KR100626891B1 - 표면 발광 레이저 반도체 - Google Patents

표면 발광 레이저 반도체 Download PDF

Info

Publication number
KR100626891B1
KR100626891B1 KR1020037010705A KR20037010705A KR100626891B1 KR 100626891 B1 KR100626891 B1 KR 100626891B1 KR 1020037010705 A KR1020037010705 A KR 1020037010705A KR 20037010705 A KR20037010705 A KR 20037010705A KR 100626891 B1 KR100626891 B1 KR 100626891B1
Authority
KR
South Korea
Prior art keywords
layer
added
diffusion barrier
semiconductor
dielectric mirror
Prior art date
Application number
KR1020037010705A
Other languages
English (en)
Other versions
KR20030084928A (ko
Inventor
마커스-크리스티안 아만
마커스 오르트지퍼
Original Assignee
버티라스 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 버티라스 게엠베하 filed Critical 버티라스 게엠베하
Publication of KR20030084928A publication Critical patent/KR20030084928A/ko
Application granted granted Critical
Publication of KR100626891B1 publication Critical patent/KR100626891B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18369Structure of the reflectors, e.g. hybrid mirrors based on dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04252Electrodes, e.g. characterised by the structure characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0217Removal of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04252Electrodes, e.g. characterised by the structure characterised by the material
    • H01S5/04253Electrodes, e.g. characterised by the structure characterised by the material having specific optical properties, e.g. transparent electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18375Structure of the reflectors, e.g. hybrid mirrors based on metal reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18377Structure of the reflectors, e.g. hybrid mirrors comprising layers of different kind of materials, e.g. combinations of semiconducting with dielectric or metallic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3072Diffusion blocking layer, i.e. a special layer blocking diffusion of dopants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3095Tunnel junction

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

본 발명은 표면 발광형 반도체 레이저에 관한 것이다. 상온에서 작동될 수 있고 장기 안정성을 갖는 반도체 레이저를 제공하기 위하여, 본 레이저 반도체는 피엔 전이부(pn transition)(피엔 접합(pn junction)를 포함하는 활성 영역과, 활성 영역의 엔(n)측부에 존재하는 엔(n)으로 도핑된 제1반도체 층과, 활성 영역의 피(p)측부 상의 엔(n)으로 도핑된 제2반도체 층으로의 도전성 전이(conductive transition)(도전성 접합(conductive junction))를 형성하는 활성 영역의 피(p)측부 상의 구조화된 턴넬 접촉(tunnel contact)(턴넬 접합(tunnel junction))과, 엔(n)으로 도핑된 제2반도체 층에 부가되는 구조화된 유전성 거울과, 상기 유전성 거울이 부가되지 아니한 지점에서 엔(n)으로 도핑된 제2반도체 층과 접촉을 형성하는 접촉 층과, 그리고 상기 접촉 층과 엔(n)으로 도핑된 제2반도체 층 사이의 확산 차단부를 포함한다.
레이저 반도체

Description

표면 발광 레이저 반도체 {Surface-Emitting Semiconductor Laser}
본 발명은 피엔 전이부(pn transition)(피엔 접합(pn junction))를 갖는 활성 영역을 갖는 표면 발광형 반도체 레이저에 관한 것이다.
반도체 레이저란 일반적으로 순방향 작동으로 유도 방출에 의한 좁은 스펙트럼 밴드의 간섭형 빛을 발생시키고 직접 발광하는 반도체 다이오드이다. 유도 방출에 의한 빛의 증폭 과정에 필요한 반전 분포는 피엔 전이부(pn transition)에 전류를 가하여 달성된다. 지지 측정 기준으로서 출발물질은 고도로 도핑될 수 있다. 전자와 정공이 공간에 서로 인접하는 피엔 전이부(pn transtion)에서 유도 방사 재결합이 일어난다.
가장 간단한 형태는, 피엔 전이부(pn transition)에 직각인 두개의 대향하는 광학 거울에 의해서 광학 공진기가 형성되는 것이다. 이러한 구조에서는 전류 흐름에 수직하는 면에서 방출이 일어난다.
이와는 달리, 활성 영역면에 수직 방향으로 방출이 일어나는 표면 발광 반도체 레이저 다이오드가 이미 알려져 있다.(수직 공동 표면 발광 레이저 다이오드, Vertical-Cavity Surface-Emitting Laser Diode(VCSEL))
미합중국 특허 제5,936,266호에는 활성 영역의 피(P)측부와 엔(n)으로 도핑된(n-doped) 반도체 층 사이에 도전성 전이부(conductive transition)를 형성하는데 사용되는 표면 전체에 걸친 턴넬 접촉(tunnel contact)을 이루는 표면 발광형 반도체 레이저가 기재되어 있다. 이는 엔(n)으로 도핑된 반도체 층이 활성 영역의 피(P)측부에도 사용될 수 있어서, 엔(n)으로 도핑된 반도체의 향상된 전기 전도도 때문에 10 내지 30배 감소된 전기 저항들을 초래한다는 점을 의미한다. 그러나, 전체 표면에 걸친 턴넬 접촉(tunnel contact)의 문제점들 중의 하나는 전류를 통제 안내하기 위해 추가적인 산화물 층이 도입되어야 한다는 점이며, 이는 곧 반도체 레이저가 전반적으로 복잡하고 열적으로 부적절한 구조를 갖게 한다.
미합중국 특허 제6,052,398호에는 공진기가 두개의 반도체 거울에 의하여 형성되는 구조화된 턴넬 접촉(tunnel contact)을 갖는 표면 발광형 반도체 레이저가 기재되어 있다. 여기서 문제는, 통상 3종의 또는 4종의 혼합 결정체로 구성되는 거울들 중의 하나를 통하여 열이 제거되어야 한다는 점이다. 대안으로서, 미합중국 특허 제6,052,398호는 대안의 어떤 특별한 장점을 언급하지는 아니하고 있으나 활성 영역의 피(p)측부에 유전체 반사경의 사용을 언급하였다. 반사 접촉층(통상 금 또는 은)이 인접한 반도체층 안으로 확산하여 장기적인 안정성이 확보될 수 없는 결과를 초래하므로 이러한 해결책이 실무상 사용되지 아니하고 있다.
본 발명의 목적은, 정상적인 주변 온도하에서 작동될 수 있고 안정된 장기 특성을 갖는 반도체 레이저를 제공하는 것이다.
이러한 점은 청구항 제1항에 기재된 특징을 갖는 반도체 레이저에 의하여 해결된다. 구체적으로 본 발명의 특징은, 피엔 전이부(pn transition)를 갖는 활성 영역을 갖는 표면 발광형 반도체 층이, 활성 영역의 엔(n)측부에 존재하는 엔(n)으로 도핑된 제1반도체 층과, 활성 영역의 피(p)측부 상의 엔(n)으로 도핑된 제2반도체 층으로의 도전성 접합을 이루거나 도전성 전이부를 형성하는 활성 영역의 피(p)측부 상에 구조화 된 턴넬 접촉(tunnel contact)(턴넬 접합(tunnel junction))과, 엔(n)으로 도핑된 제2반도체 층에 부가되는 구조화된 유전성 거울과, 상기 유전성 거울이 부가되지 아니한 지점에서 엔(n)으로 도핑된 제2반도체 층과 접촉을 형성하는 접촉 층과, 그리고 상기 접촉 층과 엔(n)으로 도핑된 제2반도체 층간의 확산 차단부를 갖는다는 점이다.
본 발명의 해결책은 엔(n)으로 도핑된 반도체 층에 존재하는 활성 영역의 피(p)측부가 유전성 거울과 확산 차단부 두가지에 의하여 접촉 층으로부터 밀폐된다는 사실의 발견에 기초한다. 접촉 층은 열 강하기(heat sink)를 형성하여 효과적으로 열을 제거한다. 특히, 접촉 층의 재료로서 금 또는 은이 우수한 열 강하기(heat sink)를 만들기에 적합하다. 그러나 이들 층의 성분들이 엔(n)으로 도핑된 제2반도체 층으로 확산되어 이를 파괴할 수 있다는 점이 발견되었다. 따라서, 본원 발명의 기술적 특징인 확산 차단부는 유전성 거울과 함께 접촉 층으로부터 엔(n)으로 도핑된 제2반도체 층으로 성분들이 확산되는 것을 방지하며, 최악의 경우에는 활성 영역으로 확산된 성분들이 활성 영역 내부에서의 방출 재결합을 억제하는 것을 방지한다. 따라서, 열적으로 최적화된 반도체 레이저를 제작하기 위해서는 열 강하기(heat sink)의 재료를 선택하게 된다.
확산 차단부를 부가하기 위한 본 발명의 방법은 제16항의 특징을 포함하는데, 제1영역에서는 엔(n)으로 도핑된 제2반도체 층에 확산 차단부가 가해지고, 제2 영역에서는 엔(n)으로 도핑된 제2반도체 층에 유전성 거울이 가해지며, 최소한 확산 차단부에 접촉 층이 가해진다.
요약해보면, 본 발명의 반도체 레이저는 다음과 같은 장점을 갖게된다:
- 활성 영역의 피(p)측부에 대한 구조화된 턴넬 접촉(tunnel contact)(턴넬 접합(tunnel junction))의 결과, 활성 영역의 피(p)측부에 남아 있는 반도 체 층은 엔(n)으로 도핑될 수 있다. 엔(n)으로 도핑된 반도체의 상당히 개량된 전기전도도 덕택에 약 10 내지 30 배 낮아진 전기 저항들을 초래한 다.
_ 활성 영역의 엔(n)측부의 엔(n)으로 도핑된 제1반도체 층은 싸여진 층의 하전된 운송자 역할을 한다.
- 피(p)측부에 반사도가 높은 유전성 거울이 사용된다. 반사도를 향상시키 기 위하여 금속으로 덮힌 층이 제공될 수 있다.
- 열은 피(p)측부를 통해, 예를 들면 본질적으로는 터널 접촉에 의해서, 즉 터널 접합부와 유전성 거울을 통해 제거되며 이는 낮은 열 저항을 가지고 있다.
- 활성 영역과 유전성 거울 사이에서 열적 전도성 층(e.g. InP 이원층)이 팽창과 열의 제거를 위해 사용된다.
- 피(p)측부의 보다 넓은 면에 걸처 제공되는 집적화된, 즉 전기화학적으로 생성된 금속 열 강하기(heat sink)는 효율적으로 열을 제거한다. 금속 층 은 기계적 안정성을 동시에 제공하는 바, 이는 결정성장형(epitactic) 거 울과 공간 사이에 굴절 계수를 증대시키기 위하여 엔(n)측부에서 기판이 완전히 제거되었을 때 특히 바람직하다.
- 바람직하게는 엔(n)측부를 통하여(활성 층에 기초하여) 빛의 디커플링이 이루어져, 빛의 디커플링으로부터 반대되는 측면에 부분적으로 흡수되는 턴넬 접촉(tunnel contact)이 위치하게 됨으로써 높은 발광력이 달성된다.
본 발명의 또 다른 독립적인 보호범위는 유전성 거울의 구조에 대한 것이다. 통상적인 유전성 거울은 열전도도가 상당히 낮은 3종 또는 4종의 혼합 결정으로 이루어진다. 열 전도도를 개량하기 위해 미합중국 특허 제6,052,398호는 결정성장형(epitactic) GaAs/AlAs 변태성 거울(metamorphic mirror)의 사용을 제안하고 있다. 이러한 이원성 물질은 사실 더 좋은 열 전도도를 나타내지만 인접층과 격자의 어울림이 좋지 아니하며, 이는 결정의 변위로 인하여 제한된 범위의 장기 안정성만 달성된다는 점을 의미한다.
따라서, 이원층(binary layer)이 평균적으로 인접하는 층과 우수한 격자 어울림을 갖도록 하는 그러한 방법으로 이원층을 교대로 배열하는 유전성 거울을 독립적인 발명으로 제안한다. 예를 들면, 이원층은 각각 3nm의 두께를 갖는 InAs층과 GaAs층이 교대로 배치되어 이원층의 평균적 격자 공간이 인접한 반도체 층에 대응되게 한다.
이러한 해결책은, 이 방법만으로 또는 전술한 제1항과 제16항의 해결책과 조합되어 실시될 수 있다.
본 발명의 바람직한 실시 태양은 종속 청구항들로부터 명백하여 질 것이다. 본질적으로 이들에 기재된 특징들과 이하에서 설명될 내용들은 특정된 조합뿐만 아니라 다른 조합 또는 그 자신만으로도 사용될 수 있다.
본 발명의 바람직한 실시 태양에 따르면, 확산 차단부와 제2반도체 층간에 접착 증진부가 제공된다. 바람직하게는, 접착 증진부는 티타늄 층으로 이루어지며, 확산 차단부는 백금 층으로 이루어진다. 또한 접촉 층과 유전성 거울의 반사도를 향상시키기 위하여 금속 도포층이 제공되기도 한다. 제조 공정을 간단히 하기위하여 확산 차단부와 접촉 층간에 금속 도포 층이 적당하게 제공된다. 금속 도포 층으로서 적합한 재료는 금이며 접촉 층으로는 금이나 은이 적당하다.
예를 들면, 유전성 거울은 다수의 유전성 λ/4 층 쌍, 바람직하게는 MgF2 와 규소와 같은 굴절 계수가 크게 차이가 나는 물질들로 제조되는 것이 바람직하다.
유전성 거울이 반도체 물질들 보다 열 저항이 낮아서 직접적인 열 전도가 가능하도록 하는 것이 특히 바람직하다. 이를 위하여는, 엔(n)으로 도핑된 제2반도체 층이, 예를 들면 InP 반도체로 이루어지는 것이 바람직하다.
본 발명의 또 다른 실시 태양에 따르면, 접촉 층은 충분하게 두껍게 제공되어 열 강하기(heat sink)로 작용하게 된다. 바람직하게는, 접촉 층은 전체 표면에 걸처 부가되며 또한 유전성 거울을 덮는다. 접촉 층의 두께는 예를 들면 10㎛일 수 있다.
본 발명의 또 다른 실시 태양에 따르면, 빛의 디커플링은 활성 영역의 엔(n) 측부에서 일어난다. 바람직하게는 이를 위하여 활성 영역의 엔(n)측부로부터 기판이 제거된다.
본 발명을 다음의 도면을 인용하여 다양한 실시 태양을 보다 상세하게 설명하고자 한다. 여기서;
제1도는 본 발명의 첫번째 실시 태양을 나타내고,
제2도는 본 발명의 두번째 실시 태양을 나타내며,
제3도는 본 발명의 세번째 실시 태양을 나타내고,
제4도는 본 발명의 네번째 실시 태양을 나타내며,
제5도는 본 발명의 다섯번째 실시 태양을 나타내고,
제6도는 첫번째 실시 태양에 따른 확산 차단부를 제조하는 세단계 공정을 나타내고,
제7도는 두번째 실시 태양에 따른 확산 차단부를 제조하는 세단계 공정을 나타낸다.
우선 본 발명의 다섯가지 실시 태양을 도1 내지 도5를 참조하여 설명한다. 모든 실시예에 공통적인 것은 접촉 층과 활성 영역의 피(p)측부의 엔(n)으로 도핑된 반도체 층 사이의 확산 차단부이다. 확산 차단부를 형성하기 위한 공정들은 도6과 도7을 참조하여 설명될 것이다.
도1은 본 발명의 첫번째 실시 태양을 나타낸다. 전류는 하부의 피(p) 접촉(25)을 통해 공급되며, 피(p) 접촉은 동시에 집적화된 열 강하기(heat sink)로서도 기능하고, 엔(n) 접촉(10)은 선택적으로는 더 높게 도핑된 접촉 층(11)에 부 가된다. 열이 집적화된 열 강하기(heat sink)(25)를 통하여 즉 구리 하우징 위로 하강(60)하여 제거되지만 빛은 상방향(50)으로 방출된다. 레이저 활성 영역(26)은 활성 층(22) 내에 위치하며, 이는 죄어진 다층 구조(영어로는, Multiquantum well: MQW구조)를 포함하는 것이 바람직하다. 레이저 활성 영역의 옆으로의 크기는, 구조상 옆쪽으로 원형인 (예를 들면 직경이 W인) 고도로 피(p)도핑된 층(40)과 고도로 엔(n)도핑된 층(41)으로 이루어지는 구조화된 턴넬 접촉(tunnel contact) 또는 턴넬 접합(tunnel junction)을 통한 전류의 흐름에 의하여, 그리고 층(23)에서의 전류의 측면 확장 및 활성 층(22)에서의 하전 운송자의 확산에 의하여 정하여 진다. 활성 영역에 주사되는 전자와 정공의 수직 한계는 엔(n) 그리고 피(p)로 도핑된 경계층들(21) 및 (23)에 의하여 각각 정해진다.
거울(20)은 종래의 기술에 의하여 결정성장에 의해 엔(n)측부에 만들어지며, 예를 들어 다수의(예, 36) λ/4 쌍의, 서로 상이한 굴절 계수를 갖는 두가지의 반도체 재료(20a), (20b)들로 이루어진다. 하부 거울(30)은, 예를 들면 MgF2(30a) 또는 Si(30b)와 같은 λ/4 쌍의 유전성 층들(30a) 및 (30b)의 수개의(예, 1.5 또는 2.5) 쌍들로 이루어진다. 이들의 반사 능력은, 집적화된 열 강하기(heat sink)(25)를 갖는 하부 인터페이스에서의 반사에 의해, 특히 후자가 금이나 은과 같은 고 반사성 금속으로 이루어진 경우에는 더욱 증가된다.
수직 방향의 텐넬 접촉(tunnel contact)은 전자기장의 최소량에 위치하여 고도로 도핑된 층과 흡수 층들(41) 및 (42)에서의 광학적 손실이 극히 경미하거나 일 어나지 아니하게 된다. 동일한 이유로 턴넬 접촉(tunnel contact)은 가능한한 얇게 이루어져야 하며; 총 두께 D의 바람직한 값은 1.3 내지 1.55㎛ VCSEL에 대해 20 내지 60㎚이다. 피(p)측부의 제2반도체 층(24)은 턴넬 접촉(tunnel contact)에 의해 엔(n)으로 (고도로) 도핑되거나, 층(23)에 인접한 저도로 엔(n)도핑된 부분과 집적화된 열 강하기(heat sink)(25)와 거울(30)쪽 하부의 고도로 도핑된 부분과의 구배를 가질 수 있다. 각 경우마다, 전류 전체가 턴넬 접촉(tunnel contact)을 통하여 활성 층으로 흐르도록 전류의 흐름을 차단하는 엔피엔(npn)차단 구조가 턴넬 접촉(tunnel contact)에 인접하여 존재한다. 층(24)는 활성 대역으로부터의 열의 흐름을 개선 및 확장하기 위하여(예, 직경 S의 수배까지), 그래서 전체적인 열을 감소시키기 위하여 뛰어난 열전도도를 갖는 것이 바람직하다.
엔(n)으로 도핑된 층(24)의 낮은 저항때문에 절연하는 유전성 거울(30)에 인접하는 측면부 전류 흐름은 실질적인 전류의 손실이 없이, 열 발생 없이 진행된다. 유전성 거울의 측면 크기(S)는 턴넬 접촉(tunnel contact)의 측면 크기(W)와 적어도 동일하도록 선택되는 것이 바람직하다.
크기 S가 증폭에 의한 웨이브 가이딩(wave guiding)의 결과로 광학 필드(optical field)의 측면 확장을 따라 W(전형적으로 1.3 내지 1.55㎛ VCSEL에 대해 2 내지 20㎛)보다 약 3 내지 8㎛ 크다면 특히 유용하며, 활성 레이저 영역(26)의 열 렌즈(thermal lensing)는 활성 레이저 영역의 크기에 대략적으로 한정된다.
도2는 본 발명의 두 번째 실시 태양을 나타낸다. 도1과는 달리, 제조 공정은 턴넬 접촉(tunnel contact)의 구조가 층(24)의 표면 내의 결정축 과다성장을 통해 형성되는 방식이다. 이러한 점으로 인하여, 턴넬 접촉(tunnel contact) 및 활성 영역(26)과 정교하고 자체 조정하는 방법으로 정렬되는 측면 웨이브 가이딩(wave guiding)이 향상된다. 공정의 경과에 따라, 턴넬 접촉(tunnel contact)의 형성은 넓어지거나 또는 좁아지게 되어 광학 필드(optical field)의 측면 한계가 넓은 범위에 걸쳐 영향을 받도록 허용한다. 이 방법은 레이저의 품질을 최적화하기 위하여 다음에 설명하는 구조적 변형들과 결합될 수 있다.
도3은 본 발명의 세 번째 실시 태양을 나타낸다. 유전성 거울(30) 전체에 대하여 부가되는 추가적인 고 반사성 금속 층(highly reflective metallic layer)(30c)의 도입은 본 실시 태양에 있어서 집적화된 열 강하기(heat sink) 및 접촉 층(25)의 특성에 의존하지 아니하는 높은 반사도를 생성한다.
도4는 본 발명의 네 번째 실시 태양을 나타낸다. 본 실시 태양에서는 피(p)측부의 접촉 층(25)에 대한 접촉 저항을 엔(n)으로 고도로 도핑시킨 중간 접촉 층(70)을 측면 삽입시켜 감소시킬 수 있다. 예를 들면, 층(24)는 엔(n)으로 도핑된 열전도도가 매우 높은 InP로 이루어질 수 있고, 중간 접촉 층(70)은 접촉 저항이 매우 낮은, 엔(n)으로 고도로 도핑된 InGaAs로 이루어질 수 있다.
도4에 따른 엔(n)으로 도핑된 중간 접촉 층이 InGaAs인 경우에는 열전도도가 매우 낮을 수 있다. 도5는 유전성 거울(30)과 중간 접촉 층(70)사이에 열이 흘러갈 수 있는 중간 여백을 형성시켜서 창(71)을 통한 열의 우수한 배출과 중간 접촉 층(70)에 의한 낮은 저항성 접촉 둘 다 모두가 가능하게 된 본 발명의 다섯 번째 실시 태양을 나타낸다. 따라서 영역(71)의 옆으로의 크기는 층(24)의 두께 보다는 큰 것이 바람직하다.
도6은 첫 번째 실시 태양의 확산 차단부를 제작하는 3단계 공정을 나타낸다. 제1단계에서는 제2영역602를 마스킹 시킨 채 제1영역에 확산 차단부601이 부가된다. 확산 차단부는 예를 들면 백금으로 제작된다. 밑에 놓이는 엔(n)으로 도핑된 반도체 층과 우수한 접착을 위하여 티타늄 층을 백금 층 밑에 깔기도 한다. 마지막으로, 금 층을 백금 층위에 가하기도 한다. 그러면 이러한 경우의 확산 차단부는 Ti/Pt/Au층으로 이루어진다.
두 번째 공정(b)에서는 유전성 거울603이 제2영역 602에 가해진다. 확산 차단부 601과 605, 606지점에서의 어느 정도의 겹침이 허용된다. 이러한 겹침의 장점은 유전성 거울과 확산차단부의 빽빽한 밀봉을 가능하게 하여 접촉 층으로부터 엔(n)으로 도핑된 반도체 층으로의 확산의 가능성을 완전히 배제할 수 있게 하여 준다.
마지막으로, 세 번째 단계(c)에서는 금 층604가 유전성 거울603에 가해진다.
도7은 두 번째 실시 태양에 따른 확산 차단부를 제작하는 세단계 공정을 나타낸다. 도6에 나타낸 공정과 가장 큰 차이점은 제1단계 공정(a)에서 유전성 거울이 무엇보다 먼저 부가된다는 점, 제2단계 공정(b)에서 확산 차단부702가 부가되어 앞에서 언급한 Ti/Pt/Au층의 순서로 구성된다는 점이다. 그 후 제3단계 공정(c)에서 금 층703이 유전성 거울에 부가된다. 도7의 공정 순서에 있어서 마스킹을 정교하게 조정함으로써, 앞에서와 같이 유전성 거울과 하부에 놓인 엔(n)으로 도핑된 반도체 층간의 확산을 방지할 수 있게 한다.
마지막으로 본 발명에 따른 반도체 다이오드의 전형적인 값들을 표1에 나타냈으며 첫 번째 행의 숫자는 도면의 참조 번호를 나타낸다.
<표1>
Figure 112003029975616-pct00001

Claims (27)

  1. 피엔 전이부(pn transition)를 포함하는 활성 영역과,
    활성 영역의 엔(n)측부에 존재하는 엔(n)으로 도핑된 제1반도체 층과,
    활성 영역의 피(p)측부 상의 엔(n)으로 도핑된 제2반도체 층으로의 도전성 전이(condutive transition)를 형성하는 활성 영역의 피(p)측부 상의 구조화된 턴넬 접촉(tunnel contact)과,
    엔(n)으로 도핑된 제2반도체 층에 부가되는 구조화된 유전성 거울과,
    상기 유전성 거울이 부가되지 아니한 지점에서 엔(n)으로 도핑된 제2반도체 층과 접촉을 형성하는 접촉 층을 포함하는 표면 발광형 레이저 반도체에 있어서,
    상기 접촉 층과 엔(n)으로 도핑된 제2반도체 층 사이의 확산 차단부, 확산 차단부와 부분적으로 겹쳐지는 유전성 거울을 특징으로 하는 표면 발광형 레이저 반도체.
  2. 제1항에 따른 레이저 반도체에 있어서, 확산 차단부와 제2반도체 층 사이에 접착 증진부가 제공되는 것을 특징으로 하는 레이저 반도체.
  3. 제2항에 따른 레이저 반도체에 있어서, 접착 증진부가 티타늄 층으로 이루어진 것임을 특징으로 하는 레이저 반도체.
  4. 제1항 내지 제3항 중 어느 한 항에 따른 레이저 반도체에 있어서, 확산 차단부가 백금 층으로 이루어진 것임을 특징으로 하는 레이저 반도체.
  5. 제1항 내지 제3항 중 어느 한 항에 따른 레이저 반도체에 있어서, 유전성 거울과 접촉 층 사이에 반사도를 증가시키기 위한 금속 도포층이 제공되는 것을 특징으로 하는 레이저 반도체.
  6. 제5항에 따른 레이저 반도체에 있어서, 금속 도포층이 확산 차단부와 접촉 층 사이에 제공되는 것을 특징으로 하는 레이저 반도체.
  7. 제1항 내지 제3항 중 어느 한 항에 따른 레이저 반도체에 있어서, 접촉 층이 열 강하기(heat sink)로 작용하기에 충분한 두께로 부가된 것임을 특징으로 하는 레이저 반도체.
  8. 제7항에 따른 레이저 반도체에 있어서, 접촉 층의 두께가 10㎛ 이상인 것임을 특징으로 하는 레이저 반도체.
  9. 피엔 전이부(pn transition)를 포함하는 활성 영역과,
    활성 영역의 엔(n)측부에 존재하는 엔(n)으로 도핑된 제1반도체 층과,
    활성 영역의 피(p)측부 상의 엔(n)으로 도핑된 제2반도체 층으로의 도전성 전이(conductive transition)를 형성하는 활성 영역의 피(p)측부 상의 구조화된 턴넬 접촉(tunnel contact)을 가지는 반도체에 확산 차단부를 생성시키는 방법에 있어서,
    제1영역에서 확산 차단부가 엔(n)으로 도핑된 제2반도체 층에 부가되고,
    유전성 거울이 부분적으로 확산 차단부와 겹치는 방법으로, 제2영역에서 유전성 거울이 엔(n)으로 도핑된 제2반도체 층에 부가되며, 그리고
    확산 차단부의 적어도 일부위에 접촉 층이 부가되는 것임을
    특징으로 하는 반도체에 확산 차단부를 생성시키는 방법.
  10. 제9항에 따른 방법에 있어서, 유전성 거울이 확산 차단부가 부가되기 이전에 부가되는 것임을 특징으로 하는 방법.
  11. 제9항에 따른 방법에 있어서, 유전성 거울이 확산 차단부가 부가된 이후에 부가되는 것임을 특징으로 하는 방법.
  12. 제9항 내지 제11항 중 어느 한 항에 따른 방법에 있어서, 제1영역 내의 확산 차단부 이전에 접착 증진부가 부가되는 것임을 특징으로 하는 방법.
  13. 제9항 내지 제11항 중 어느 한 항에 따른 방법에 있어서, 접착 증진부가 티타늄으로 이루어지는 것임을 특징으로 하는 방법.
  14. 제9항 내지 제11항 중 어느 한 항에 따른 방법에 있어서, 확산 차단부가 백금으로 이루어지는 것임을 특징으로 하는 방법.
  15. 제9항 내지 제11항 중 어느 한 항에 따른 방법에 있어서, 금속제 접촉 층이 확산 차단부와 유전성 거울 전체의 표면에 부가되는 것임을 특징으로 하는 방법.
  16. 제9항 내지 제11항 중 어느 한 항에 따른 방법에 있어서, 유전성 거울에 접촉 층이 부가되기 이전에 금속제 도포 층이 부가되는 것임을 특징으로 하는 방법.
  17. 제9항 내지 제11항 중 어느 한 항에 따른 방법에 있어서, 접촉 층이 유전성 거울과 확산 차단부 전체의 표면에 부가되기 이전에 금속제 도포 층이 부가되는 것임을 특징으로 하는 방법.
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
KR1020037010705A 2001-02-15 2002-02-15 표면 발광 레이저 반도체 KR100626891B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10107349.6 2001-02-15
DE10107349A DE10107349A1 (de) 2001-02-15 2001-02-15 Oberflächenemittierender Halbleiterlaser
PCT/EP2002/001656 WO2002065599A2 (de) 2001-02-15 2002-02-15 Oberflächenemittierender halbleiterlaser

Publications (2)

Publication Number Publication Date
KR20030084928A KR20030084928A (ko) 2003-11-01
KR100626891B1 true KR100626891B1 (ko) 2006-09-20

Family

ID=7674324

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020037010705A KR100626891B1 (ko) 2001-02-15 2002-02-15 표면 발광 레이저 반도체

Country Status (12)

Country Link
US (1) US7170917B2 (ko)
EP (1) EP1366548B1 (ko)
JP (1) JP2004535058A (ko)
KR (1) KR100626891B1 (ko)
CN (1) CN1263207C (ko)
AT (1) ATE294457T1 (ko)
CA (1) CA2438341A1 (ko)
DE (2) DE10107349A1 (ko)
DK (1) DK1366548T3 (ko)
ES (1) ES2240725T3 (ko)
IL (1) IL157362A0 (ko)
WO (1) WO2002065599A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176344A1 (ko) * 2012-05-25 2013-11-28 (주)파이버피아 수직 면발광 레이저다이오드

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10107349A1 (de) 2001-02-15 2002-08-29 Markus-Christian Amann Oberflächenemittierender Halbleiterlaser
DE10147888A1 (de) * 2001-09-28 2003-04-24 Osram Opto Semiconductors Gmbh Optisch gepumpter vertikal emittierender Halbleiterlaser
DE10305079B4 (de) * 2002-11-27 2005-04-28 Vertilas Gmbh Verfahren zur Herstellung eines vergrabenen Tunnelkontakts in einem oberflächenemittierenden Halbleiterlaser sowie oberflächenemittierender Halbleiterlaser
US6936486B2 (en) * 2002-11-19 2005-08-30 Jdsu Uniphase Corporation Low voltage multi-junction vertical cavity surface emitting laser
KR20050085176A (ko) * 2002-11-27 2005-08-29 버티라스 게엠베하 표면 발광 반도체 레이저의 매입된 터널 접합부 제조 방법
US6870868B2 (en) * 2003-02-18 2005-03-22 Eastman Kodak Company Organic laser having improved linearity
DE10353960B4 (de) * 2003-10-16 2006-03-23 Vertilas Gmbh Oberflächenemittierender Halbleiterlaser mit strukturiertem Wellenleiter
US7372886B2 (en) * 2004-06-07 2008-05-13 Avago Technologies Fiber Ip Pte Ltd High thermal conductivity vertical cavity surface emitting laser (VCSEL)
JP2008198957A (ja) * 2007-02-16 2008-08-28 Hitachi Ltd 半導体レーザ装置および光増幅装置
US7974328B2 (en) 2007-03-22 2011-07-05 Nec Corporation Surface-emission type semiconductor laser
JP2012119408A (ja) * 2010-11-30 2012-06-21 Nippon Telegr & Teleph Corp <Ntt> 半導体素子、半導体光素子及び半導体集積素子
US10033158B1 (en) 2016-12-19 2018-07-24 Osram Opto Semiconductors Gmbh Semiconductor laser, laser assembly and method of making a semiconductor laser
CN106856296B (zh) * 2016-12-27 2019-07-05 中国科学院半导体研究所 一种长波长垂直腔面发射激光器
CN108927601A (zh) * 2018-07-18 2018-12-04 张家港市顶峰激光科技有限公司 一种利用半导体激光束进行材料表面整平设备
US11695093B2 (en) 2018-11-21 2023-07-04 Analog Devices, Inc. Superlattice photodetector/light emitting diode
CN114498285B (zh) * 2022-01-24 2024-02-06 中国科学院半导体研究所 一种半导体激光器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3444019A1 (de) * 1984-12-03 1986-06-05 Siemens AG, 1000 Berlin und 8000 München Strahlung erzeugende halbleiterdiode mit einem kleinflaechigen kontakt mit grossflaechigerem oberflaechenschutz
US5661075A (en) * 1995-02-06 1997-08-26 Motorola Method of making a VCSEL with passivation
US5831295A (en) * 1995-12-01 1998-11-03 Motorola, Inc. Current confinement via defect generator and hetero-interface interaction
AU3600697A (en) 1996-08-09 1998-03-06 W.L. Gore & Associates, Inc. Vertical cavity surface emitting laser with tunnel junction
FR2761822B1 (fr) * 1997-04-03 1999-05-07 Alsthom Cge Alcatel Laser semiconducteur a emission de surface
US5936266A (en) * 1997-07-22 1999-08-10 The Board Of Trustees Of The University Of Illinois Semiconductor devices and methods with tunnel contact hole sources
DE10107349A1 (de) 2001-02-15 2002-08-29 Markus-Christian Amann Oberflächenemittierender Halbleiterlaser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176344A1 (ko) * 2012-05-25 2013-11-28 (주)파이버피아 수직 면발광 레이저다이오드

Also Published As

Publication number Publication date
DK1366548T3 (da) 2005-06-27
WO2002065599A3 (de) 2002-10-24
CN1263207C (zh) 2006-07-05
EP1366548B1 (de) 2005-04-27
DE10107349A1 (de) 2002-08-29
EP1366548A2 (de) 2003-12-03
KR20030084928A (ko) 2003-11-01
CA2438341A1 (en) 2002-08-22
DE50202912D1 (de) 2005-06-02
US20040179568A1 (en) 2004-09-16
ATE294457T1 (de) 2005-05-15
WO2002065599A2 (de) 2002-08-22
US7170917B2 (en) 2007-01-30
JP2004535058A (ja) 2004-11-18
ES2240725T3 (es) 2005-10-16
IL157362A0 (en) 2004-02-19
CN1491468A (zh) 2004-04-21

Similar Documents

Publication Publication Date Title
KR100626891B1 (ko) 표면 발광 레이저 반도체
US4943970A (en) Surface emitting laser
US4901327A (en) Transverse injection surface emitting laser
US5724376A (en) Transparent substrate vertical cavity surface emitting lasers fabricated by semiconductor wafer bonding
US5513202A (en) Vertical-cavity surface-emitting semiconductor laser
US6542530B1 (en) Electrically pumped long-wavelength VCSEL and methods of fabrication
US6317446B1 (en) Vertical resonator laser diode and method for producing it
US6618414B1 (en) Hybrid vertical cavity laser with buried interface
JP2534444B2 (ja) 集積化短キャビティ・レ―ザ
WO2002017360A1 (en) Double intracavity contacted long-wavelength vcsels and method of fabricating same
JPS61127192A (ja) 表面放射発光装置
US4845725A (en) Window laser with high power reduced divergence output
KR20050053763A (ko) 광전자장치용 분산 브래그 반사기
JP2009164640A (ja) エッジエミッティングレーザのモノリシックアレイ
JPS63318195A (ja) 横方向埋め込み型面発光レ−ザ
JP5029254B2 (ja) 面発光レーザ
US6696308B1 (en) Electrically pumped long-wavelength VCSEL with air gap DBR and methods of fabrication
JPH07288362A (ja) 垂直共振器型面発光半導体レーザ
EP0266826B1 (en) Semiconductor laser and method of manufacturing same
US20040125840A1 (en) Oxide-confined VCSEL device and the method for making the same
EP1081816A2 (en) Vertical cavity surface emitting laser (VCSEL) having undoped distributed bragg reflectors and using lateral current injection and method for maximizing gain and minimizing optical cavity loss
KR102505318B1 (ko) 동작전압 특성을 개선한 수직 공진 표면 발광 레이저 소자
JP3779248B2 (ja) 半導体レーザ素子
JPS63188983A (ja) 半導体発光装置
GB2347559A (en) Wafer bonded vertical cavity surface emitting lasers

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee