KR100606995B1 - 게르마늄 셀레나이드 유리 및 게르마늄 셀레나이드 유리화합물의 대규모 합성 방법 - Google Patents

게르마늄 셀레나이드 유리 및 게르마늄 셀레나이드 유리화합물의 대규모 합성 방법 Download PDF

Info

Publication number
KR100606995B1
KR100606995B1 KR1020047016346A KR20047016346A KR100606995B1 KR 100606995 B1 KR100606995 B1 KR 100606995B1 KR 1020047016346 A KR1020047016346 A KR 1020047016346A KR 20047016346 A KR20047016346 A KR 20047016346A KR 100606995 B1 KR100606995 B1 KR 100606995B1
Authority
KR
South Korea
Prior art keywords
vessel
temperature
germanium
selenium
glass
Prior art date
Application number
KR1020047016346A
Other languages
English (en)
Other versions
KR20050000393A (ko
Inventor
스테판 얼렌브록
Original Assignee
마이크론 테크놀로지, 인크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 마이크론 테크놀로지, 인크 filed Critical 마이크론 테크놀로지, 인크
Publication of KR20050000393A publication Critical patent/KR20050000393A/ko
Application granted granted Critical
Publication of KR100606995B1 publication Critical patent/KR100606995B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • C03C3/321Chalcogenide glasses, e.g. containing S, Se, Te
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/06Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in pot furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S65/00Glass manufacturing
    • Y10S65/15Nonoxygen containing chalogenides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Abstract

게르마늄 셀레나이드 유리 및 게르마늄 셀레나이드 유리 화합물을 합성하는 시스템 및 방법이 제공된다. 게르마늄, 셀레니움 및 가변물(원하는 경우) 임의의 적당한 용기 내에 배치될 수 있다. 이어서, 이 용기의 내용물은 진공 상태로 되고, 용기는 용기 내의 내용물이 진공 상태로 남도록 밀봉된다. 그 다음, 이 내용물은 합성되는 유리 또는 유리 화합물의 연화 온도까지 가열되어, 임의의 적당한 수단을 이용하여 혼합되고, 냉각되며, 담금질된다.
용기, 가열 장치, 요동 메카니즘, 통, 노

Description

게르마늄 셀레나이드 유리 및 게르마늄 셀레나이드 유리 화합물의 대규모 합성 방법{LARGE SCALE SYNTHESIS OF GERMANIUM SELENIDE GLASS AND GERMANIUM SELENIDE GLASS COMPOUNDS}
본 발명은 게르마늄 셀레나이드 유리 및 게르마늄 셀레나이드 유리 화합물을 합성하는 시스템 및 방법에 관한 것이다. 특히, 본 발명은 게르마늄 셀레나이드 유리 및 게르마늄 셀레나이드 유리 화합물을 단시간에 대규모로 합성하는 시스템 및 방법에 관한 것이다.
본 명세서에 있어서, 게르마늄 셀레나이드 유리 화합물은 게르마늄, 셀레니움 및 가변물(variable)(예컨대, 도펀트)을 포함한다.
게르마늄 셀레나이드 유리는 반도체 소자를 제조할 시에 널리 이용되어 왔다. 그러나, 게르마늄 셀레나이드 유리의 일종인 Ge3Se7을 생산하기 위한 공지된 기술에서는, 한 번에 상기 유리의 약 10 그램만을 생산할 수 있다. 더욱이, 이 기술은 게르마늄 셀레나이드 유리의 10 그램을 생산하기 위해 약 50 시간을 필요로 한다.
이 공지된 기술은 게르마늄 및 셀레니움의 화학양론 비례(총계 약 10 그램 이하)를 대기 압력(즉, 약 1 atm.)에서 하나의 앰풀(ampoule)에 배치(place)하는 것을 수반한다. 이 앰풀은 작은 밀폐된 석영-유리 용기이며, 이는 통상적으로 화학 용액 또는 물질을 담는데 사용된다. 이 앰풀을 진공 상태로 하고, 이어서 앰풀을 화염 밀봉하여(flame sealed) 내용물(contents)을 진공 상태로 밀봉한다. 이 앰풀을 노(furnace) 내에 배치하고, 약 300 ℃로 가열하고, 통상적으로 이 온도에서 밤새 놓아 둔다. 다음 아침, 상기 앰풀을 약 0.5 ℃/분의 율에서 약 750 ℃까지 가열한다. 다음 아침까지 이 온도에서 앰플을 놓아 두어, 게르마늄이 확실히 용융되고 셀레니움이 게르마늄과 반응하도록 한다. 용융 및 반응이 일어나지 않는다면, 셀레니움은 약 900 ℃에서 약 10 atm.의 증기압을 나타낼 수 있고, 이 증기압은 앰풀을 파열시킬 수 있다. 다음 아침, 앰풀의 온도를 약 0.5 ℃/분의 율로 약 940 ℃까지 상승시킨다. 이것은, 앰풀의 내용물이 확실히 용융되도록 한다. 온도가 약 940 ℃에 도달하면, 앰풀을, 적어도 약 6 시간 동안 (통상적으로 노에 연결된 요동(rocking) 메카니즘에 의해) 전후로 요동시킨다. 요동시키는 동안, 상기 앰풀을 약 800 ℃ 내지 약 780 ℃의 범위까지 냉각시킨다. 앰풀을 냉각시킨 후, 얼음물의 냉각욕에서 앰풀을 담금질(quench)한다. 이어서, 게르마늄 셀레나이드 유리를 회수하기 위해 앰풀을 부순다.
이런 공지된 기술을 이용하여 이 게르마늄 셀레나이드 유리의 합성을 확대하는 유일한 공지의 방법은 다수의 소규모 반응을 동시에 실행하는 것이며, 여기서 각 반응에 의해 50 시간 마다 단지 약 10 그램의 유리가 생산된다. 분명히, 이 기술은 대규모 생산에는 시간 소비가 많고, 비실용적이다.
게르마늄 셀레나이드 유리는 특히, 예컨대, PCRAM (프로그램 가능 셀 랜덤 액세스 메모리) 등의 반도체 소자의 제작시에 이용된다. 공지된 PCRAM 소자의 제작 시 도전 재료(예컨대, 은)의 박막을 게르마늄 셀레나이드 유리 기판 위에 증착한다. 이 도전 재료는 통상적으로, 전자기 에너지로 조사(irradiate)하여 도핑되거나 포토도핑된 기판(즉, 게르마늄 셀레나이드 유리 화합물)을 생성한다. 이런 도전 재료를 조사하면서 조심하지 않으면, 이와 같은 조사는 기판의 성질을 예측할 수 없게 변화시킬 뿐만 아니라, 예측할 수 없는 도핑량을 생산시킬 수 있다. 이와 같은 변화 또는 예측할 수 없는 도핑량은, 제작되는 PCRAM 소자의 전기적 및 성능 특성을 예측할 수 없게, 그리고 통상 바람직하지 않게 변경시킬 수 있다.
더욱이, 게르마늄 유리의 합성과 마찬가지로, 게르마늄 셀레나이드 유리 화합물을 대규모로 합성하는 기술은 공지되어 있지 않다.
상술한 점을 고려하여, 게르마늄 셀레나이드 유리 또는 게르마늄 셀레나이드 유리 화합물의 10 그램 이상을 한 반응에서 합성할 수 있는 것이 바람직하다.
또한, 게르마늄 셀레나이드 유리 또는 게르마늄 셀레나이드 유리 화합물을 약 50 시간 이내에 한 반응에서 합성할 수 있는 것이 바람직하다.
또한, 실질적으로 공지된 특성 및 실질적으로 공지된 도핑량을 가진 게르마늄 셀레나이드 유리 화합물을 합성할 수 있는 것이 바람직하다.
본 발명의 목적은, 게르마늄 셀레나이드 유리 또는 게르마늄 셀레나이드 유리 화합물의 10 그램 이상을 하나의 반응에서 합성하는 것이다.
또한, 본 발명의 목적은, 게르마늄 셀레나이드 유리 또는 게르마늄 셀레나이드 유리 화합물을 약 50 시간 이내에 하나의 반응에서 합성하는 것이다.
또한, 본 발명의 목적은 실질적으로 공지된 특성 및 실질적으로 공지된 도핑량을 가진 게르마늄 셀레나이드 유리 화합물을 합성하는 것이다.
본 발명에 따르면, 많은 상이한 화학양론의 게르마늄 셀레나이드 유리의 대규모 합성 방법이 제공된다. 더욱이, 본 발명은 약 8 시간 또는 그 이내에 상이한 유형의 유리를 합성할 수 있다. 합성될 수 있는 유리의 양은 증배할 수 있다(scalable). 즉, 약 750 그램까지의 무게의 게르마늄 셀레나이드 유리를 한 반응에서 한 번에 형성할 수 있다. 본 발명은 약 15 % 내지 약 42 %의 게르마늄으로 구성되는 유리를 합성한다.
또한, 본 발명에 따르면, 게르마늄 셀레나이드 유리는 가변물에 의해 예측 가능하게 도핑될 수 있다. 이와 같은 유리 화합물은 리튬, 바나듐, 크롬, 망간, 코발트, 몰리브덴, 루테늄, 은, 프라세오디뮴, 네오디뮴, 이리듐, 금 및 납 등의 가변물을 포함할 수 있다. 선택적으로, 다른 적당한 가변물이 사용될 수 있다. 이와 같은 유리 화합물 내에 함유된 가변물은, 원소형(elemental form)(예컨대, 순수한 리튬) 또는 화합물형(예컨대, 은 셀레나이드)일 수 있다. 공지된 가변물의 양은 공지된 게르마늄 및 셀레니움의 양과 반응한다.
본 발명의 일 실시예에서는, 석영-유리 앰풀을 먼저 HCl 또는 HCl/HNO3을 이용하여 세정하는 것이 바람직하다. 이어서, 앰풀을 건조 상자(dry box) 내에서 건조시킨다.
순수한 게르마늄 셀레나이드 유리의 경우, 앰플을 여전히 건조 상자 내에 둔 채 99.999% 게르마늄 및 99.999% 셀레니움을 앰풀내에 배치한다. 바람직하게는, 셀레니움을 개구(opening)로부터 떨어진 앰플의 안쪽에 배치하여 앰풀의 밀봉시(화염 토치(flame torch)를 앰풀의 개구를 밀봉하는데 이용하는 것이 바람직함) 셀레니움이 승화하지 않게 한다. 앰풀 내에 배치된 임의의 휘발성 가변물도 역시 개구로부터 떨어뜨려 배치하여, 앰풀의 밀봉시 가변물이 승화하지 않게 한다. 앰풀의 내용물을 진공 상태로 하고, 앰풀을 밀봉하여 앰풀내의 내용물이 진공 상태로 남아 있도록 한다.
밀봉된 앰풀을 노 또는 다른 가열 소자 내에 배치하고, 합성되는 유리의 연화 온도 또는 바람직하게는 그 이상의 온도로 가열한다. 연화 온도는 유리 전이 온도이다. 이어서, 앰풀을 게르마늄 및 셀레니움이 완전히 혼합되도록 요동시킨다. 요동 시간은 합성되는 유리의 양에 의존한다 (예컨대, 게르마늄 및 셀레니움의 약 450 그램에 대해서는 약 5 내지 6 시간의 요동이 족함). 완전한 혼합된 후에, 조성물을 합성되는 유리의 연화 온도와, 연화 온도 보다 20 ℃ 더 높은 온도 사이(즉, 연화 온도 이상)로 냉각한다. 냉각 후에(연화 온도 보다 20 ℃ 높지 않은 온도로 가열된 경우에는 필요하지 않을 수 있음), 앰풀을 얼음물로 담금질한다. 약 400 그램의 게르마늄 및 셀레니움을 합성할 경우, 반응은 약 8 시간이 소요된다. 따라서, 한 세트의 장치에 의해, 날마다 약 3번의 반응이 가능하다. 그래서, 하나의 장치로 하루에 1 킬로그램 이상의 게르마늄 셀레나이드 유리를 생산할 수 있다.
가변물에 의해 도핑된 게르마늄 셀레나이드 유리의 경우, 게르마늄, 셀레니움 및 가변물을 마찬가지로 건조 상자내의 앰풀에 배치한다. 앰풀의 내용물을 진공 상태로 하고, 앰풀을 밀봉하여 내용물이 진공 상태로 남아 있도록 한다. 밀봉된 앰풀을 노 또는 다른 가열 소자 내에 배치한 후, 앰풀을 가열한다. 앰풀이 적어도 합성되는 화합물의 연화 온도로 가열되면, 가변물이 균일하게 분포되도록 앰플을 요동시킨다. 이 화합물이 이 화합물의 약 연화 온도 내지 연화 온도 보다 약 20 ℃ 높은 온도의 범위 내에 있지 않은 경우, 이 화합물을 상기 온도 범위로 냉각한다. 냉각 후에(필요한 경우), 상기 화합물을 담금질한다.
일반적으로 본 발명에 따르면, 게르마늄 및 셀레니움 (및 바람직하게는 가변물)을 임의의 적당한 용기 내에 배치할 수 있다. 이어서, 이 용기의 내용물을 진공 상태로 하고 용기를 밀봉하여 용기 내의 내용물이 진공 상태로 남아 있도록 한다. 이어서, 임의의 적당한 수단을 이용하여 내용물을 합성되는 유리 또는 유리 화합물의 연화 온도로 가열하고, 혼합하고, 냉각시키고, 담금질한다.
본 발명의 상기 및 다른 목적과 이점은 첨부한 도면과 관련하여 다음의 상세한 설명으로부터 명백해지며, 여기서, 동일한 참조 문자는 동일한 부분을 나타낸다.
도 1은 게르마늄, 셀레니움 및 가변물을 함유한 앰풀을 도시한 것이다.
도 2는 진공 상태에서 내용물이 밀봉된 도 1의 앰풀을 도시한 것이다.
도 3은 본 발명에 따른 앰풀 및 관의 조립체의 단면도이다.
도 4는 도 3의 조립체가 본 발명에 따라 배치된 다중 위치의 관형 노의 단면도이다.
도 5는 게르마늄-셀레니움 상(phase) 다이어그램이다.
도 6 및 도 7은 본 발명에 따른 도 4의 관형 노의 요동시킴을 도시한 것이다.
도 8은 본 발명에 따라 내부의 앰풀이 담금질 욕으로 슬라이드하도록 위치하는 도 4의 관형 노를 도시한 것이다.
도 9는 본 발명에 따라 관형 노를 벗어난 후에 얼음물로 담금질된 앰풀을 도시한 것이다.
도 10은 본 발명에 따른 게르마늄 셀레나이드 유리 또는 유리 화합물을 대규모로 합성하기 위한 시간 대 온도의 그래프이다.
도 11은 본 발명에 따른 게르마늄 셀레나이드 유리 또는 유리 화합물의 대규모 합성에 대한 일 실시예의 흐름도이다.
바람직하게는, 본 발명은 합성되는 유리의 화학양론에 따라 반응마다 약 750 그램 이상의 게르마늄 셀레나이드 유리를 생산할 수 있다. 약 400 그램의 합성의 경우, 반응에 약 8 시간 소요된다. 게르마늄-셀레니움-망간 화합물(Ge25Se75; 망간의 3% 원자량)의 30 그램 합성을 위해서는, 반응에 약 6 시간 소요된다. 본 발명은 또한, 선택된 가변물과, 게르마늄 및 셀레니움의 상호비 및 가변물에 대한 게르마늄 및 셀레니움의 비에 따라 약 750 그램 이상의 게르마늄 셀레나이드 유리 화합물을 생산한다. 중요한 장비의 초기 세정은 반응 시간에 포함되지 않는다.
본 발명에 따른 게르마늄 셀레나이드 유리 화합물에 대한 적당한 가변물은, 리튬, 바나듐, 크롬, 망간, 코발트, 몰리브덴, 루테늄, 은, 프라세오디뮴, 네오디뮴, 이리듐, 금 및 납을 포함한다. 또한, 다른 적당한 가변물이 사용될 수 있다. 이와 같은 유리 화합물 내에 함유된 가변물은, 원소형(예컨대, 순 리튬) 또는 화합물형(예컨대, 은 셀레나이드)일 수 있다. 공지된 가변물의 양은 공지된 게르마늄 및 셀레니움의 양과 반응한다.
도 1은 개구(3)에서 바람직한 석영-유리관(8)에 연결된 바람직한 석영-유리 앰풀(2)을 도시한 것이다. 앰풀(2) 및 관(8)은 석영-유리 이외에 다른 적당한 재료로 제조될 수 있다. 바람직하게는, 앰풀(2) 및 관(8)을 HCl 또는 HCl/HNO3 등의 세정제로 세정한다. 이어서, 앰풀(2) 및 관(8)을 약 120 ℃의 노에서 약 24 시간 가열한다. 앰풀(2) 및 관(8)에 Ar 또는 N2 등의 건조 불활성 가스를 다시 채우고 이것을 진공 상태가 되도록 함으로써 앰풀(2)와 관(8)을 더 세정하는 것이 바람직하다. 앰풀(2) 및 관(8)에 건조 불활성 가스를 다시 채우고 여러번 진공 상태로 되게 하여 더욱 확실히 세정시킬 수 있다.
앰풀(2) 및 관(8)의 세정도 및, 게르마늄, 셀레니움 및 가변물(존재하는 경우)의 순도는 유리의 백본(backbone) 구조물에 평균 좌표(mean coordination)의 무결성(integrity)을 보존하는데에 중요하다.
앰풀(2) 및 관(8)을 세정한 후, 99.999% 순수한 게르마늄(4) 및 99.999% 순 셀레니움(6)을 개구(3 및 9)를 거쳐 관(8)을 통해 앰풀(2) 내에 배치한다. 가변물(5)도 역시 앰풀(2) 내에 배치할 수 있다. 게르마늄(4), 셀레니움(6) 및 가변물(5)은 바람직하게는 고체 펠릿(solid pellet)형이다. 게르마늄(4) 및 셀레니움(6)은 WI, Milwaukee 소재의 Cerac사로부터 상기 형으로 획득할 수 있다. 선택적으로, 게르마늄(4), 셀레니움(6) 및 가변물(5)은 액체형일 수 있다.
앰풀(2) 내에 배치한 게르마늄(4), 셀레니움(6) 및 가변물(5)의 양은 바람직하게는 대부분의 앰풀(2)을 채운다. 이것은 액상 또는 고상(solid phase)에서 각각 증발하거나 승화할 수 있는 셀레니움, 게르마늄 또는 가변물의 양을 감소시킨다. 이와 같은 증발 또는 승화에 의해, 유리 또는 화합물이 원하는 화학양론 비례와 다르게 합성될 수 있다. 그러나, 앰풀(2) 내에 배치된 게르마늄(4), 셀레니움(6) 및 가변물(5)의 양은, 게르마늄(4), 셀레니움(6) 및 가변물(5)이 앰풀(2) 내에서 완전히 혼합하게 하기 위해 앰풀(2)의 전체 용량을 채우지 않는다. 예컨대, 길이가 20 cm이고, 직경이 4.6 cm인 앰풀에서는, 약 50 그램의 게르마늄, 약 218 그램의 셀레니움 및 약 8 그램의 망간이 수용 가능한 양이다. 이 앰풀의 경우, 관(8)은, 예컨대, 길이가 15 cm이고, 직경이 1.3 cm일 수 있다.
게르마늄(4), 셀레니움(6) 및 (바람직한 경우) 가변물(5)은 건조 상자 내(도시되지 않은)의 앰풀(2)내에 배치하는 것이 바람직하다. 셀레니움(6) 및, 휘발성인 (예컨대, 승화되기 쉬운) 임의의 가변물은 앰플(2) 내의 개구(3)의 맞은편 단부에 배치하는 것이 바람직하다. 이런 배치는 앰풀(2)을 밀봉할 시에(앰풀(2)은 아래에 기술되는 바와 같이 화염 토치에 의해 밀봉하는 것이 바람직함) 가변성 재료(셀레니움을 포함)가 승화하지 않도록 한다.
시판하는 진공선(vacuum line)(도시하지 않음)에 접속하기 위한 어댑터(도시하지 않음)는 건조 상자 내의 앰풀(2)에 꼭 맞게 되는 것이 바람직하다. 상기 어댑터는 밸브 또는 스위치를 가져, 어댑터 및 선택적으로 관(8)의 개구가 개방 및 폐쇄될 수 있도록 하는 것이 바람직하다. 어댑터 및 앰풀(2)을 건조 상자에서 꺼내어, 진공선에 연결한다. 이어서, 앰풀(2)의 내용물을 진공 상태로 한다. 세정을 확실히 하기 위해, 어댑터 및 앰풀(2)을 건조 상자에서 꺼내기 전에 어댑터를 폐쇄한다. 어댑터는, 진공선에 연결될 준비가 될 때까지 어댑터를 폐쇄된 상태로 둔다. 이것은, 공기가 관(8) 또는 앰풀(2)에 들어가지 못하게 하고, 게르마늄(4), 셀레니움(6) 및 가변물(5)(존재하는 경우)과 상호 작용하도록 한다.
앰풀(2)은 그의 내용물이 진공인 상태에서 밀봉하는 것이 바람직하다. 게르마늄(4), 셀레니움(6) 및 가변물(5)은 이들이 앰풀(2)내에 밀봉될 시에 실내 온도(약 25 ℃)로 유지되는 것이 바람직하다. 선택적으로, 게르마늄(4), 셀레니움(6) 또는 가변물(5)은 이들이 앰풀(2)내에 밀봉될 시에 실내 온도와 다른 온도로 존재할 수 있다.
그러나, 보다 저온에서, 앰풀(2) 내에 배치된 각 재료의 양은 보다 정확히 측정될 수 있다. 예컨대, 게르마늄(4), 셀레니움(6), 가변물(5) 또는 이들의 임의의 조합물은, 예컨대, 실내 온도 이하의 온도로 냉각시킴으로써 식혀질 수 있다. 이점으로, 보다 적은 게르마늄(4) 및 셀레니움(6)이 고상에서 승화할 수 있다. 약간의 게르마늄(4) 및 셀레니움(6)은, 이들이 진공 상태로 되거나, 열원에 의해 앰풀(2)이 밀봉될 시(후술함)에 승화할 수 있다. 고려되지 않으면, 이와 같은 승화는, 합성된 유리 또는 화합물이 원하는 화학양론과 상이한 화학양론을 가질 수 있기 때문에 해로울 수 있다.
게르마늄(4), 셀레니움(6) 및 가변물(5)이 실내 온도 보다 더 높은 온도에 있을 경우에는, 보다 적은 가열 및 혼합 시간이 요구된다. 예컨대, 게르마늄(4), 셀레니움(6) 및 망간이 앰풀(2)내에 배치될 시에 모두 액체형일 경우에는, 약 3 시간만의 가열 및 혼합 시간이 450 그램 합성에 요구되어야 한다.
H2/O2 토치와 같은 적당한 열원은, 개구(3)로부터 약 1 cm 떨어진 관(8)의 부분을 용융시킴으로써 앰풀(2)을 밀봉하기 위해 사용될 수 있다. 이것에 의해, 관(8)의 나머지가 앰풀(2)로부터 끊어진다. 도 2에서의 관(8)의 부분(10)은 앰풀(2)의 개구(3)를 밀봉하기 위해 용해된 것에 주목한다.
도 2는 진공 상태로 밀봉된 게르마늄(4), 셀레니움(6) 및, 가변물(5)을 도시한 것이다. 99.999% 순수한 게르마늄(4), 99.999% 순 셀레니움(6) 및, 선택된 화합물을 합성하는데 필요한 가변물(5)의 적절한 화학양론 비례가 내부에 밀봉된다. 순수한 게르마늄 셀레나이드 유리가 합성되는 경우, 게르마늄(4) 및 셀레니움(6)의 적절한 화학양론 비례는 내부에 밀봉된다. 앰풀(2)내에 배치되는 게르마늄(4), 셀레니움(6) 및 가변물(5)의 양은 단지 예시적이다.
앰풀(2)을 밀봉한 후, 이것을 앰풀(2)의 내용물(즉, 게르마늄(4), 셀레니움(6) 및 가변물(5))이 노 또는 다른 가열 장치에서 균질성으로 가열될 수 있도록 조립체 내에 배치한다. 도 3은 상기 조립체의 단면도를 도시한 것이다. 조립체(12)는 관(14) 및 연장관(16)을 포함한다. 관(14) 및 연장관(16)은 석영-유리 또는 다른 비교 가능한 재료(들)로 제조될 수 있다. 관(14) 및 연장관(16)은, 바람직하게는, 동일한 외부 직경을 가지며, 또한 바람직하게 연결된다. 관(14)은, 바람직하게는, 밀봉부(18)에 의해 관(16)에 연결된 단부에서 밀봉된다. 밀봉부(18)는, 바람직하게는, 석영-유리 또는 다른 적절한 재료로 제조되며, 이들 재료는 앰풀(2)이 더욱 내부로 슬라이드하지 못하도록 할 수 있다. 관(16) 및 밀봉부(18)는 앰풀(2)이 노 또는 다른 가열 장치의 균질성 가열 영역에 위치되게 한다. 밀봉부(18)에 대한 대안은 폐쇄 단부를 가진 관(16)을 갖는 것이다. 그 다음, 앰풀(2)을 관(16)의 폐쇄 단부와 접촉시킨다. 제 2 대안으로서, 관(14)은 폐쇄 단부를 가질 수 있다. 양방의 경우에, 관(14) 및 관(16)은 연결될 필요가 없고, 밀봉부(18)는 불필요하다. 관(16)은 앰풀(2)과 접촉하는 관(14)의 폐쇄 단부와 접촉한다.
관(14)의 대향 단부는, 바람직하게는, 앰풀(2)을 조립체(12)내에 배치하고, 조립체(12)에서 꺼내는 개구(15)를 갖는다. 관(14)의 내부 직경은, 바람직하게는, 앰풀(2)의 외부 직경 보다 약간 더 크다. 관(14)은, 바람직하게는, 관(14)의 일부가 조립체(12)를 노에 배치할 시에 노 외부로 연장할 정도로 충분히 길다.
조립체(12)의 관(14) 내부에 앰풀(2)을 배치한 후, 바람직하게는, 관(14)의 내부 직경 보다 약간 더 작은 외부 직경을 가진 관(20)의 일부를 관(14)으로 슬라이드시킨다. 관(20)을, 바람직하게는, 관(14)으로 슬라이드하도록 하여, 관 부분(10)을 가진 앰풀(2)의 단부가 밀봉부(18)와 접촉하고, 앰풀(2)의 대향 단부는 관(20)과 접촉하도록 한다. 관(20)은, 바람직하게는, 관(20)이 앰풀(2)의 단부와 접촉하고, 관 부분(10)이 밀봉부(18)와 접촉할 시에, 관(20)의 일부가 관(14)의 범위를 넘어서 노 외부로 연장할 정도로 충분히 길다.
바람직하게는, 석영 울(wool)(22 및 24)를 각각 관(16) 및 관(20) 내부에 배치하여, 모든 앰풀(2)이 실질적으로 동일한 온도로 확실히 가열되도록 하는데에 도움을 준다. 더욱이, 석역 울(24)은 관(20)을 통해 들어갈 수 있는 임의의 냉각 공 기로부터 앰풀(2)을 격리하는데 도움을 준다.
조립체(12)를 완성한 후 (즉, 앰풀(2) 및 관(20)이 관(14)의 내부로 슬라이드되도록 하여, 관(20)의 단부가 앰풀(2)의 단부와 접촉하고, 관 부분(10)은 밀봉부(18)와 접촉한 후), 조립체(12)를 관형 노 내부에 배치한다. 선택적으로, 앰풀(2)을 갖는 관(14 및 16)을 먼저 노 내부에 배치시킨 후, 관(20)이 관(14) 내부로 슬라이드되도록 한다. 또는, 관(14 및 16)을 먼저 노 내부에 배치시킨 후, 앰풀(2) 및 관(20)을 관(14) 내부로 슬라이드되도록 한다.
도 4는 본 발명에 따른 관형 노(40)의 단면도를 도시한 것이다. 선택적으로, 노(40)는 앰풀(2)의 내용물을 움직이지 않거나 움직이면서 앰풀(2)을 가열할 수 있는 다른 유형의 가열 장치일 수 있다. 바람직하게는, 노(40)는, IL 소재의 Vernon Hills의 Cole-Parmer에 의한 EW-33903-10과 같은 다중 위치 관형 노이다. 이와 같은 관형 노가 움직이지 않을 시에, (예컨대, 조립체(12)의 부분으로서) 노 내부에 배치된 앰풀을 앰풀의 내용물 또는 앰풀 그 자체를 이동시키지 않고 가열할 수 있다. 바람직하게는, 이와 같은 관형 노는, 관형 노를 (예컨대, 개시점에서 중간점으로, 다시 개시점으로) 율동적으로 이동시킬 수 있는 요동 장치 또는 다른 메카니즘을 포함한다. 율동적 이동은 필요치 않다는 것에 주목한다. 앰풀 내의 내용물이 완전히 혼합하도록 하는 노의 임의의 이동이면 충분하다.
노(40)는, 바람직하게는, 노(40)로부터 외부로 연장하는 관(14)의 외부면의 부분으로 클램프되는 호스 클램프(42)를 포함한다. 와이어(44)는, 바람직하게는, 호스 클램프(42) 및 나사(46)에 연결된다. 와이어(44)는 나사(46)를 감거나, 나사 (46)와 노(40)의 외부면 사이에서 핀으로 고정될 수 있다. 나사(46)는, 바람직하게는, 노(40) 정면의 외부면에서 정반대로 되어 있다. 이런 배열은 관형 노(40) 내에 관(14) (및 관(16))을 고정한다.
또한, 노(40)는, 바람직하게는, 관(14)을 지나 연장하는 관(20)의 외부면의 부분으로 클램프되는 호스 클램프(48)를 포함한다. 와이어(50)는, 바람직하게는, 호스 클램프(48) 및 나사(52)에 연결된다. 와이어(50)는 나사(52)를 감거나, 나사(52)와 노(40)의 외부면 사이에서 핀으로 고정될 수 있다. 나사(52)는, 바람직하게는, 노(40)의 외부면에서 정반대로 되어 있다. 이런 배열은 관(20)을 고정하여, 앰풀(2)이 조립체(12)의 길이 방향축을 따라 이동하지 못하게 한다.
관(14 및 20)이 노(40)에 배치되기 전에, 선택적으로, 호스 클램프(42 및 48)는 각각 관(14 및 20)에 클램프될 수 있다.
관(14 및 20)이 노(40) 내부에 고정되어, 노(40)가 움직일 시에 관 (또는 앰풀(2))의 어떠한 것도 노(40)의 길이 방향축을 따라 이동할 수 없거나, 매우 조금만 이동할 수 있다.
관(14)의 외부 직경이, 바람직하게는, 노(40)의 관(54)의 내부 직경 보다 약간 더 작음으로써, 노(40)가 움직일 시에, 관(14)은 노(40) 내에서 흔들리지 않거나, 매우 조금만 흔들린다. 예컨대, 관(54)의 내부 직경이 약 5 cm일 경우, 관(14)의 외부 직경은 약 4.6 cm일 수 있다.
마찬가지로, 앰풀(2) 및 관(20)의 외부 직경이, 바람직하게는, 관(14)의 내부 직경 보다 약간 더 작음으로써, 앰풀(2) 및 관(20)은, 노(40)가 움직일 시에 관 (14)내에서 흔들리지 않거나, 매우 조금만 흔들린다.
앰풀(2) 및 조립체(12)를 노(40) 내에 고정한 후, 앰풀(2)을 가열한다. 노(40) 내의 온도를 합성되는 유리 또는 화합물의 적어도 연화 온도 및 바람직하게는 그 이상으로 상승시킨다. 도 5는 게르마늄-셀레니움 상 다이어그램을 나타낸다. 상이한 화학양론을 가진 게르마늄 셀레나이드 유리의 연화 온도는 전이선(transition line)(56)에 의해 대략 표시된다. 일반적으로, 연화 온도는 합성되는 유리가 L2 상(58)으로 변화하는 온도 보다 높지 않다. 소량의 가변물이 게르마늄 셀레나이드 화합물에 함유되는 경우, 게르마늄-셀레니움 상 다이어그램은 대략의 가이드라인으로서 이 화합물의 연화 온도를 결정하는데 이용될 수 있다. 예컨대, 12% Ge/88% Se의 경우, 유리 전이 온도는 약 107 ℃이고, 24% Ge/76% Se의 경우, 유리 전이 온도는 약 229 ℃이며, 30% Ge/70% Se의 경우, 유리 전이 온도는 약 335 ℃이고, 40% Ge/60% Se의 경우, 유리 전이 온도는 약 347 ℃이다.
노(40) 내부의 온도를, 바람직하게는, 약 20 ℃/분 내지 약 30 ℃/분의 범위의 율로 상승시킨다. 노(40) 내부의 온도를 너무 고속으로 상승시키면, 실질적인 셀레니움(6)의 양은 게르마늄(4) 또는 다른 가변물과 반응하지 않을 수 있다. 이어서, 반응하지 않은 셀레니움(6)은 앰풀을 파열시키기에 충분한 강한 증기압을 나타낼 수 있다. 또한, 큰 증기압을 나타내는 가변물을 수반하는 게르마늄 셀레나이드 유리 화합물의 반응에서 온도를 상승시킬 시에 주의가 요구된다.
노(40) 내부의 온도가 합성되는 유리 또는 유리 화합물의 연화 온도에 도달하거나 초과한 후, 온도를 일정하게 유지하고, 노(40)를, 바람직하게는, 앰풀(2)의 내용물을 균질성 용융 혼합물으로 혼합하기 위해 요동시키거나 이동시킨다. 약 400 그램의 게르마늄 셀레나이드 유리를 합성하기 위해, 노(40)를 약 5 내지 6 시간 동안 요동시키거나 이동시켜, 게르마늄(4) 및 셀레니움(6)의 모두가 완전히 혼합하도록 한다. 약 750 그램을 합성하기 위해서는, 요동이 게르마늄(4) 및 셀레니움(6)의 모두가 혼합하도록 하기에 약 8 시간의 요동이 충분하다. 일반적으로, 합성이 크면 클수록, 게르마늄(4) 및 셀레니움(6)이 반응하도록 하는데 보다 많은 시간이 필요하다. 마찬가지로, 유리 화합물의 보다 큰 합성을 위해, 게르마늄(4), 셀레니움(6) 및 가변물(5)이 반응하도록 하는데 더욱 많은 시간이 필요하다.
도 6 및 도 7은 관형 노가 율동적으로 이동하도록 하는 요동 메카니즘(60)을 구비한 노(40)를 도시한 것이다. 도시된 바와 같이, 요동 메카니즘(60)은 노(40)가 노(40)의 길이 방향 축의 중간점(61)을 선회하도록 한다. 요동 메카니즘(60)은 가변 속도 제어기(도시되지 않음)에 의해 제어될 수 있다. 노(40)는, 바람직하게는, 앰풀(2)의 내용물의 완전 및 균질성 연화 및 혼합을 확실히 하도록 혼합할 동안, 매 4 초마다, '상향' 위치(도 6)에서 '하향' 위치(도 7)로, 다시 '상향' 위치로 이동된다. 노(40)는, 바람직하게는, 약 60°내지 80°의 각도로 요동시킨다.
앰풀(2)의 내용물이 균질성 용융 혼합물로 혼합된 후, 노(40)의 온도를, 바람직하게는, 합성되는 유리 또는 유리 화합물의 연화 온도의 약 20 ℃ 내지만, 연화 온도 이상으로 내린다. 노의 온도를 바람직하게는 약 20 ℃/분의 율로 내린다. 약 400 그램의 합성의 경우, 온도를, 약 10 분 동안에 연화 온도의 약 20 ℃ 이내이지만, 연화 온도 이상으로 유지한다.
일반적으로, 합성이 크면 클수록, 온도를 연화 온도의 약 20 ℃ 이내이지만, 연화 온도 이상으로 더 오래 유지된다. 약 750 그램을 합성하는 경우, 온도는, 약 10 분 동안, 연화 온도의 약 20 ℃ 이내이지만, 연화 온도 이상으로 유지되어야 한다. 일반적으로, 앰풀의 직경이 크면 클수록, 온도는 더 오래 유지되어야 한다. 이것은, 바람직하게는, 앰풀의 중심에서의 유리 또는 유리 화합물을 앰풀 나머지와 동일한 온도로 냉각하고, 유리 또는 유리 화합물을 균질성으로 담금질하도록 한다. 대량(예컨대, 약 30% 이상)의 게르마늄을 가진 유리 및 유리 화합물은, 바람직하게는, 소량의 게르마늄을 가진 유리 및 유리 화합물 보다 더 오래 냉각된다.
노(40)의 요동 이동(rocking movement)은 노(40)의 온도가 감소되기 전이나 후에 정지시킬 수 있다. 바람직하게는, 노(40)의 온도가 감소될 때까지는 요동 이동을 정지시키지 않는다.
앰풀(2)을 감소된 온도에서 유지한 후, 그것을, 바람직하게는, 도 7 및 도 8에 도시된 바와 같이, 수 분 동안 '하향' 위치에 있게 한다. 이것은, 점성 용융물이 앰풀(2)의 바닥에 수집되도록 한다. 이것이 일어나지 않으면, 약간 상이한 화학양론의 게르마늄 셀레나이드 유리의 박막은 (유리가 합성될 경우에) 합성되는 유리의 상부에서 응고할 수 있다. 약간 과도한 셀레니움은 이런 박막에서 응결할 수 있다. 이것은, 유리의 전체 화학양론이 변화할 수 있기 때문에 바람직하지 않다. 유리 화합물의 합성의 경우, 나머지 화합물과 상이한 화학양론을 가진 박막은 화합물의 상부에 응고할 수 있다. 마찬가지로, 약간 과도한 셀레니움 또는 가변물은 이런 박막에서 응결할 수 있다. 고려되지 않으면, 이와 같은 응결은 바람직하지 않다.
이제는 앰풀(2)을 담금질한다. 도 7은 앰풀(2) 및 조립체(12)가 배치된 노(40)의 개구가 얼음물(72)로 채워진 관(70)과 정렬되도록 위치된 노(40)를 도시한 것이다. 염(74)과 같은 냉각제는 얼음물(72)내에 배치되어, 얼음물(72)의 온도를 더 낮출 수 있다. 염(74)은, 예컨대, 염화 칼슘일 수 있다. 앰풀(2)을 제거하기 위해, 와이어(50)를 나사(52)로부터 절단하거나 푼다. 선택적으로, 나사(52)를 풀 수 있다. 이어서, 관(20)을 제거할 수 있다. 관(20)을 제거한 후, 앰풀(2)이 노(40)로부터 관(70)으로 스스로 슬라이드할 수 있다. 앰풀(2)이 스스로 노(40)에서 슬라이드하지 않을 경우, 노(40)의 단부(41)를 탭(tap)할 수 있다. 앰풀(2)이 슬라이드하지 않거나, 관(14)의 단부에 고착될 경우, 금속 집게는 앰풀(2)을 뽑기 위해 사용될 수 있다. 앰풀(2)을 노(40)에서 관(70)으로 슬라이드하는 것은, 바람직하게는, 5 초 이하 걸린다.
금속 집게는 앰풀(2)에 유지하면서, 관(70)을 빙빙 돌리는데 사용될 수 있다. 이것은 앰풀(2)을 보다 급속히 담금질한다.
도 9는 관(70)내의 앰풀(2)을 도시한 것이다. 담금질할 시에, 앰풀(2)의 내용물은 게르마늄 셀레나이드 유리 또는 유리 화합물(80)로 응고시킨다. 관(70)에서 필요한 시간량은 앰풀(2)의 사이즈 및 그 내부의 유리 또는 유리 화합물의 양에 따른다. 초기에 약 50 그램의 게르마늄 및 약 218 그램의 셀레니움이 채워지고, 직경이 약 4.6 cm이며, 길이가 약 20 cm인 앰풀에 대해, 앰풀(2)은 약 10 분 동안에 얼음물에 담금질하여, 완전하고 균질하게 냉각시키도록 해야 한다.
유리 또는 유리 화합물(80)은 필요할 때까지 앰풀(2) 내에 저장될 수 있다. 앰풀(2)로부터 유리 또는 유리 화합물(80)을 회수하기 위해, 탄화 텅스텐 나이프는(예컨대, 앰풀(2)의 주변을 완전히 스코어(score)함으로써) 앰풀(2)의 외부면을 스코어하는데 이용될 수 있다. 이어서, 가느다란 드라이버의 끝을 예컨대, 스코어 상에 조심스럽게 배치하여, 드라이버의 부트(butt)를 서서히 탭함으로써, 앰풀(2)이 깨지어 열려질 수 있다. 대부분의 환경에서, 유리 또는 유리 화합물(80)은 앰풀(2)의 벽으로부터 풀린다. 그러나, 유리 또는 유리 화합물(80)이 풀리지 않으면, 앰풀(2)의 외벽을 한쌍의 족집게와 같은 물체로 서서히 탭할 수 있다. 유리 또는 유리 화합물(80)이 풀리지 않으면, 여전히 벽에 고착된 유리 또는 유리 화합물(80)을 가진 앰풀(2)의 부분은 N2(liquid)가 채워진 Dewar에 담글 수 있다. 이어서, 유리 또는 유리 화합물(80)을 깨지고(crack), 수축하며(contract), 앰풀(2)의 석영-유리 벽으로부터 분리할 수 있다. N2(liquid)를 선택하거나, 화합물이 이와 같은 담금(immersion)에 역 작용하도록 할 수 있는 성질을 가진 가변물이 유리 화합물에 제공될 시에는 주의를 해야 한다.
도 10은 본 발명에 따른 게르마늄 셀레나이드 유리 또는 유리 화합물의 대규모 합성에 대한 시간 대 온도를 도시한 것이다. 게르마늄 및 셀레니움을 함유한 앰풀은, 예컨대, 약 실내 온도(시간 0에서)에서, 포인트(91)에 도시된 바와 같이, 합성되는 유리 또는 유리 화합물의 연화 온도(예컨대, 940 ℃)와 동일하거나 그 이상인 온도까지 가열한다. 유리 또는 유리 화합물의 온도를, 바람직하게는, 약 30 ℃/분의 율로 상승시킨다. 이것은 기울기(92)로 표시된다.
포인트(91)에 도달한 후, 게르마늄, 셀레니움 및 가변물(제공될 경우)을, 셀레니움, 게르마늄 및 가변물이 완전히 혼합하여, 앰풀 내부에서 고르게 분포될 때까지 일정한 온도로 혼합한다. 이것은, 수반된 게르마늄, 셀레니움 및 가변물의 양에 따라, 예컨대, 약 5 내지 6 시간일 수 있는 기간(93) 동안에 일어난다.
포인트(94)(즉, 게르마늄, 셀레니움 및 가변물이 가열 및 혼합되는 포인트)에 도달한 후, 혼합물을 냉각한다. 이 혼합물의 온도를, 바람직하게는, 약 20 ℃/분의 율로 감소시키며, 이는 기울기(95)로 표시된다. 이 혼합물의 온도를, 합성되는 유리 또는 유리 화합물(예컨대, Ge3Se7)의 연화 온도의 약 20 ℃ 내이나 연화 온도 이상의 온도로 냉각시킨다. 이것은 포인트(96)에 도시되어 있다. 포인트(94)가 연화 온도 보다 낮지 않은 연화 온도의 약 20 ℃ 내에 있을 경우, 냉각은 불필요할 수 있다.
혼합물이 이 범위(예컨대, 연화 온도 보다 낮지 않은 연화 온도의 약 20 ℃ 이내)에 도달한 후, 혼합물을 담금질한다. 이것은 기울기(97)로 표시된다. 포인트(96) 및 (98) 간의 시간은, 바람직하게는, (합성되는 유리 또는 유리 화합물의 양에 따라) 약 5 초 이하이다.
앰풀(2)은, 완전 및 균질 냉각을 확실히 하도록 하는 기간(99) 동안 담금질 온도(예컨대, 약 0 ℃)로 유지한다. 그 기간(99)은, 예컨대, 약 400 그램의 유리 또는 유리 화합물에 대해 약 15 분 내지 약 20 분일 수 있다.
도 11은 본 발명에 따라 게르마늄 셀레나이드 유리 및 게르마늄 셀레나이드 유리 화합물의 대규모 합성 프로세스를 도시한 것이다. 단계(102)에서, 게르마늄 및 셀레니움(및, 원한다면, 가변물)은 세정 앰풀에 배치한 후, 진공 상태로 한다. 앰풀 내에 배치된 게르마늄의 양은, 바람직하게는, 합성되는 특정 유리에 대한 셀레니움이 양에 화학양론으로 비례한다. 가변물을 앰풀 내에 배치하는 경우, 가변물의 양은, 바람직하게는, 합성되는 유리 화합물에 대한 게르마늄 및 셀레니움의 양에 화학양론으로 비례한다. 단계(104)에서, 앰풀을 밀봉한다. 단계(106)에서, 밀봉된 앰풀을 가열 장치(예컨대, 관형 노)에 배치한다.
단계(108)에서, 가열 장치의 온도는 합성되는 유리 또는 유리 화합물의 연화 온도 또는 그 이상으로 상승시킨다. 가열 장치의 온도는, 바람직하게는, 약 20 ℃/분 및 약 30 ℃/분 사이의 율로 상승시킨다. 단계(110)에서, 가열 장치의 온도를 일정하게 유지하고, 앰풀의 내용물을 400 그램의 유리 합성을 위해 약 5 내지 약 6 시간 동안 혼합하여, 게르마늄이 셀레니움과 확실히 혼합하도록 한다.
단계(112)에서, 가열 장치의 온도를 합성되는 유리(예컨대, Ge3Se7 또는 Ge2Se8) 또는 합성되는 유리 화합물(예컨대, Ge25Se75; 3% 원자량의 망간)의 연화 온도의 약 20 ℃내이지만 연화 온도 이상인 온도로 낮춘다. 가열 장치의 온도를, 바람직하게는, 약 20 ℃/분의 율로 감소시킨다. 가열 장치의 온도가 이미 연화 온도 보다 낮지 않은 연화 온도의 약 20 ℃ 이내에 있다면, 단계(112)는 불필요할 수 있다.
단계(114)에서, 앰풀을 담금질한다. 앰풀(2)을, 완전 및 균질 냉각을 확실히 하도록 담금질 온도(예컨대, 300-400 그램의 합성에 대해서는 약 15 내지 약 20 분 동안 또는 750 그램의 합성에 대해서는 약 30 분 동안)로 유지한다. 이것은 단계(116)에서 일어난다.
도 1 내지 도 11과 관련하여 기술된 실시예는 단지 예시적임을 알 수 있다. 게르마늄 및 셀레니움 단독 또는 게르마늄, 셀레니움 및 가변물을 임의의 적당한 세정 장비(즉, 가능한 불순물이 없는 장비)에 배치하고, 임의의 적당한 가열 장치에서 가열되고, 임의의 적당한 방식으로 혼합하고, 임의의 적당한 방식으로 냉각시키고, 임의의 적당한 방식으로 담금질할 수 있다. 예컨대, 게르마늄 및 셀레니움을 진공 상태로 하고, 게르마늄 및 셀레니움을 혼합하는 혼합 장치(예컨대, 교반기(stirrer))를 가진 용기에 밀봉할 수 있다.
따라서, 게르마늄 셀레나이드 유리 및 게르마늄 셀레나이드 유리 화합물의 대규모 합성을 위한 시스템 및 방법이 제공된다. 당업자는 본 발명이 상술한 실시예와 상이하게 실시될 수 있고, 이는 제한을 위한 것이 아니라 설명을 위한 것이며, 본 발명은 다음의 청구범위에 의해서만 제한된다는 것을 인정할 수 있다.

Claims (102)

  1. 게르마늄 셀레나이드 유리 화합물을 합성하는 방법에 있어서:
    총 11 그램 이상의 게르마늄, 셀레니움 및 가변물(variable)을 용기 내에 배치하는 단계;
    상기 용기의 온도를 합성되는 상기 유리 화합물의 적어도 연화(softening) 온도까지 상승시키는 단계;
    상기 용기의 온도를 상기 연화 온도 이상으로 유지하는 단계;
    상기 셀레니움, 상기 게르마늄 및 상기 가변물이 완전히 연화되어 혼합될 때까지 상기 용기를 요동시키는(rocking) 단계;
    상기 용기의 온도를 합성되는 상기 유리 화합물의 연화 온도 보다 낮지 않은 온도까지 감소시키는 단계; 및
    상기 용기를 담금질(quenching)하는 단계,
    를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  2. 제 1 항에 있어서,
    상기 가변물은 리튬, 바나듐, 크롬, 망간, 코발트, 몰리브덴, 루테늄, 은, 프라세오디뮴, 네오디뮴, 이리듐, 금 및 납으로 구성된 그룹으로부터 선택되는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  3. 제 1 항에 있어서,
    상기 배치 단계는, 합성되는 상기 게르마늄 셀레나이드 유리 화합물에 따라 총 11 그램 이상의 실질적 화학양론 비례량의 게르마늄, 셀레니움 및 가변물을 상기 용기 내에 배치하는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  4. 제 1 항에 있어서,
    진공 상태에서 상기 게르마늄, 셀레니움 및 상기 가변물을 상기 용기 내에 밀봉하는 단계를 더 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  5. 제 4 항에 있어서,
    상기 용기는 앰풀(ampoule)인 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  6. 제 1 항에 있어서,
    상기 온도를 상승시키는 단계는,
    상기 용기를 노에 배치하는 단계, 및
    상기 노의 온도를 약 30 ℃/분의 율로 상승시키는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  7. 제 1 항에 있어서,
    상기 온도를 감소시키는 단계는, 상기 온도를, 상기 유리 화합물의 상기 연화 온도의 약 20 ℃ 이내지만, 상기 유리 화합물의 상기 연화 온도 보다 낮지 않은 온도까지 감소시키는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  8. 제 1 항에 있어서,
    상기 담금질 단계는 상기 용기를 얼음물로 담금질하는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  9. 제 8 항에 있어서,
    상기 얼음물은 염을 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  10. 게르마늄 셀레나이드 유리 화합물을 합성하는 방법에 있어서,
    게르마늄, 셀레니움 및 가변물을 용기 내에 배치하는 단계,
    상기 용기의 온도를, 상당한 기간 동안 정지하지 않고 계속적으로 상기 유리 화합물의 적어도 연화 온도까지 상승시키는 단계,
    상기 용기의 온도를 상기 연화 온도 보다 낮지 않게 유지하는 단계,
    상기 게르마늄, 셀레니움 및 상기 가변물이 완전히 연화되어 혼합될 때까지 상기 용기를 요동시키는 단계,
    상기 용기의 온도를 합성되는 상기 유리 화합물의 연화 온도보다 낮지 않은 온도까지 감소시키는 단계 및,
    상기 용기를 담금질하는 단계,
    를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  11. 제 10 항에 있어서,
    상기 가변물은 리튬, 바나듐, 크롬, 망간, 코발트, 몰리브덴, 루테늄, 은, 프라세오디뮴, 네오디뮴, 이리듐, 금 및 납으로 구성된 그룹으로부터 선택되는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  12. 제 10 항에 있어서,
    상기 배치 단계는, 합성되는 상기 게르마늄 셀레나이드 유리 화합물에 따라 총 11 그램 이상의 실질적 화학양론 비례량의 상기 게르마늄, 셀레니움 및 상기 가변물을 상기 용기 내에 배치하는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  13. 제 10 항에 있어서,
    진공 상태에서 상기 게르마늄, 셀레니움 및 상기 가변물을 상기 용기 내에 밀봉하는 단계를 더 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  14. 제 13 항에 있어서,
    상기 용기는 앰풀인 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  15. 제 10 항에 있어서,
    상기 온도를 상승시키는 단계는,
    상기 용기를 노에 배치하는 단계 및,
    상기 노의 온도를 약 30 ℃/분의 율로 상승시키는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  16. 제 10 항에 있어서,
    상기 상당한 기간은 약 15 분인 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  17. 제 10 항에 있어서,
    상기 온도를 감소시키는 단계는, 상기 온도를, 상기 유리 화합물의 상기 연화 온도의 약 20 ℃ 이내지만, 상기 유리 화합물의 상기 연화 온도 보다 낮지 않은 온도까지 감소시키는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  18. 제 10 항에 있어서,
    상기 담금질 단계는 상기 용기를 얼음물로 담금질하는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  19. 제 18 항에 있어서,
    상기 얼음물은 염을 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  20. 게르마늄 셀레나이드 유리 화합물을 합성하는 방법에 있어서,
    게르마늄, 셀레니움 및 가변물을 용기 내에 배치하는 단계,
    진공 상태에서 상기 게르마늄, 셀레니움 및 상기 가변물을 상기 용기 내에 밀봉하는 단계,
    상기 용기의 온도를, 상당한 기간 동안 정지하지 않고 계속적으로 적어도 약 400 ℃까지 상승시키는 단계,
    상기 용기의 온도를 약 400 ℃ 보다 낮지 않게 유지하는 단계,
    상기 게르마늄, 셀레니움 및 상기 가변물이 완전히 연화되어 혼합될 때까지 상기 용기를 요동시키는 단계,
    상기 용기의 온도를 약 300 ℃와 약 320 ℃ 사이로 감소시키는 단계 및,
    상기 용기를 담금질하는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  21. 제 20 항에 있어서,
    상기 가변물은 리튬, 바나듐, 크롬, 망간, 코발트, 몰리브덴, 루테늄, 은, 프라세오디뮴, 네오디뮴, 이리듐, 금 및 납으로 구성된 그룹으로부터 선택되는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  22. 제 20 항에 있어서,
    상기 온도를 상승시키는 단계는 상기 온도를 약 20 ℃/분 내지 약 30 ℃/분의 율로 상승시키는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  23. 제 20 항에 있어서,
    상기 온도를 상승시키는 단계는 상기 용기를 노에 배치하는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  24. 제 20 항에 있어서,
    상기 상당한 기간은 약 15 분인 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  25. 제 20 항에 있어서,
    상기 용기를 요동시키는 상기 단계는 약 5 내지 약 6 시간 동안 상기 용기를 요동시키는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  26. 제 20 항에 있어서,
    상기 용기를 요동시키는 상기 단계는 적어도 약 4 시간 동안 상기 용기를 요동시키는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  27. 제 20 항에 있어서,
    상기 온도를 감소시키는 단계는 상기 온도를 약 20 ℃/분 내지 약 30 ℃/분의 율로 감소시키는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  28. 게르마늄 셀레나이드 유리를 합성하는 방법에 있어서,
    총 11 그램 이상의 게르마늄 및 셀레니움을 용기 내에 배치하는 단계,
    상기 용기의 온도를 합성되는 상기 유리의 적어도 연화 온도까지 상승시키는 단계,
    상기 용기의 온도를 상기 연화 온도 보다 낮지 않게 유지하는 단계,
    상기 셀레니움 및 상기 게르마늄이 완전히 연화되어 혼합될 때까지 상기 용기를 요동시키는 단계,
    상기 용기의 온도를 합성되는 상기 유리의 연화 온도 보다 낮지 않은 온도 까지 감소시키는 단계 및,
    상기 용기를 담금질하는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  29. 제 28 항에 있어서,
    상기 배치 단계는, 합성되는 상기 게르마늄 셀레나이드 유리에 따라 총 11 그램 이상의 실질적 화학양론 비례량의 게르마늄 및 셀레니움을 상기 용기 내에 배치하는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  30. 제 28 항에 있어서,
    진공 상태에서 상기 게르마늄 및 셀레니움을 상기 용기 내에 밀봉하는 단계를 더 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  31. 제 30 항에 있어서,
    상기 용기는 앰풀인 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  32. 제 28 항에 있어서,
    상기 온도를 상승시키는 단계는,
    상기 용기를 노에 배치하는 단계 및,
    상기 노의 온도를 약 30 ℃/분의 율로 상승시키는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  33. 제 28 항에 있어서,
    상기 온도를 감소시키는 단계는, 상기 온도를, 상기 유리의 상기 연화 온도의 약 20 ℃ 이내지만, 상기 유리의 상기 연화 온도 보다 낮지 않은 온도까지 감소시키는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  34. 제 28 항에 있어서,
    상기 담금질 단계는 상기 용기를 얼음물로 담금질하는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  35. 제 34 항에 있어서,
    상기 얼음물은 염을 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  36. 게르마늄 셀레나이드 유리를 합성하는 방법에 있어서,
    게르마늄 및 셀레니움을 용기 내에 배치하는 단계,
    상기 용기의 온도를, 상당한 기간 동안 정지하지 않고 계속적으로 상기 유리의 적어도 연화 온도까지 상승시키는 단계,
    상기 용기의 온도를 상기 연화 온도 보다 낮지 않게 유지하는 단계,
    상기 게르마늄 및 셀레니움이 완전히 연화되어 혼합될 때까지 상기 용기를 요동시키는 단계,
    상기 용기의 온도를 합성되는 상기 유리의 연화 온도 보다 낮지 않은 온도 까지 감소시키는 단계 및,
    상기 용기를 담금질하는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  37. 제 36 항에 있어서,
    상기 배치 단계는, 합성되는 상기 게르마늄 셀레나이드 유리에 따라 총 11 그램 이상의 실질적 화학양론 비례량의 상기 게르마늄 및 셀레니움을 상기 용기 내에 배치하는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  38. 제 36 항에 있어서,
    진공 상태에서 상기 게르마늄 및 셀레니움을 상기 용기 내에 밀봉하는 단계를 더 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  39. 제 38 항에 있어서,
    상기 용기는 앰풀인 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  40. 제 36 항에 있어서,
    상기 온도를 상승시키는 단계는,
    상기 용기를 노에 배치하는 단계 및,
    상기 노의 온도를 약 30 ℃/분의 율로 상승시키는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  41. 제 36 항에 있어서,
    상기 상당한 기간은 약 15 분인 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  42. 제 36 항에 있어서,
    상기 온도를 감소시키는 단계는, 상기 온도를, 상기 유리의 상기 연화 온도의 약 20 ℃ 이내지만, 상기 유리의 상기 연화 온도 보다 낮지 않은 온도까지 감소시키는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  43. 제 36 항에 있어서,
    상기 담금질 단계는 상기 용기를 얼음물로 담금질하는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  44. 제 43 항에 있어서,
    상기 얼음물은 염을 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  45. 게르마늄 셀레나이드 유리를 합성하는 방법에 있어서,
    게르마늄 및 셀레니움을 용기 내에 배치하는 단계,
    진공 상태에서 상기 게르마늄 및 셀레니움을 상기 용기 내에 밀봉하는 단계,
    상기 용기의 온도를, 상당한 기간 동안 정지하지 않고 계속적으로 적어도 약 400 ℃까지 상승시키는 단계,
    상기 용기의 온도를 약 400 ℃ 보다 낮지 않게 유지하는 단계,
    상기 게르마늄 및 셀레니움이 완전히 연화되어 혼합될 때까지 상기 용기를 요동시키는 단계,
    상기 용기의 온도를 약 300 ℃와 약 320 ℃ 사이로 감소시키는 단계 및,
    상기 용기를 담금질하는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  46. 제 45 항에 있어서,
    상기 온도를 상승시키는 단계는 상기 온도를 약 20 ℃/분 내지 약 30 ℃/분의 율로 상승시키는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  47. 제 45 항에 있어서,
    상기 온도를 상승시키는 단계는 상기 용기를 노에 배치하는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  48. 제 45 항에 있어서,
    상기 상당한 기간은 약 15 분인 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  49. 제 45 항에 있어서,
    상기 용기를 요동시키는 상기 단계는 약 5 내지 약 6 시간 동안 상기 용기를 요동시키는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  50. 제 45 항에 있어서,
    상기 용기를 요동시키는 상기 단계는 적어도 약 4 시간 동안 상기 용기를 요동시키는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  51. 제 45 항에 있어서,
    상기 온도를 감소시키는 단계는 상기 온도를 약 20 ℃/분 내지 약 30 ℃/분의 율로 감소시키는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  52. 게르마늄 셀레나이드 유리 화합물을 합성하는 방법에 있어서,
    게르마늄, 셀레니움 및 가변물을 용기 내에 배치하는 단계,
    진공 상태에서 상기 게르마늄, 셀레니움 및 상기 가변물을 상기 용기 내에 밀봉하는 단계,
    상기 용기의 온도를, 상당한 기간 동안 정지하지 않고 계속적으로 약 400 ℃까지 상승시키는 단계,
    상기 용기의 온도를 약 400 ℃ 보다 낮지 않게 유지하는 단계,
    상기 게르마늄, 셀레니움 및 상기 가변물이 완전히 연화되어 혼합될 때까지 상기 용기를 요동시키는 단계,
    상기 용기의 온도를 약 300 ℃와 약 320 ℃ 사이로 감소시키는 단계 및,
    상기 용기를 담금질하는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  53. 제 52 항에 있어서,
    상기 가변물은 리튬, 바나듐, 크롬, 망간, 코발트, 몰리브덴, 루테늄, 은, 프라세오디뮴, 네오디뮴, 이리듐, 금 및 납으로 구성된 그룹으로부터 선택되는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  54. 게르마늄 셀레나이드 유리 화합물을 합성하는 방법에 있어서,
    게르마늄, 셀레니움 및 가변물을 용기 내에 배치하는 단계,
    진공 상태에서 상기 게르마늄, 셀레니움 및 상기 가변물을 상기 용기 내에 밀봉하는 단계,
    상기 용기의 온도를, 상당한 기간 동안 정지하지 않고 계속적으로 약 400 ℃ 내지 약 800 ℃의 범위 내의 온도까지 상승시키는 단계,
    상기 용기의 온도를 약 400 ℃ 보다 낮지 않게 유지하는 단계,
    상기 게르마늄, 셀레니움 및 상기 가변물이 완전히 연화되어 혼합될 때까지 상기 용기를 요동시키는 단계,
    상기 용기의 온도를 약 300 ℃와 약 320 ℃ 사이로 감소시키는 단계 및,
    상기 용기를 담금질하는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  55. 제 54 항에 있어서,
    상기 가변물은 리튬, 바나듐, 크롬, 망간, 코발트, 몰리브덴, 루테늄, 은, 프라세오디뮴, 네오디뮴, 이리듐, 금 및 납으로 구성된 그룹으로부터 선택되는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  56. 게르마늄 셀레나이드 유리를 합성하는 방법에 있어서,
    게르마늄 및 셀레니움을 용기 내에 배치하는 단계,
    진공 상태에서 상기 게르마늄 및 셀레니움을 상기 용기 내에 밀봉하는 단계,
    상기 용기의 온도를, 상당한 기간 동안 정지하지 않고 계속적으로 약 400 ℃까지 상승시키는 단계,
    상기 용기의 온도를 약 400 ℃ 보다 낮지 않게 유지하는 단계,
    상기 게르마늄 및 셀레니움이 완전히 연화되어 혼합될 때까지 상기 용기를 요동시키는 단계,
    상기 용기의 온도를 약 300 ℃와 약 320 ℃ 사이로 감소시키는 단계 및,
    상기 용기를 담금질하는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  57. 게르마늄 셀레나이드 유리를 합성하는 방법에 있어서,
    게르마늄 및 셀레니움을 용기 내에 배치하는 단계,
    진공 상태에서 상기 게르마늄 및 셀레니움을 상기 용기 내에 밀봉하는 단계,
    상기 용기의 온도를, 상당한 기간 동안 정지하지 않고 계속적으로 약 400 ℃ 내지 약 800 ℃의 범위 내의 온도까지 상승시키는 단계,
    상기 용기의 온도를 약 400 ℃ 보다 낮지 않게 유지하는 단계,
    상기 게르마늄 및 셀레니움이 완전히 연화되어 혼합될 때까지 상기 용기를 요동시키는 단계,
    상기 용기의 온도를 약 300 ℃와 약 320 ℃ 사이로 감소시키는 단계 및,
    상기 용기를 담금질하는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  58. 게르마늄 셀레나이드 유리 화합물을 합성하는 방법에 있어서,
    100 그램 이상의 게르마늄, 셀레니움 및 가변물을 용기 내에 배치하는 단계,
    진공 상태에서 상기 게르마늄, 셀레니움 및 상기 가변물을 상기 용기 내에 밀봉하는 단계,
    상기 용기의 온도를, 상당한 기간 동안 정지하지 않고 계속적으로 약 400 ℃까지 상승시키는 단계,
    상기 용기의 온도를 약 400 ℃ 보다 낮지 않게 유지하는 단계,
    상기 게르마늄, 셀레니움 및 상기 가변물이 완전히 연화되어 혼합될 때까지 상기 용기를 요동시키는 단계,
    상기 용기의 온도를 약 300 ℃와 약 320 ℃ 사이로 감소시키는 단계 및,
    상기 용기를 담금질하는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  59. 게르마늄 셀레나이드 유리를 합성하는 방법에 있어서,
    100 그램 이상의 게르마늄 및 셀레니움을 용기 내에 배치하는 단계,
    진공 상태에서 상기 게르마늄 및 셀레니움을 상기 용기 내에 밀봉하는 단계,
    상기 용기의 온도를, 상당한 기간 동안 정지하지 않고 계속적으로 약 400 ℃까지 상승시키는 단계,
    상기 용기의 온도를 약 400 ℃ 보다 낮지 않게 유지하는 단계,
    상기 게르마늄 및 셀레니움이 완전히 연화되어 혼합될 때까지 상기 용기를 요동시키는 단계,
    상기 용기의 온도를 약 300 ℃와 약 320 ℃ 사이로 감소시키는 단계 및,
    상기 용기를 담금질하는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  60. 게르마늄 셀레나이드 유리를 합성하는 방법에 있어서,
    100 그램 이상의 게르마늄 및 셀레니움을 용기 내에 배치하는 단계,
    진공 상태에서 상기 게르마늄 및 셀레니움을 상기 용기 내에 밀봉하는 단계,
    상기 용기의 온도를, 상당한 기간 동안 정지하지 않고 계속적으로 약 400 ℃ 내지 약 800 ℃의 범위 내의 온도까지 상승시키는 단계,
    상기 용기의 온도를 약 400 ℃ 보다 낮지 않게 유지하는 단계,
    상기 게르마늄 및 셀레니움이 완전히 연화되어 혼합될 때까지 상기 용기를 요동시키는 단계,
    상기 용기의 온도를 약 300 ℃와 약 320 ℃ 사이로 감소시키는 단계 및,
    상기 용기를 담금질하는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  61. 게르마늄 셀레나이드 유리를 합성하는 방법에 있어서,
    100 그램 이상의 게르마늄, 셀레니움 및 가변물을 용기 내에 배치하는 단계,
    진공 상태에서 상기 게르마늄, 셀레니움 및 상기 가변물을 상기 용기 내에 밀봉하는 단계,
    상기 용기의 온도를, 상당한 기간 동안 정지하지 않고 계속적으로 약 400 ℃ 내지 약 800 ℃의 범위 내의 온도까지 상승시키는 단계,
    상기 용기의 온도를 약 400 ℃ 보다 낮지 않게 유지하는 단계,
    상기 게르마늄, 셀레니움 및 상기 가변물이 완전히 연화되어 혼합될 때까지 상기 용기를 요동시키는 단계,
    상기 용기의 온도를 약 300 ℃와 약 320 ℃ 사이로 감소시키는 단계, 및
    상기 용기를 담금질하는 단계,
    를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  62. 게르마늄 셀레나이드 유리 화합물을 합성하는 방법에 있어서,
    총 11 그램 이상의 게르마늄, 셀레니움 및 가변물을 용기 내에 배치하는 단계,
    상기 용기의 온도를, 상당한 기간 동안 정지하지 않고 계속적으로 합성되는 상기 유리 화합물의 적어도 연화 온도까지 상승시키는 단계,
    상기 용기의 온도를 상기 연화 온도 보다 낮지 않게 유지하는 단계,
    상기 셀레니움, 상기 게르마늄 및 상기 가변물이 완전히 연화되어 혼합될 때까지 상기 용기를 요동시키는 단계,
    상기 용기의 온도를 합성되는 상기 유리 화합물의 연화 온도 보다 낮지 않은 온도까지 감소시키는 단계 및,
    상기 용기를 담금질하는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  63. 제 62 항에 있어서,
    상기 가변물은 리튬, 바나듐, 크롬, 망간, 코발트, 몰리브덴, 루테늄, 은, 프라세오디뮴, 네오디뮴, 이리듐, 금 및 납으로 구성된 그룹으로부터 선택되는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  64. 제 62 항에 있어서,
    상기 배치 단계는, 합성되는 게르마늄 셀레나이드 유리 화합물에 따라 총 11 그램 이상의 실질적 화학양론 비례량의 상기 게르마늄, 셀레니움 및 상기 가변물을 상기 용기 내에 배치하는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  65. 제 62 항에 있어서,
    진공 상태에서 상기 게르마늄, 셀레니움 및 상기 가변물을 상기 용기 내에 밀봉하는 단계를 더 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  66. 게르마늄 셀레나이드 유리 화합물을 합성하는 방법에 있어서,
    게르마늄, 셀레니움 및 가변물을 용기 내에 배치하는 단계,
    상기 용기의 온도를, 상당한 기간 동안 정지하지 않고 약 850 ℃ 보다 높지 않은 상기 유리 화합물의 적어도 연화 온도까지 계속적으로 상승시키는 단계,
    상기 용기의 온도를 상기 연화 온도 보다 낮지 않게 유지하는 단계,
    상기 게르마늄, 셀레니움 및 상기 가변물이 완전히 연화되어 혼합될 때까지 상기 용기를 요동시키는 단계,
    상기 용기의 온도를 합성되는 상기 유리 화합물의 연화 온도 보다 낮지 않은 온도까지 감소시키는 단계 및,
    상기 용기를 담금질하는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  67. 게르마늄 셀레나이드 유리 화합물을 합성하는 방법에 있어서,
    게르마늄, 셀레니움 및 가변물을 용기내에 배치하는 단계,
    진공 상태에서 상기 게르마늄, 셀레니움 및 상기 가변물을 상기 용기 내에 밀봉하는 단계,
    상기 용기의 온도를, 상당한 기간 동안 정지하지 않고 적어도 약 400 ℃ 에서 약 850 ℃ 까지 상승시키는 단계,
    상기 용기의 온도를 약 400 ℃ 보다 낮지 않게 유지하는 단계,
    상기 게르마늄, 셀레니움 및 상기 가변물이 완전히 연화되어 혼합될 때까지 상기 용기를 요동시키는 단계,
    상기 용기의 온도를 약 300 ℃와 약 320 ℃ 사이로 감소시키는 단계 및,
    상기 용기를 담금질하는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 방법.
  68. 게르마늄 셀레나이드 유리를 합성하는 방법에 있어서,
    총 11 그램 이상의 게르마늄 및 셀레니움을 용기 내에 배치하는 단계,
    상기 용기의 온도를, 상당한 기간 동안 정지하지 않고 합성되는 상기 유리의 적어도 연화 온도까지 계속적으로 상승시키는 단계,
    상기 용기의 온도를 상기 연화 온도 보다 낮지 않게 유지하는 단계,
    상기 셀레니움 및 상기 게르마늄이 완전히 연화되어 혼합될 때까지 상기 용기를 요동시키는 단계,
    상기 용기의 온도를 합성되는 상기 유리의 연화 온도 보다 낮지 않은 온도 까지 감소시키는 단계 및,
    상기 용기를 담금질하는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  69. 게르마늄 셀레나이드 유리를 합성하는 방법에 있어서,
    게르마늄 및 셀레니움을 용기 내에 배치하는 단계,
    상기 용기의 온도를, 상당한 기간 동안 정지하지 않고 약 850 ℃ 보다 높지 않은 상기 유리 화합물의 적어도 연화 온도까지 계속적으로 상승시키는 단계,
    상기 용기의 온도를 상기 연화 온도 보다 낮지 않게 유지하는 단계,
    상기 게르마늄 및 셀레니움이 완전히 연화되어 혼합될 때까지 상기 용기를 요동시키는 단계,
    상기 용기의 온도를 합성되는 상기 유리의 연화 온도 보다 낮지 않은 온도 까지 감소시키는 단계 및,
    상기 용기를 담금질하는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  70. 게르마늄 셀레나이드 유리를 합성하는 방법에 있어서,
    게르마늄 및 셀레니움을 용기 내에 배치하는 단계,
    진공 상태에서 상기 게르마늄 및 셀레니움을 상기 용기 내에 밀봉하는 단계,
    상기 용기의 온도를, 상당한 기간 동안 정지하지 않고 적어도 약 400 ℃ 에서 약 850 ℃ 까지 상승시키는 단계,
    상기 용기의 온도를 약 400 ℃ 보다 낮지 않게 유지하는 단계,
    상기 게르마늄 및 셀레니움이 완전히 연화되어 혼합될 때까지 상기 용기를 요동시키는 단계,
    상기 용기의 온도를 약 300 ℃와 약 320 ℃ 사이로 감소시키는 단계 및,
    상기 용기를 담금질하는 단계를 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리의 합성 방법.
  71. 게르마늄 셀레나이드 유리 화합물을 합성하는 장치에 있어서,
    100 그램 이상의 게르마늄, 셀레니움 및 가변물을 담는 용기로서, 그 내부에 상기 게르마늄, 상기 셀레니움 및 상기 가변물이 밀봉 가능한 용기,
    상당한 기간 동안 정지하지 않고 적어도 약 400 ℃까지 상기 용기를 균질하게 가열하고, 상기 용기의 온도를 약 400 ℃ 보다 낮지 않게 유지하며, 상기 용기의 온도를 약 300 ℃와 약 320 ℃ 사이로 감소하도록 사이즈가 정해진 가열 장치,
    상기 셀레니움, 상기 게르마늄 및 상기 가변물이 완전히 연화되어 혼합될 때까지 상기 용기를 요동시키는 요동 메카니즘 및,
    상기 용기를 냉각시키는 통(tub)을 포함하는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 장치.
  72. 제 71 항에 있어서,
    상기 가변물은 리튬, 바나듐, 크롬, 망간, 코발트, 몰리브덴, 루테늄, 은, 프라세오디뮴, 네오디뮴, 이리듐, 금 및 납으로 구성된 그룹으로부터 선택되는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 장치.
  73. 제 71 항에 있어서,
    상기 노는 상기 용기의 온도를 약 30 ℃/분의 율로 상승시키도록 구성되는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 장치.
  74. 제 71 항에 있어서,
    상기 가열 장치는 노인 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 장치.
  75. 제 71 항에 있어서,
    상기 상당한 기간은 약 15 분인 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 장치.
  76. 제 71 항에 있어서,
    상기 요동 메카니즘은 약 5 내지 약 6 시간 동안 상기 용기를 요동시키도록 구성되는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 장치.
  77. 제 71 항에 있어서,
    상기 요동 메카니즘은 적어도 4 시간 동안 상기 용기를 요동시키도록 구성되는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 장치.
  78. 제 71 항에 있어서,
    상기 가열 장치는 상기 온도를 약 20 ℃/분 내지 약 30 ℃/분의 율로 감소시키도록 구성되는 것을 특징으로 하는 게르마늄 셀레나이드 유리 화합물의 합성 장치.
  79. 게르마늄 및 셀레니움이 적어도 서로 반응하는 장치에 있어서,
    총 11 그램 이상의 상기 게르마늄 및 상기 셀레니움을 담는 용기,
    상기 용기를 합성되는 상기 유리의 적어도 연화 온도로 균질하게 가열하도록 사이즈가 정해진 노로서, 상기 용기의 온도를 시간 주기 동안에 상기 연화 온도 보다 낮지 않게 유지하고, 상기 용기의 온도를 합성되는 상기 유리의 상기 연화 온도 보다 낮지 않은 온도 까지 감소시키도록 구성된 노,
    상기 셀레니움 및 상기 게르마늄이 완전히 연화되어 혼합될 때까지 상기 용기를 요동시키는 요동 메카니즘 및,
    상기 용기를 냉각시키는 통을 포함하는 것을 특징으로 하는 반응 장치.
  80. 제 79 항에 있어서,
    상기 용기는, 게르마늄 셀레나이드 유리 또는 게르마늄 셀레나이드 유리 화합물에 따라 총 11 그램 이상의 실질적 화학양론 비례량의 상기 게르마늄 및 상기 셀레니움을 담는 것을 특징으로 하는 반응 장치.
  81. 제 79 항에 있어서,
    상기 용기는 진공 상태에서 상기 게르마늄 및 상기 셀레니움을 밀봉하는 것을 특징으로 하는 반응 장치.
  82. 제 79 항에 있어서,
    상기 용기는 앰풀인 것을 특징으로 하는 반응 장치.
  83. 제 79 항에 있어서,
    상기 노는 상기 용기의 온도를 약 20 ℃/분 내지 약 30 ℃/분의 율로 상승시키도록 구성되는 것을 특징으로 하는 반응 장치.
  84. 제 79 항에 있어서,
    상기 노는, 상기 용기의 온도를, 상기 유리의 상기 연화 온도의 약 20 ℃ 이내지만, 상기 유리의 상기 연화 온도 보다 낮지 않은 온도까지 감소시키도록 구성되는 것을 특징으로 하는 반응 장치.
  85. 제 79 항에 있어서,
    상기 통은 얼음물을 포함하는 것을 특징으로 하는 반응 장치.
  86. 제 85 항에 있어서,
    상기 얼음물은 염을 포함하는 것을 특징으로 하는 반응 장치.
  87. 게르마늄 및 셀레니움이 적어도 서로 반응하는 장치에 있어서,
    진공 상태에서 총 약 400 그램의 적어도 상기 게르마늄 및 상기 셀레니움을 담는 밀봉된 용기,
    게르마늄 및 셀레니움을 담는 용기,
    상기 용기를, 상당한 기간 동안 정지하지 않고 계속적으로 합성되는 상기 유리의 적어도 연화 온도로 균질하게 가열하고, 상기 용기의 온도를 상기 연화 온도 보다 낮지 않게 유지하며, 상기 용기의 온도를 합성되는 상기 유리의 상기 연화 온도 보다 낮지 않은 온도 까지 감소시키도록 사이즈가 정해진 노,
    상기 셀레니움 및 상기 게르마늄이 완전히 연화되어 혼합될 때까지 상기 용기를 요동시키는 요동 메카니즘 및,
    상기 용기를 냉각시키는 통을 포함하는 것을 특징으로 하는 반응 장치.
  88. 제 87 항에 있어서,
    상기 용기 내의 상기 게르마늄 및 상기 셀레니움은 게르마늄 셀레나이드 유리 또는 게르마늄 셀레나이드 유리 화합물에 따라 실질적으로 화학양론 비례하는 것을 특징으로 하는 반응 장치.
  89. 제 87 항에 있어서,
    상기 용기는 가변물을 더 포함하는 것을 특징으로 하는 반응 장치.
  90. 제 87 항에 있어서,
    상기 용기는 앰풀인 것을 특징으로 하는 반응 장치.
  91. 제 87 항에 있어서,
    상기 노는 상기 용기의 온도를 약 30 ℃/분의 율로 상승시키도록 구성되는 것을 특징으로 하는 반응 장치.
  92. 제 87 항에 있어서,
    상기 상당한 기간은 약 15 분인 것을 특징으로 하는 반응 장치.
  93. 제 87 항에 있어서,
    상기 노는, 상기 용기의 온도를, 상기 유리의 상기 연화 온도의 약 20 ℃ 이내지만, 상기 유리의 상기 연화 온도 보다 낮지 않은 온도까지 감소시키도록 구성되는 것을 특징으로 하는 반응 장치.
  94. 제 87 항에 있어서,
    상기 통은 얼음물을 포함하는 것을 특징으로 하는 반응 장치.
  95. 제 94 항에 있어서,
    상기 얼음물은 염을 포함하는 것을 특징으로 하는 반응 장치.
  96. 게르마늄, 셀레니움 및 가변물이 게르마늄 셀레나이드 유리 화합물을 형성하도록 서로 반응하는 장치에 있어서,
    진공 상태에서 게르마늄, 셀레니움 및 가변물을 담는 밀봉된 용기,
    상당한 기간 동안 정지하지 않고 적어도 약 400 ℃까지 상기 용기를 균질하게 가열하고, 상기 용기의 온도를 약 400 ℃ 보다 낮지 않게 유지하며, 상기 용기의 온도를 약 300 ℃와 약 320 ℃ 사이로 감소하도록 사이즈가 정해진 가열 장치,
    상기 셀레니움 및 상기 게르마늄이 완전히 연화되어 혼합될 때까지 상기 용기를 요동시키는 요동 메카니즘 및,
    상기 용기를 냉각시키는 통를 포함하는 것을 특징으로 하는 반응 장치.
  97. 제 96 항에 있어서,
    상기 노는 상기 용기의 온도를 약 30 ℃/분의 율로 상승시키도록 구성되는 것을 특징으로 하는 반응 장치.
  98. 제 96 항에 있어서,
    상기 가열 장치는 노인 것을 특징으로 하는 반응 장치.
  99. 제 96 항에 있어서,
    상기 상당한 기간은 약 15 분인 것을 특징으로 하는 반응 장치.
  100. 제 96 항에 있어서,
    상기 요동 메카니즘은 약 5 내지 약 6 시간 동안 상기 용기를 요동시키도록 구성되는 것을 특징으로 하는 반응 장치.
  101. 제 96 항에 있어서,
    상기 요동 메카니즘은 적어도 4 시간 동안 상기 용기를 요동시키도록 구성되는 것을 특징으로 하는 반응 장치.
  102. 제 96 항에 있어서,
    상기 가열 장치는 상기 온도를 약 20 ℃/분 내지 약 30 ℃/분의 율로 감소시키도록 구성되는 것을 특징으로 하는 반응 장치.
KR1020047016346A 2002-04-12 2003-04-11 게르마늄 셀레나이드 유리 및 게르마늄 셀레나이드 유리화합물의 대규모 합성 방법 KR100606995B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/123,050 2002-04-12
US10/123,050 US6874335B2 (en) 2002-04-12 2002-04-12 Large scale synthesis of germanium selenide glass and germanium selenide glass compounds
PCT/US2003/011397 WO2003087000A2 (en) 2002-04-12 2003-04-11 Large scale synthesis of germanium selenide glass and germanium selenide glass compounds

Publications (2)

Publication Number Publication Date
KR20050000393A KR20050000393A (ko) 2005-01-03
KR100606995B1 true KR100606995B1 (ko) 2006-08-01

Family

ID=28790673

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020047016346A KR100606995B1 (ko) 2002-04-12 2003-04-11 게르마늄 셀레나이드 유리 및 게르마늄 셀레나이드 유리화합물의 대규모 합성 방법

Country Status (8)

Country Link
US (1) US6874335B2 (ko)
EP (1) EP1497233B1 (ko)
JP (1) JP2006507201A (ko)
KR (1) KR100606995B1 (ko)
CN (1) CN100408494C (ko)
AU (1) AU2003234731A1 (ko)
SG (1) SG141276A1 (ko)
WO (1) WO2003087000A2 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003091173A2 (en) * 2002-04-23 2003-11-06 Astropower, Inc. Capping layer for crystallizing germanium, and substrate having thin crystallized germanium layer
US7482037B2 (en) * 2004-08-20 2009-01-27 Micron Technology, Inc. Methods for forming niobium and/or vanadium containing layers using atomic layer deposition
US7317567B2 (en) * 2005-08-02 2008-01-08 Micron Technology, Inc. Method and apparatus for providing color changing thin film material
US20100022378A1 (en) * 2008-07-25 2010-01-28 Nguyen Vinh Q Manufacturing process for chalcogenide glasses
CN104445104B (zh) * 2014-11-17 2016-08-24 南京师范大学 一种GeSe2纳米晶及其制备方法和应用
US10889887B2 (en) 2016-08-22 2021-01-12 Honeywell International Inc. Chalcogenide sputtering target and method of making the same
CN106430120A (zh) * 2016-08-31 2017-02-22 洛阳师范学院 一种硒化锗粉末的制备方法
CN106348258A (zh) * 2016-08-31 2017-01-25 洛阳师范学院 一种二硒化锗粉末的制备方法
EP3728146B1 (en) * 2017-12-22 2024-08-07 The Government of the United States of America, as represented by the Secretary of the Navy Manufacturing process for striae-free multicomponent chalcogenide glasses via convection mixing
CN110282975B (zh) * 2019-07-08 2022-07-01 先导薄膜材料(广东)有限公司 一种硒化锗靶材及其制备方法
CN115159474B (zh) * 2022-07-20 2024-02-02 湘潭大学 一种硒化锗纳米片及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2439848C2 (de) * 1973-08-20 1985-05-15 Canon K.K., Tokio/Tokyo Verfahren zum Aufzeichnen mittels eines Laserstrahls
DE3534275A1 (de) * 1985-09-26 1987-04-02 Schott Glaswerke Infrarotdurchlaessiges chalkogenidglas
JPS62143841A (ja) * 1985-12-16 1987-06-27 Nippon Sheet Glass Co Ltd カルコゲナイドガラス
GB8623177D0 (en) * 1986-09-26 1987-01-14 Raychem Ltd Circuit protection device
JPH06183779A (ja) * 1992-12-16 1994-07-05 Matsushita Electric Ind Co Ltd 赤外線透過性ガラスの製造方法
US5761115A (en) 1996-05-30 1998-06-02 Axon Technologies Corporation Programmable metallization cell structure and method of making same
US5846889A (en) * 1997-03-14 1998-12-08 The United States Of America As Represented By The Secretary Of The Navy Infrared transparent selenide glasses
US6128429A (en) * 1997-08-29 2000-10-03 The United States Of America As Represented By The Secretary Of The Navy Low phonon energy glass and fiber doped with a rare earth
US6015765A (en) * 1997-12-24 2000-01-18 The United States Of America As Represented By The Secretary Of The Navy Rare earth soluble telluride glasses
US6635914B2 (en) * 2000-09-08 2003-10-21 Axon Technologies Corp. Microelectronic programmable device and methods of forming and programming the same
WO2002021542A1 (en) 2000-09-08 2002-03-14 Axon Technologies Corporation Microelectronic programmable device and methods of forming and programming the same
US6634189B1 (en) * 2000-10-11 2003-10-21 Raytheon Company Glass reaction via liquid encapsulation

Also Published As

Publication number Publication date
CN100408494C (zh) 2008-08-06
CN1659106A (zh) 2005-08-24
EP1497233B1 (en) 2012-07-18
AU2003234731A1 (en) 2003-10-27
JP2006507201A (ja) 2006-03-02
US20030192350A1 (en) 2003-10-16
US6874335B2 (en) 2005-04-05
EP1497233A1 (en) 2005-01-19
KR20050000393A (ko) 2005-01-03
SG141276A1 (en) 2008-04-28
WO2003087000A2 (en) 2003-10-23

Similar Documents

Publication Publication Date Title
KR100606995B1 (ko) 게르마늄 셀레나이드 유리 및 게르마늄 셀레나이드 유리화합물의 대규모 합성 방법
CA2419987C (en) Method of making chalcogenide glass
AU2002224362A1 (en) Glass reaction via liquid encapsulation
Hrubý et al. Glass-forming region in the Cd-Ge-As ternary system
US3210165A (en) Zone-melting treatment of semiconductive materials
CN113073390B (zh) 一种制备大单晶过渡金属硫族化合物的方法
US3933990A (en) Synthesization method of ternary chalcogenides
US4676969A (en) Method of synthesis of inorganic chalcogenides
Schunemann et al. Synthesis and growth of HgGa2S4 crystals
RU2610058C1 (ru) Способ получения материала фазовой памяти
US3824087A (en) Method of manufacturing a solid semiconductor glass
Huang et al. High-purity germanium-sulphide glass for optoelectronic applications synthesised by chemical vapour deposition
US20050092231A1 (en) Method and apparatus for making crystals without a pre-melt step
RU2812421C1 (ru) СПОСОБ СИНТЕЗА ПОЛИКРИСТАЛЛИЧЕСКОГО ZnGeP2
US2968014A (en) Synthetic stibnite crystal and method for producing the same
Meresse et al. New germanium sulfide-based glasses
Stoilova et al. Kinetics of Ge‐Se‐In Film Growth
Belhadji et al. Phase separation and devitrification study of GeTeSb Chalcogenide glasses
Kumar et al. Phase segregation in Pb: GeSbTe chalcogenide system
KR100621070B1 (ko) 화학양론적 조성의 상변화형 재료의 합성방법
JPH0446033A (ja) カルコゲナイドガラスの製造方法
JPH10251099A (ja) 四ほう酸リチウム単結晶の製造方法
JPH0471877B2 (ko)
SKUBAN et al. TECHNOLOGY OF OBTAINING GLASSES FROM As-S-Se-Te-I SYSTEM
Borowitz et al. The Phase Diagrams of the Systems PbCl2‐UCl4 and PbCl2‐UCl3

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120620

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee