040104924A KR 100712416 B1 KR100712416 B1 KR 100712416B1
Authority
KR
South Korea
Prior art keywords
functionalized
osmium
carbon nanotubes
triosmium
cluster
Prior art date
Application number
KR1020040104924A
Other languages
English (en)
Other versions
KR20060066347A (ko
Inventor
게켈러케이이
드리티네팔
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to KR1020040104924A priority Critical patent/KR100712416B1/ko
Priority to JP2005359053A priority patent/JP3977854B2/ja
Priority to US11/300,022 priority patent/US7534944B2/en
Priority to DE602005004994T priority patent/DE602005004994T2/de
Priority to AT05027233T priority patent/ATE387409T1/de
Priority to EP05027233A priority patent/EP1669324B1/en
Publication of KR20060066347A publication Critical patent/KR20060066347A/ko
Application granted granted Critical
Publication of KR100712416B1 publication Critical patent/KR100712416B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/002Osmium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/28Solid content in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/30Purity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/11Compounds covalently bound to a solid support
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/745Carbon nanotubes, CNTs having a modified surface
    • Y10S977/748Modified with atoms or molecules bonded to the surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/847Surface modifications, e.g. functionalization, coating

Abstract

본 발명은 오스뮴 클러스터(osmium clusters)로 작용화된 탄소나노튜브(carbon nanotube, CNT) 및 그 제조방법에 관한 것으로, 본 발명에 따라 탄소나노튜브를 산화시킨 후 아미노-작용화된 트리오스뮴 유도체(triosmium complex)와 반응시켜 제조한 오스뮴 클러스터-탄소나노튜브(osmium clusters-functionalized carbon nanotube) 복합체는, 오스뮴 클러스터와 탄소나노튜브가 아마이드 결합(amide bond)으로 양성이온 착체(zwitterion complex)를 형성함으로써 물 및 여러 유기용제에 우수한 용해도를 지니며 가공이 용이하므로 다양한 CNT계 촉매 공정(CNT-based process) 및 나노생체전기(nanobioelectrics) 소자 분야에 유용하게 활용될 수 있다.

Description

오스뮴 클러스터로 작용화된 탄소나노튜브 및 그 제조방법{CARBON NANOTUBE FUNCTIONALIZED WITH OSMIUM CLUSTERS AND PROCESS FOR PREPARATION THEROF}
도 1은 산화된 탄소나노튜브(a), 트리오스뮴 유도체(b) 및 실시예 1에서 제조한 오스뮴 클러스터-탄소나노튜브(c)의 적외선(IR) 분광 분석 결과이고,
도 2는 트리오스뮴 유도체(a) 및 실시예 1에서 제조한 오스뮴 클러스터-탄소나노튜브(b)의 중적외선(Mid IR) 분광 분석 결과이고,
도 3은 트리오스뮴 유도체(a), 산화된 탄소나노튜브(b) 및 실시예 1에서 제조한 오스뮴 클러스터-탄소나노튜브(c)의 자외선-가시광선-적외선(UV-Vis-NIR) 분광 분석 결과이고,
도 4는 실시예 1에서 제조한 오스뮴 클러스터-탄소나노튜브(a, b 및 c) 및 탄소나노튜브(d)의 주사전자현미경(SEM) 영상이고,
도 5는 실시예 1에서 제조한 오스뮴 클러스터-탄소나노튜브의 투과전자현미경(TEM) 영상이고,
도 6은 실시예 1에서 제조한 오스뮴 클러스터-탄소나노튜브의 에너지 산란 X-선(EDX) 분광 분석 결과이다
본 발명은 오스뮴 클러스터-작용화된 탄소나노튜브(osmium clusters-functionalized carbon nanotube) 및 그 제조방법에 관한 것이다.
탄소나노튜브는 1개의 탄소 원자가 3개의 다른 탄소 원자와 결합한 육각형 벌집 모양의 흑연면이 나노크기의 직경으로 둥글게 말린 형태를 갖고 있으며, 크기나 형태에 따라 독특한 물리적 성질을 갖는 거대 분자이다. 속이 비어 있어 가볍고 전기 전도도는 구리만큼 좋으며, 열전도도는 다이아몬드만큼 우수하고 인장력은 철강에 못지 않다. 원통형을 이루는 결합 구조에 따라 일부러 불순물을 넣지 않아도 튜브와 튜브가 상호 작용하면서 도체에서 반도체로 변한다. 말려진 형태에 따라서 단층벽 나노튜브(single walled nanotube, SWNT), 다중벽 나노튜브(multi-walled nanotube, MWNT), 다발형 나노튜브(rope nanotube)로 구분되기도 한다.
최근에는 CNT의 이러한 도체 및 반도체로의 상호 변환이 주위환경에 따라 민감하게 반응하는 성질을 이용하여 극미세영역(nanoscale)의 감지 소재(sensing materials) 또는 나노-생체-전기(nano-bioelectronic)소자 분야로의 활용이 주목받고 있다. 특히, 나노튜브 감지기의 선택도는 특정 표적 분자(target molecules)와 선택적으로 반응하는 일부 기능기(fuctional groups)에 의해 좌우되므로, CNT에 다양한 기능기를 부착시키는 여러 기능화(functionalization) 및 생체-고정화(bio-immobilization) 공정이 나노(nano) 영역의 탐침 및 감지기를 포함하는 여러 산업 적 분야에서 시도되고 있다(H.Dai, Acc. Chem. Res., 35, 1035, 2002)
오스뮴 클러스터(osmium cluster)는 전기화학적 성질이 우수하여 분자 소자의 제작을 위한 이상적인 원소로 핵 에너지 연구, 감지 시스템 및 분자 전기 분야에서 각광받고 있으며, 최근에는 특정 DNA 결합 위치(DNA binding site)를 포함하고 있는 오스뮴 클러스터 유도체가 합성된 바 있다(E. Rosenberg 등, J. Organometal Chem., 668, 51, 2003). 따라서 이렇게 산업적으로 유용한 오스뮴과 CNT를 결합시키는 연구들이 수행되고 있으며, 대표적으로 OsO4의 광조사 반응(photoactivation reaction)을 통한 SWNT의 오스뮴화(osmylation)(Cui, J. 등, Nano Lett., 3, 615, 2003), SWNT에 오스메이트 에스테르(osmate ester) 형성에 관한 이론적 연구(Lu, X. 등, Nano Lett., 2, 1325, 2002) 및 나노튜브의 전기적 구조에 대한 화학적 특성을 연구하기 위해 자외선 조사(UV irradiation) 조건에서 수행된 용액상태의 OsO4와 SWNT의 상호작용(Banerjee, S. 등, J. Am. Chem. Soc., 126, 2073-2081, 2004)의 연구 등이 있으나, 기존의 방법들로 제조된 오스뮴-CNT 복합체는 모두 물이나 산업용 유기용제에 불용성을 나타내어 산업적 적용이 어려운 문제점이 있다.
이에, 본 발명의 목적은 물 및 여러 유기용제에 우수한 용해도를 나타내는 오스뮴 클러스터 함유 탄소나노튜브를 제공하는 것이다.
또한, 본 발명의 다른 목적은 상기 오스뮴 클러스터 함유 탄소나노튜브를 제조하는 방법을 제공하는 것이다.
상기 목적에 따라, 본 발명에서는 탄소나노튜브와 오스뮴 클러스터가 아마이드 결합(amide bond)으로 연결된, 양성이온 착체(zwitterion complexes) 형태의 오스뮴(Os) 클러스터-작용화된 탄소나노튜브(osmium clusters-functionalized carbon nanotube)를 제공한다.
상기 다른 목적에 따라, 본 발명에서는 탄소나노튜브를 진한 무기산 중에서 환류시켜 얻은 카복실기-작용화된 탄소나노튜브(carboxyl-functionalized CNT)를 유기용매중에서 아미노-작용화된 트리오스뮴 유도체(amino functionalized triosmium derivatives)와 반응시키는 것을 포함하는, 오스뮴 클러스터-작용화된 탄소나노튜브를 제조하는 방법을 제공한다.
이하, 본 발명을 상세히 설명한다.
본 발명의 오스뮴 클러스터-작용화된 탄소나노튜브(CNT)는 산화된 탄소나노튜브와 아미노-작용화된 트리오스뮴 유도체가 반응하여 형성된 양성이온 착체로, 오스뮴 클러스터와 탄소나노튜브가 아마이드 결합으로 연결되어 물 및 여러 유기용제에 용해도가 우수하여 산업적으로 활용도가 매우 크다.
또한, 본 발명의 오스뮴 클러스터-작용화된 탄소나노튜브를 제조하는 방법은 통상적인 방법에 따라 진한 무기산으로 산화시켜 얻은 카복실기를 가진 탄소나노튜브(J. Liu 등, Science, 280, 1253-1256, 1998)와, 통상적인 방법으로 아미노화된 벤조퀴놀린을 트리오스뮴 클러스터와 반응시켜 생성된 아미노화된 트리오스뮴 복합체(R. Smith 등, Organometallics, 18, 3519-3527, 1999)를 유기용매 중에서 질소 대기 하에 산염기 반응시키는 단계를 포함한다.
이때, 탄소나노튜브의 산화반응에서 사용가능한 산으로는 질산, 염산 또는 황산:질산이 3:1 부피비인 혼합용액 등이 있으며, CNT 10 ㎎당 1 내지 10 ㎖로 사용될 수 있고, 이러한 반응은 40 내지 90℃에서 2 내지 8시간 동안 수행될 수 있다.
또한, 카복실화된 탄소나노튜브와 아미노화된 트리오스뮴 유도체의 산염기반응에서, 이 두 화합물의 사용가능한 반응 중량비는 1:1 내지 1:2이고, 바람직하게는 1:2이며, 사용가능한 유기용매로는 DMF(N,N-Dimethyl formamide), DMSO(dimethylsulfoxide), 아세톤(acetone) 및 옥탄(octane) 등이 있고, 이러한 반응은 70 내지 140℃에서 3 내지 7일 동안 수행될 수 있다.
이러한 본 발명에 따른 오스뮴 클러스터-작용화된 탄소나노튜브(osmium clusters-functionalized carbon nanotube) 복합체는, 오스뮴 클러스터와 탄소나노튜브가 아마이드 결합(amide bond)으로 양성이온 착체(zwitterion complex)를 형성함으로써 물 및 여러 유기용제에 우수한 용해도를 지니며 가공이 용이하므로 다양한 CNT계 촉매 공정(CNT-based catalytic process) 및 나노생체전기(nanobioelectrics)소자와 같은 차세대 전기 소자 분야에 유용하게 활용될 수 있 다.
이하, 본 발명을 실시예에 의해 상세히 설명한다.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
<실시예 1>
MWNT(multi-walled nanotube)는 정제된 SWNT(single walled nanotube, 일진사, 대한민국)를 사용하여 Sohn, J. I. 등, App. Phy. Let., 78, 901-903, 2001에 기재된 방법에 따라 펄스레이져 증착법(pulsed laser deposition, PLD)으로 실리콘위에 철(Fe) 촉매-CNT 성장법에 의해 성장시킴으로써 고순도(~95%)로 제조하였다. 상기 방법으로 제조된 MWNT 10 ㎎을 농축된 질산(HNO3) 10 ㎖과 함께 80℃에서 6시간 동안 환류반응시켜 산화시켰다. 반응 생성물을 세척 및 건조한 후, 여기에 R. Smith 등, Organometallics, 18, 3519-3527, 1999에 기재된 방법에 따라 아미노화시킨 하기 구조식의 아미노-작용화된 트리오스뮴(Os) 유도체 20 ㎎을 질소대기 존재하에 적하한 후 환류시켰으며, 이를 140℃에서 7일 동안 연속적으로 교반시켰다.
Figure 112004058616532-pat00001
반응생성물의 색이 녹색에서 갈색으로 균일하게 변한 것을 확인하고, 이를 원심분리 후 물 및 아세톤으로 세척하는 것을 반복하였으며, 진공 오븐에서 건조시켜 오스뮴 클러스터 작용기를 가진 탄소나노튜브 5 ㎎(수율: 50%)을 제조하였다.
<실시예 2>
질산 대신 염산을 사용한 것을 제외하고 상기 실시예 1의 방법에 따라 오스뮴 클러스터 작용기를 가진 탄소나노튜브 5 ㎎(수율: 50%)을 제조하였다.
적외선(IR) 및 중적외선(Mid-IR) 분광 분석
아미노-작용화된 트리오스뮴 유도체(a), 산화된 탄소나노튜브(b) 및 실시예 1에서 제조된 오스뮴 클러스터-작용화된 탄소나노튜브(c)를 대상으로 적외선(IR) 및 중적외선(Mid-IR) 분광 분석을 수행하여 그 결과를 도 1 및 도 2에 나타내었으며, 피크를 나타내는 위치를 하기 표 1에 나타내었다.
Figure 112004058616532-pat00002
그 결과, 상기 표 1에서와 같이, 산화된 탄소나노튜브, 아미노-작용화된 트리오스뮴 유도체 및 실시예 1에서 제조한 오스뮴 클러스터-작용화된 탄소나노튜브 가 목적하는 대로 제조되었음을 확인하였다. 구체적으로, 산화된 탄소나노튜브에서는 1712 cm-1(C=O) 및 1233 cm-1(C-O)에서 강한 피크를 나타내었으나 오스뮴 클러스터-작용화된 탄소나노튜브에서는 관찰되지 않았으며, 도 1 내지 2에서와 같이, 트리오스뮴 유도체에서 확인된 1625 ㎝-1에서의 N-H 결합을 의미하는 강한 넓은 피크가 약간 쉬프트되어 1629 ㎝-1에서 관찰되었다. 또한, 강한 대칭성 카복실산(COO-) 진동(1585 cm-1) 및 트리오스뮴 유도체에서도 확인된 C-N 결합을 의미하는 넓은 피크(1278 cm-1, 트리오스뮴 유도체는 1274 ㎝-1)가 관찰되었고 오스뮴 피크(2023 및 1933 cm-1 위치)는 유지되었다.
따라서 본 발명에 따른 오스뮴 클러스터-작용화된 탄소나노튜브는 오스뮴과 탄소나노튜브가 아마이드 결합(amide bonds)으로 연결된 양성이온 복합체(zwitterion complex)임을 알 수 있다.
자외선-가시광선-근적외선(UV-Vis-NIR) 분광 분석
아미노-작용화된 트리오스뮴 유도체(a), 산화된 탄소나노튜브(b) 및 실시예 1에서 제조된 오스뮴 클러스터-작용화된 탄소나노튜브(c)를 대상으로 자외선-가시광선-근적외선(UV-Vis-NIR) 분광 분석을 수행하였다.
그 결과, 도 3(내부 도면은 확대 도임)에 나타낸 바와 같이, 오스뮴 클러스 터-작용화된 탄소나노튜브(c)에서 산화된 탄소나노튜브(b)에서와 유사하게 1414 nm(1.14 eV) 및 1554 nm(1.24 eV)의 두 개의 주 피크를 확인하였으며, 따라서, 본 발명에 따른 오스뮴 클러스터-작용화된 탄소나노튜브는 오스뮴과 탄소나노튜브가 직접적으로 결합된 형태가 아닌 아마이드 결합을 통해 간접적으로 연결된 형태라는 것을 알 수 있다. 또한, 아미노-작용화된 트리오스뮴 유도체에서 관찰된 859 nm(1.44 eV)의 작은 피크는 890 nm로 적색파장 쪽으로 이동(shift)되었음을 확인하였으며, 이는 오스뮴과 CNT가 결합 후 접합 길이가 늘어난 것에 기인하는 것이다. 이 피크는 본래의 일반 CNT에서는 관찰되지 않는 것이다.
전자주사현미경(SEM), 투과전자현미경(TEM) 및 에너지 산란 X-선(EDX) 분광 분석
실시예 1에서 제조한 오스뮴 클러스터-작용화된 탄소나노튜브 및 일반 탄소나노튜브의 세부 형태적 특성을 전자주사현미경(SEM, 도 4) 및 투과전자현미경(TEM, 도 5)으로 분석하였다.
그 결과, 도 4 및 도 5에 나타낸 바와 같이, 본래의 탄소나노튜브(도 4의 d)와는 다르게 실시예 1에서 제조한 오스뮴 클러스터-작용화된 탄소나노튜브(도 4의 a, b 및 c)에서 1.5 ㎛ 길이의 탄소나노튜브 막대 끝(tip)에 30 ㎚의 덩어리 그룹이 접합되어 있음을 알 수 있으며(화살표), 이것은 CNT와 오스뮴 착체의 양성이온 결합을 확인시켜 주는 것이다.
또한, 동일 CNT 막대의 측벽(side wall)에서는 오스뮴 클러스터가 거의 발견 되지 않음을 알 수 있는데, 이는 CNT의 막대의 측벽보다는 끝부분에 COOH 작용기가 더 많은 것에 기인하는 것이다.
EDX 분석 결과(도 6) 또한 오스뮴 클러스터 작용화된 CNT에 있어서 오스뮴 요소가 작용성 잔기의 1.4%에 해당하는 것을 보여준다.
용해도 측정
실시예 1에서 제조한 오스뮴 클러스터-작용화된 탄소나노튜브의 용해도를 측정하였다. 오스뮴 클러스터-작용화된 탄소나노튜브는 물에 150 ㎎/ℓ의 용해도를 나타내었으며, 기능화 시키지 않은 본래의 CNT가 녹지 않는 DMF(250 ㎎/ℓ), THF(50 ㎎/ℓ) 및 DMSO(250 ㎎/ℓ)에서도 높은 용해도를 나타냄을 확인하였다. 한편, 산화된 탄소나노튜브는 DMF 및 DMSO에 7 ㎎/ℓ, 및 THF에 4 ㎎/ℓ의 용해도를 나타내었다.
따라서, 산화된 CNT와 오스뮴 복합체가 형성하는 이온결합 또는 공유결합 CNT-오스뮴 복합체는 그 특징적인 양성이온 결합으로 인해 물 뿐 아니라 여러 산업적 이용가능성이 높은 유기 용제에 우수한 용해도를 나타냄을 알 수 있다.
상기에서 살펴본 바와 같이, 본 발명에 따라 탄소나노튜브를 산화시킨 후 아미노-작용화된 오스뮴 유도체와 반응시키는 단계를 포함하는 공정으로 제조한 오스뮴 클러스터-작용화된 탄소나노튜브는 양성이온 착체(zwitterion complex)를 형성 하여 물 뿐만 아니라 여러 유기용제에 그 용해도가 우수하므로 CNT계 촉매공정 및 나노생체전기분야 등에서 산업적 활용성이 매우 크다.

Claims (6)

  1. 카복실기-작용화된 탄소나노튜브와 아미노기-작용화된 트리오스뮴 유도체가 카복실기와 아미노기 간의 아마이드 결합에 의해 연결된 양성이온 착체(zwitterion complex)인 것을 특징으로 하는, 오스뮴 클러스터-작용화된(osmium clusters-functionalized) 탄소나노튜브.
  2. 탄소나노튜브를 진한 무기산 중에서 환류시켜 얻은, 카복실기-작용화된 탄소나노튜브를, 유기용매중에서 아미노기-작용화된 트리오스뮴 유도체와 반응시키는 것을 포함하는, 제 1 항의 오스뮴 클러스터-작용화된 탄소나노튜브의 제조방법.
  3. 제 2 항에 있어서,
    산이 질산, 염산 및 황산을 포함하는 군으로부터 하나 이상 선택된 혼합용액임을 특징으로 하는 제조방법.
  4. 제 2 항에 있어서,
    카복실기-작용화된 탄소나노튜브와 아미노기-작용화된 트리오스뮴 유도체의 반응비가 약 1:1 내지 1:2 범위의 중량비임을 특징으로 하는 제조방법.
  5. 제 2 항에 있어서,
    유기용매가 DMF(N,N-dimethyl formamide), DMSO(dimethylsulfoxide), 아세톤 및 옥탄을 포함하는 군으로부터 선택됨을 특징으로 하는 제조방법.
  6. 제 2 항에 있어서,
    카복실기-작용화된 탄소나노튜브와 아미노기-작용화된 트리오스뮴 유도체의 반응이 70 내지 140℃에서 수행됨을 특징으로 하는 제조방법.
KR1020040104924A 2004-12-13 2004-12-13 오스뮴 클러스터로 작용화된 탄소나노튜브 및 그 제조방법 KR100712416B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020040104924A KR100712416B1 (ko) 2004-12-13 2004-12-13 오스뮴 클러스터로 작용화된 탄소나노튜브 및 그 제조방법
JP2005359053A JP3977854B2 (ja) 2004-12-13 2005-12-13 オスミウムクラスターで官能化されたカーボンナノチューブおよびその製造方法
US11/300,022 US7534944B2 (en) 2004-12-13 2005-12-13 Carbon nanotube functionalized with osmium clusters and process for preparing same
DE602005004994T DE602005004994T2 (de) 2004-12-13 2005-12-13 Mit Osmiumclustern modifizierte Kohlenstoffnanoröhren und Verfahren zu deren Herstellung
AT05027233T ATE387409T1 (de) 2004-12-13 2005-12-13 Mit osmiumclustern modifizierte kohlenstoffnanoröhren und verfahren zu deren herstellung
EP05027233A EP1669324B1 (en) 2004-12-13 2005-12-13 Carbon nanotube functionalized with osmium clusters and process for preparing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040104924A KR100712416B1 (ko) 2004-12-13 2004-12-13 오스뮴 클러스터로 작용화된 탄소나노튜브 및 그 제조방법

Publications (2)

Publication Number Publication Date
KR20060066347A KR20060066347A (ko) 2006-06-16
KR100712416B1 true KR100712416B1 (ko) 2007-04-27

Family

ID=35511151

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040104924A KR100712416B1 (ko) 2004-12-13 2004-12-13 오스뮴 클러스터로 작용화된 탄소나노튜브 및 그 제조방법

Country Status (6)

Country Link
US (1) US7534944B2 (ko)
EP (1) EP1669324B1 (ko)
JP (1) JP3977854B2 (ko)
KR (1) KR100712416B1 (ko)
AT (1) ATE387409T1 (ko)
DE (1) DE602005004994T2 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101394823B1 (ko) * 2010-06-04 2014-05-30 주식회사 엘지화학 고전기전도성 및 고분산성 탄소 나노 구조체, 이의 제조방법 및 이를 포함하는 고분자 복합체

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020072798A (ko) * 2001-03-12 2002-09-18 후다바 덴시 고교 가부시키가이샤 나노카본의 제조방법 및 그 방법을 이용하여 제조된나노카본 및 나노카본과 금속미립자를 포함하는 복합재료또는 혼합재료, 나노카본의 제조장치, 나노카본의 패턴화방법 및 그 방법을 이용하여 패턴화된 나노카본기재 및 그패턴화된 나노카본기재를 이용한 전자방출원
KR20030059128A (ko) * 2000-09-06 2003-07-07 패컬티스 유니버시테이레스 노트레-다메 드 라 파익스 관능화된 짧은 탄소 나노튜브를 생산하는 방법 및 상기방법에 의해서 얻어질 수 있는 관능화된 짧은 탄소나노튜브

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3629540B2 (ja) * 2002-03-11 2005-03-16 国立大学法人信州大学 カーボンナノチューブ
JP4449387B2 (ja) * 2003-09-25 2010-04-14 富士ゼロックス株式会社 複合材の製造方法
JP2005138204A (ja) * 2003-11-05 2005-06-02 Kaken:Kk 超微粒子担持炭素材料とその製造方法および担持処理装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030059128A (ko) * 2000-09-06 2003-07-07 패컬티스 유니버시테이레스 노트레-다메 드 라 파익스 관능화된 짧은 탄소 나노튜브를 생산하는 방법 및 상기방법에 의해서 얻어질 수 있는 관능화된 짧은 탄소나노튜브
KR20020072798A (ko) * 2001-03-12 2002-09-18 후다바 덴시 고교 가부시키가이샤 나노카본의 제조방법 및 그 방법을 이용하여 제조된나노카본 및 나노카본과 금속미립자를 포함하는 복합재료또는 혼합재료, 나노카본의 제조장치, 나노카본의 패턴화방법 및 그 방법을 이용하여 패턴화된 나노카본기재 및 그패턴화된 나노카본기재를 이용한 전자방출원

Also Published As

Publication number Publication date
US7534944B2 (en) 2009-05-19
US20070157347A1 (en) 2007-07-05
KR20060066347A (ko) 2006-06-16
DE602005004994D1 (de) 2008-04-10
EP1669324B1 (en) 2008-02-27
JP2006169099A (ja) 2006-06-29
JP3977854B2 (ja) 2007-09-19
ATE387409T1 (de) 2008-03-15
DE602005004994T2 (de) 2009-02-19
EP1669324A1 (en) 2006-06-14

Similar Documents

Publication Publication Date Title
Salam et al. Synthesis and characterization of multi-walled carbon nanotubes modified with octadecylamine and polyethylene glycol
Zhao et al. Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups
Singh et al. Organic functionalisation and characterisation of single-walled carbon nanotubes
US6331262B1 (en) Method of solubilizing shortened single-walled carbon nanotubes in organic solutions
Tripathi et al. Large-scale synthesis of soluble graphitic hollow carbon nanorods with tunable photoluminescence for the selective fluorescent detection of DNA
Yang et al. A facile, green, and tunable method to functionalize carbon nanotubes with water-soluble azo initiators by one-step free radical addition
Mekki et al. Core/shell, protuberance-free multiwalled carbon nanotube/polyaniline nanocomposites via interfacial chemistry of aryl diazonium salts
Ansón-Casaos et al. Surfactant-free assembling of functionalized single-walled carbon nanotube buckypapers
CN101945822A (zh) 碳纳米材料分散液及其制备方法、碳纳米材料结构体
Agrawalla et al. Solvothermal synthesis of a polyaniline nanocomposite-a prospective biosensor electrode material
Pistone et al. Fe3O4–MWCNTPhCOOH composites for ammonia resistive sensors
Bayazit et al. Formylation of single-walled carbon nanotubes
Jing et al. Fluorescent probe for Fe (III) based on pyrene grafted multiwalled carbon nanotubes by click reaction
CN102145885A (zh) 表面膦酸化水溶性碳纳米管的制备方法及制得的碳纳米管
Kim et al. Functionalization of shortened SWCNTs using esterification
KR100712416B1 (ko) 오스뮴 클러스터로 작용화된 탄소나노튜브 및 그 제조방법
SG177563A1 (en) Functionalized carbon nanostructures which are soluble in hydrocarbons and method for preparation
Ramasamy et al. Synthesis and electrochemical properties of conducting polyaniline/graphene hybrids by click chemistry
US20110112287A1 (en) Carbon nanoparticles, which are covalently bound via a bridge molecule to a target molecule, and a method for the production thereof
Song et al. New anthracene–tetrathiafulvalene derivative-encapsulated SWNT nanocomposite and its application for biosensing
Saini et al. Functionalization of polyallylamine on graphene oxide
Agrawalla et al. Synthesis and optical characterization of sulfonated polyaniline/single-walled carbon nanotube/zinc sulphide nanocomposite
Hamilton et al. Functionalization of SWNTs to facilitate the coordination of metal ions, compounds and clusters
Long et al. Ultra-fast and scalable sidewall functionalisation of single-walled carbon nanotubes with carboxylic acid
JP7243999B2 (ja) カーボン材料の電荷特性制御方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130410

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140326

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee