KR100561874B1 - 마이크로 렌즈 어레이의 제조방법 - Google Patents

마이크로 렌즈 어레이의 제조방법 Download PDF

Info

Publication number
KR100561874B1
KR100561874B1 KR1020050075676A KR20050075676A KR100561874B1 KR 100561874 B1 KR100561874 B1 KR 100561874B1 KR 1020050075676 A KR1020050075676 A KR 1020050075676A KR 20050075676 A KR20050075676 A KR 20050075676A KR 100561874 B1 KR100561874 B1 KR 100561874B1
Authority
KR
South Korea
Prior art keywords
photoresist
microlens
mask
shape
substrate
Prior art date
Application number
KR1020050075676A
Other languages
English (en)
Other versions
KR20050088064A (ko
Inventor
이명복
손진승
조은형
박영필
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020050075676A priority Critical patent/KR100561874B1/ko
Publication of KR20050088064A publication Critical patent/KR20050088064A/ko
Application granted granted Critical
Publication of KR100561874B1 publication Critical patent/KR100561874B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00365Production of microlenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0018Reflow, i.e. characterized by the step of melting microstructures to form curved surfaces, e.g. manufacturing of moulds and surfaces for transfer etching
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements

Abstract

종래의 마이크로렌즈 어레이 제작방법에 비하여 정밀한 곡면을 얻을 수 있고, 높은 개구수(Numerical Aperture)와 낮은 수차 등, 광학적 성능이 우수한 마이크로렌즈 어레이를 제작하는 방법이 개시된다. 개시된 방법은: 가) 기판의 일면에 포토리소그래피를 이용하여 낮은 원통상(cylindrical)의 포토레지스트 마스크를 형성하는 단계; 나) 상기 마스크를 가열에 의해 리플로우 시켜 마이크로 렌즈에 대응하는 형상으로 형성하는 단계; 다) 플라즈마 에칭에 의해 상기 마스크의 형상을 상기 기판의 표면으로 전사하여 마이크로렌즈를 상기 기판 상에 형성하는 단계; 라) 상기 마이크로 렌즈의 표면 상에 상기 마이크로 렌즈의 곡면을 보상하는 표면 형상을 가지는 포토레지스트를 형성하는 단계; 마) 상기 포토레지스트를 플라즈마 에칭하여 상기 포토레지스트의 곡면형상을 상기 마이크로 렌즈의 표면으로 전사하는 단계;를 포함한다.
마이크로렌즈 어레이, 플라즈마 에칭

Description

마이크로 렌즈 어레이의 제조방법{Fabrication method of microlens array}
도 1은 마이크로렌즈 어레이의 종래 제조방법의 한 예를 설명하는 도면이다.
도 2a 내지 도 2g는 본 발명에 따른 마이크로렌즈 어레이의 제조방법의 제1 실시예를 보이는 공정도이다.
도 3a 내지 도 3f는 본 발명의 마이크로렌즈 어레이의 제조방법의 제2 실시예를 보이는 공정도이다.
도 4a 내지 도 4g는 본 발명의 마이크로렌즈 어레이의 제조방법의 제3 실시예를 보이는 공정도이다.
본 발명은 마이크로 렌즈의 제작방법에 관한 것으로, 특히 포토레지스트의 형상의 전사에 의한 마이크로 렌즈의 제작방법에 관한 것이다.
마이크로 렌즈는 현재 액정표시장치, 광수신기 및 광통신 시스템에서 내부 광 파이버의 광학적 연결 등과 같이 다양한 분야에 적용되어 사용되고 있으며, 장래에 CD나 DVD와 같은 광 디스크 드라이브(ODD)에서 정보를 기록하거나 재생하는 데 사용되는 광픽업의 대물렌즈 또는 그 일부의 광학요소로서 적용될 수 있는 가능 성이 있다. 마이크로렌즈의 어레이는 또한 장래에 다수의 광픽업에 의해 다수의 트랙(track)에 정보를 동시에 기록하거나, 기록된 정보를 동시에 재생할 수 있는 이른바 패러럴 광 헤드(parallel optical head)의 대물렌즈 어레이로 사용될 수 있는 가능성이 있다.
도 1a 내지 도 1e는 종래에 일반적으로 사용되고 있었던 마이크로 렌즈 어레이의 제조공정도이다.
이 제작방법을 간략히 설명하면 다음과 같다.
먼저, 도 1a에 도시된 바와 같이 실리콘(silicon), 유리(glass), 실리카(fused silica), 석영(quartz) 등의 기판(1) 위에 포토레지스트(2)를 코팅한다.
도 1b에 도시된 바와 같이 상기 포토레지스트(2)를 포토리소그래피에 의해 패터닝하여 낮은 원통상의 포토레지스트 마스크(2a)를 형성한다. 패터닝된 마스크(2a)를 유리 천이온도(glass transition temperature) 이상의 소정의 온도, 예를 들어 약 150도의 온도로 가열하여 리플로우 시킨다. 다음에 도 1c에 도시된 바와 같이 진공 챔버 내에서 반응성 이온 식각과 같은 플라즈마 에칭에 의해 마스크( 2b)와 기판(1)을 에칭하여 도 1d에 도시된 바와 같은 어레이 형태로 배열된 마이크로 렌즈(1a)를 기판(1) 위에 형성한다. 상기 과정에서 패터닝 된 마스크(2a)는 가열에 의해 리플로우(reflow) 되며, 이때 액상의 포토레지스트에 작용하는 표면장력에 의해 반구 형상을 갖게 된다. 이와 같이 반구형으로 형성되는 포토레지스트(2b)를 마스크로 적용하여 적절한 조건에서 플라즈마 에칭 등에 의해 건식 식각을 행하게 되면 포토레지스트(2b)의 반구형상이 그대로 에칭된 기판(1)에 전사되게 되어 구면의 굴절 곡면을 갖는 마이크로렌즈(1a)가 얻어진다.
이러한 종래 방법에 따르면 낮은 원기둥 상의 마스크(2a) 즉 포토레지스트가 리플로우 되면서 돔의 형태를 가지게 되는데 이 돔은 비구면이 아닌 구면의 형태를 가지며, 따라서 구면 상의 포토레지스트의 형상이 그대로 기판으로 전사(transfer)되기 때문에 구면 렌즈를 얻게 된다. 이러한 구면 렌즈에 의해 빛이 집속될 때 렌즈의 각 부위에서 굴절된 빛이 광축 상에서 한 점에 모이지 않는 이른바 구면 수차가 생기게 된다. 따라서 이러한 구면형 렌즈는, 광픽업의 대물렌즈와 같이 파면수차를 적극 억제해야 할 필요가 있는 정밀한 용도로서 사용되기는 어렵다.
플라즈마 에칭에 의해서 비구면렌즈를 얻는 방법은 미국특허 5,286,338에 제시되어 있다. 이 방법은, 리플로우에 의해 얻어진 돔형의 마스크의 형상을 전술한 바와 같은 방법에 의해 기판으로 전사시킬 때에, 식각에 사용되는 각 가스의 상대적 혼합비를 식각 중에 점차 변화시킴으로써 마스크와 기판 재료의 식각속도의 비율을 연속적으로 변화시켜 비구면의 곡면을 얻는다. 그러나 식각 중에 식각 깊이에 따라 마스크와 기판 재료의 표면적 비율은 연속적으로 변화하며, 마스크와 기판물질 (예를 들어서 SiO2)은 식각 시에 반응 물질 및 생성물질이 서로 다르므로, 식각 도중의 화학반응은 매우 복잡하며 시간에 따라 연속적으로 변화한다. 따라서, 실제로 가스의 종류 및 혼합 비율을 식각 공정 중에 변화시켜 가면서 설계한 대로의 비구면 형상을 얻는 것은 지극히 어렵다.
미국특허 6,301,051은 비구면 마이크로렌즈 어레이 제작방법을 제안한다. 이 특허에서는 광전자 회로를 갖는 IC 기판 위에 마이크로렌즈 어레이를 집적화하기 위한 목적으로, 아크릴 폴리머(acrylic polymer)로 평탄화 처리한 기판 위에 포토레지스트를 도포한 다음, 그레이 스케일 포토리소그래피(gray scale photo-lithography)에 의해 포토레지스트를 패터닝한다. 그 후에, 포토레지스트의 형상을 건식 식각(dry etching)으로 기판에 전사함으로써 마이크로렌즈 어레이를 얻고 있다. 그러나 이 방법에서는 도포된 포토레지스트의 두께가 1 - 3 um (마이크론) 정도로 극히 얇아서, 얻을 수 있는 마이크로 렌즈의 높이 (sag height)가 수um 정도에 불과하므로, 직경이 크거나 개구수(numerical aperture, NA)가 큰 마이크로렌즈를 얻기는 극히 어렵다. 또한, 이 특허에서 제시된 방법은 포토레지스트의 리플로우를 적용하지 않고 그레이 스케일 포토마스크(gray scale photomask)를 이용한 자외선 노광에만 의존하므로, 렌즈 높이(sag height)가 큰 마이크로렌즈를 제작하기 위해서 사용하는 경우, 렌즈의 곡면의 표면 조도가 매우 크게 되며, 또한 렌즈 곡면의 정밀도는 그레이 스케일 포토마스크의 제작 정밀도에 전적으로 의존하므로, 얻어지는 정밀도에 한계가 있고 수차(aberration)가 작은 렌즈를 제작하기 곤란하다.
본 발명은 종래의 마이크로렌즈 어레이 제작방법에 비하여 정밀한 곡면을 얻을 수 있고, 높은 개구수(Numerical Aperture)와 낮은 수차 등, 광학적 성능이 우수한 마이크로 렌즈와 이를 제조하는 방법을 제공한다.
상기 목적을 달성하기 위하여 본 발명의 제1유형에 따른 제조방법은:
가) 기판의 일면에 포토리소그래피를 이용하여 원통 상의 (cylindrical) 포토레지스트 마스크를 형성하는 단계 ;
나) 상기 마스크를 가열에 의해 리플로우 시켜 마이크로 렌즈에 대응하는 형상으로 형성하는 단계;
다) 플라즈마 에칭에 의해 상기 마스크의 형상을 상기 기판의 표면으로 전사하여 마이크로렌즈를 상기 기판상에 형성하는 단계;
라) 상기 마이크로 렌즈의 표면상에 상기 마이크로 렌즈의 곡면을 보상하는 표면 형상을 가지는 포토레지스트를 형성하는 단계;
마) 상기 포토레지스트를 플라즈마 에칭하여 상기 포토레지스트의 곡면형상을 상기 마이크로 렌즈의 표면으로 전사하는 단계를 포함한다.
상기 제1유형의 본 발명의 라) 단계에서 상기 포토레지스트는 그레이 스케일 포토마스크를 이용한 포토리소그래피법 또는 전자빔 및 레이저 빔 중의 어느 하나에 의한 직접 묘화법에 의해 노광하여 패터닝 하는 것이 바람직하다.
이하, 첨부된 도면을 참조하면서 본 발명에 따른 마이크로 렌즈의 제조방법의 바람직한 실시예들을 상세히 설명한다.
<<제1실시예>>
도 2a에 도시된 바와 같이 실리콘(silicon), 유리(glass), 실리카(fused silica), 석영(quartz) 등의 기판(10) 위에 포토레지스트(20)를 도포한다.
도 2b에 도시된 바와 같이 상기 포토레지스트(20)를 일반적인 포토리소그래피법에 의해 패터닝 하여 낮은 원기둥 상의 마스크(21)를 형성한다. 패터닝 된 포토레지스트(21)를 유리 천이온도 (glass transition temperature) 이상의 소정 온도, 예를 들어 약 150도로 가열하여 상기 마스크(21)를 리플로우 시킨다. 마스크의 리플로우 과정에서 액상의 포토레지스트에 표면장력 및 중력 등이 작용하게 됨으로써 도 2c에 도시된 바와 같이 마스크(21)가 돔형(반구형)으로 형성된다. 이와 같이 반구형으로 형성되는 포토레지스트(21)를 마스크로 적용하여 적절한 조건에서 플라즈마 등에 의해 건식 식각을 행하게 되면 포토레지스트(21)의 반구형상이 그대로 에칭된 기판(10)에 전사되게 되어 구면의 굴절 곡면을 갖는 어레이 상태로 배열된 다수의 마이크로렌즈(11)가 2d에 도시된 바와 같이 얻어진다.
도 2e에 도시된 바와 같이, 기판(10) 상에 포토레지스트(30)를 소정 두께로 도포한 다음 그레이 스케일 포토마스크(40)를 이용해 자외선(UV)으로 상기 포토레지스트(30)를 노광한다. 상기 그레이 스케일 포토마스크(40)를 부위에 따라 적절히 조절된 강도로 자외선이 통과할 수 있도록 하여 상기 포토레지스트(30)가 비구면형을 가지도록 한다. 이를 위하여 먼저 구면형 렌즈인 상기 마이크로 렌즈(11)의 표면형상을 측정하여, 설계된 비구면 렌즈의 형상과 비교하여 x-y 좌표축의 각 점에 대하여 상기 포토레지스트(30)의 에칭 깊이(etching depth)의 차이를 수치로 나타낸다. 다음에 이 수치만큼 에칭을 부가할 수 있도록 x-y 좌표축에 대한 에칭 깊이 차이를 보상할 수 있는 상기 그레이 스케일 포토마스크(40)를 제작한다. 이때에 그레이 스케일 포토마스크는 상기 포토레지스트(30)의 에칭 깊이를 보상할 수 있도록 x-y 좌표축의 각 점에 대하여 그레이 레벨을 설정한다.
도 2f에 도시된 바와 같이, 플라즈마 에칭으로 상기 유리 기판(10)과 포토레 지스트(30)를 에칭하여 포토레지스트의 비구면형 표면이 상기 마이크로 렌즈(11)로 전사되도록 하여 도 2g에 도시된 바와 같은 유리기판(10) 상에 비구면형 마이크로 렌즈(12)를 가지는 최종적인 대물렌즈 어레이를 완성한다.
본 실시예는 구면형 포토레지스트를 이용해 기판을 에칭하여 구면형 포토레지스트에 대응하는 형태의 구면 마이크로 렌즈를 형성하고, 다시 이 위에 포토레지스트를 도포한 다음 그레이 스케일 포토마스크를 목적하는 비구면 렌즈에 대응하는 형태로 포토레지스트를 노광한 후 식각을 행함으로써 상기 구면 마이크로 렌즈(11)를 비구면화 한다.
<<제2실시예>>
도 3a에 도시된 바와 같이 실리콘(silicon), 유리(glass), 실리카(fused silica), 석영(quartz) 등의 기판(10) 위에 포토레지스트(20)를 도포한다.
도 3b에 도시된 바와 같이 상기 포토레지스트(20)를 일반적인 포토리소그래피법에 의해 패터닝하여 낮은 원기둥 상의 마스크(21)를 형성한다. 패터닝된 포토레지스트(21)를 유리 천이온도 (glass transition temperature) 이상의 소정 온도, 예를 들어 약 150도로 가열하여 상기 마스크(21)를 리플로우 시킨다. 마스크의 리플로우가 일어날 때 액상의 포토레지스트에 표면장력 및 중력 등이 작용하게 됨으로써 도 3c에 도시된 바와 같이 마스크(21)가 돔형(반구형)으로 형성된다.
도 3d에 도시된 바와 같이, 그레이 스케일 포토마스크(40)를 이용해 자외선(UV)으로 상기 마스크(21)를 노광한다. 이를 위하여 먼저 구면 렌즈에 대응하는 형상을 가지는 마스크(21)의 표면형상을 측정하여, 설계된 비구면 렌즈의 형상과 비 교하여 x-y 좌표축의 각 점에 대하여 상기 포토레지스트(21)의 에칭 깊이(etching depth)의 차이를 수치로 나타낸다. 다음에 이 수치만큼 에칭을 부가할 수 있도록 x-y 좌표축에 대한 에칭 깊이 차이를 보상할 수 있는 상기 그레이 스케일 포토마스크(40)를 제작한다. 이때에 그레이 스케일 포토마스크는 상기 마스크(21)의 에칭 깊이를 보상할 수 있도록 x-y 좌표축의 각 점에 대하여 그레이 레벨을 설정한다.
도 3d에 도시된 바와 같이, 상기와 같은 그레이 스케일 포토마스크에 의해 노광된 상기 마스크(21)를 현상하여 상기 마스크(21)가 비구면의 표면을 가지도록 한다.
도 3e에 도시된 바와 같이, 비구면으로 현상된 마스크(21)를 마스크로 적용하여 적절한 조건에서 플라즈마 등에 의해 건식 식각을 행한다. 이러한 건식 식각에 의하면 마스크(21)의 비구면 형상이 그대로 에칭된 기판(10)에 전사되게 되어 도 3f에 도시된 바와 같이 비구면의 굴절 곡면을 갖는 어레이 상태로 배열된 다수의 마이크로렌즈(12)가 얻어진다.
<<제3실시예>>
도 4a에 도시된 바와 같이 실리콘(silicon), 유리(glass), 실리카(fused silica), 석영(quartz) 등의 기판(10) 위에 포토레지스트(20)를 도포한다.
도 4b에 도시된 바와 같이 상기 포토레지스트(20)를 일반적인 포토리소그래피법에 의해 패터닝 하여 낮은 원기둥 상의 마스크(21)를 형성한다. 패터닝 된 포토레지스트(21)를 유리 천이온도 (glass transition temperature) 이상의 소정온도, 예를 들어 약 150도로 가열하여 상기 마스크(21)를 리플로우 시킨다. 마스크의 리플로우가 일어날 때 액상의 포토레지스트에 표면장력 및 중력 등이 작용하게 됨으로써 도 4c에 도시된 바와 같이 마스크(21)가 돔형(반구형)으로 형성된다. 이와 같이 반구형으로 형성되는 포토레지스트(21)를 마스크로 적용하여 적절한 조건에서 플라즈마 등에 의해 건식 식각을 행하게 되면 포토레지스트(21)의 반구형상이 그대로 에칭된 기판(10)에 전사되게 되어 구면의 굴절 곡면을 갖는 어레이 상태로 배열된 다수의 마이크로렌즈(11)가 얻어진다.
도 4c에 도시된 바와 같이, 진공 챔버 내에서 반응성 이온 식각과 같은 플라즈마 에칭 등에 의해 마스크(21)와 기판(10)을 에칭하여 도 4d에 도시된 바와 같은 어레이 형태로 배열된 마이크로 렌즈(11)를 기판(10) 상에 형성한다.
도 4e에 도시된 바와 같이, 기판(10)의 배면 상에 포토레지스트(30)를 소정 두께로 도포한 다음 그레이 스케일 포토마스크(40)를 이용해 자외선(UV)으로 상기 포토레지스트(30)를 노광한다. 상기 그레이 스케일 포토마스크(40)를 부위에 따라 적절히 조절된 강도로 자외선이 통과할 수 있도록 하여 상기 포토레지스트(30)가 비구면을 가지도록 한다. 이를 위하여 먼저 구면렌즈인 상기 마이크로 렌즈(11)의 표면형상을 측정하여, 상기 마이크로 렌즈(11)에 의한 구면 수차를 보상할 수 있는 비구면 오목 렌즈의 형상에 대응하는 패턴으로 상기 포토레지스트(30)를 노광할 수 있도록 상기 그레이 스케일 포토마스크(40)를 설계한다.
도 4f에 도시된 바와 같이, 플라즈마 에칭으로 상기 유리 기판(10) 저면의 포토레지스트(30)를 에칭하여 포토레지스트의 비구면형 오목면이 상기 기판(10)의 저면에 전사되도록 하여 도 4g에 도시된 바와 같은 유리기판(10) 저면에 오목형 보 상렌즈부(12)를 형성하여 목적하는 마이크로 렌즈 어레이를 완성한다.
본 발명의 대물렌즈의 제작방법의 또 다른 실시예에 따르면, 전술한 실시예에서와 같이 구면 마이크로 렌즈 또는 구면형 표면을 가지는 마스크 곡면 형상의 보정을 위해 상기와 같은 그레이 스케일 포토마스크를 이용한 포토리소그래피에 의존하지 않고 전자 빔 (electron beam)이나 레이저 빔(laser beam)을 이용하여, 국부적으로 빔의 조사량(照射量)을 변화시킴으로써 포토레지스트 상에 원하는 곡면 형상을 갖도록 노광을 행하는 직접 묘화법(直接描畵法, direct write)을 적용할 수 있다.
또한, 그레이 스케일 포토마스크 제작시에, 렌즈의 굴절 곡면과 중첩하여 회절소자 (Fresnel lens, grating 등)를 동시에 형성할 수 있도록 그레이 레벨을 국부적으로 변화키는 것이 가능하다. 이것은 구면수차 뿐 아니라 색수차까지 보상할 수 있는 대물렌즈를 제공하게 된다. 또한, 직접 묘화법이 적용되는 경우에 있어서도, 이러한 회절소자에 대응하는 패턴을 포토레지스트 상에 형성할 수도 있다.
또한, 마이크로렌즈의 표면 형상(surface profile)의 오차 보정을 위한 그레이스케일 포토마스크를 이용한 제2차 노광이나 전자빔이나 레이저 빔의 조사(照射) 후에, 유리 천이온도 (glass transition temperature) 부근 또는 그 이상의 적절한 온도에서 가열하여 포토레지스트를 국부적으로 다시 리플로우 시킴으로써 광학적인 특성변화를 일으키는 매크로한 표면형상의 변화 없이 표면 조도를 개선할 수 있게 된다.
본 발명에서 제안하는 마이크로렌즈 제조방법을 요약하면, 한 실시예에서, 포토레지스트 리플로우 및 플라즈마 에칭에 의하여 구면렌즈를 제작하고, 제작된 구면렌즈의 형상을 측정, 설계된 형상과의 오차를 산출하여 비구면 오차를 보정하는 방법으로서, 오차의 보정은 렌즈 높이(sag height)에 해당하는 포토레지스트 두께만큼이 아니라 매우 얇은 포토레지스트에 수정된 형상을 부여함으로써 이루어진다. 즉, 구면렌즈 제작 공정에 의하여 마이크로렌즈의 형상을 대체적으로 만들어 놓은 다음에, 비구면 오차를 미세하게 조정하는 방법으로서 얻어지는 렌즈의 곡면 정밀도는 종래의 방법보다 높아지는 이점이 있다. 이하에 본 발명에 따른 대물렌즈 제조방법의 장점은 다음과 같다.
(i) 종래의 마이크로렌즈 어레이의 제작공정에 약간의 공정을 추가함으로써, 곡면 정밀도가 높은 마이크로렌즈 어레이를 제작할 수 있다.
(ii) 형상 보정용의 그레이 스케일 포토마스크가 정밀하게 제작되거나, x-y 좌표축의 위치에 따른 전자빔이나 레이저 빔의 조사량(照射量)을 정밀하게 제어가능하면 기타의 공정 변수는 고정할 수 있으므로, 제작 공정이 비교적 간단하다.
(iii) 단면 비구면, 양면 비구면, 굴절면에 회절 패턴이 형성되어 있는 경우 등, 모든 종류의 마이크로렌즈 표면에 대하여 보상 프로파일의 적용이 가능하다.
(iv) 종래의 그레이 스케일 포토마스크를 적용한 구면렌즈 또는 비구면렌즈 제작 방법에 비하여, 높은 곡면 정밀도 및 양호한 표면 조도를 얻을 수 있으며, 결과적으로 높은 개구수와 낮은 수차(aberration)를 갖는 마이크로렌즈의 제작에 적합하다.
(v) 본 발명의 제조방법은 일단 렌즈의 원형(original)이 제작되면, 마스터 몰드를 제작하여 성형으로 대량복제가 가능하므로 양산 공정에 적합하다.
이상 몇몇의 모범적인 실시예들이 첨부된 도면과 함께 설명되고 보여졌으나, 당 업계에서 통상적으로 숙련된 자에 의해, 다양한 다른 수정이 일어 날수 있기 때문에, 이러한 실시예들은 단지 넓은 발명을 제한하지 않는 예시이며, 본 발명은 도시되고 설명된 특정한 구조 및 배치에 의해 제한되지 않는다는 점이 이해되어야 할 것이다.

Claims (3)

  1. 가) 기판의 일면에 포토리소그래피를 이용하여 원통상(cylindrical)의 포토레지스트 마스크를 형성하는 단계;
    나) 상기 마스크를 가열에 의해 리플로우 시켜 마이크로 렌즈에 대응하는 형상으로 형성하는 단계;
    다) 플라즈마 에칭에 의해 상기 마스크의 형상을 상기 기판의 표면으로 전사하여 마이크로렌즈를 상기 기판에 형성하는 단계;
    라) 상기 마이크로 렌즈의 표면상에 상기 마이크로 렌즈의 곡면을 보상하는 표면 형상을 가지는 포토레지스트를 형성하는 단계; 그리고
    마) 상기 포토레지스트를 플라즈마 에칭하여 상기 포토레지스트의 곡면형상을 상기 마이크로 렌즈의 표면으로 전사하는 단계; 를 포함하는 것을 특징으로 하는 마이크로 렌즈의 제조방법
  2. 제 1 항에 있어서,
    상기 라) 단계에서,
    상기 포토레지스트는 그레이스케일 포토마스크를 이용한 포토리소그래피법에 의해 형성되는 것을 특징으로 하는 마이크로 렌즈의 제조방법.
  3. 제 1 항에 있어서,
    상기 라) 단계에서,
    상기 포토레지스트는 전자빔 및 레이저 빔 중의 어느 하나에 의한 직접 묘화법에 의해 노광된 후 패터닝 되는 것을 특징으로 하는 마이크로 렌즈의 제조방법.
KR1020050075676A 2005-08-18 2005-08-18 마이크로 렌즈 어레이의 제조방법 KR100561874B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050075676A KR100561874B1 (ko) 2005-08-18 2005-08-18 마이크로 렌즈 어레이의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050075676A KR100561874B1 (ko) 2005-08-18 2005-08-18 마이크로 렌즈 어레이의 제조방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0005197A Division KR100537505B1 (ko) 2003-01-27 2003-01-27 마이크로 렌즈 어레이의 제조방법

Publications (2)

Publication Number Publication Date
KR20050088064A KR20050088064A (ko) 2005-09-01
KR100561874B1 true KR100561874B1 (ko) 2006-03-17

Family

ID=37271111

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050075676A KR100561874B1 (ko) 2005-08-18 2005-08-18 마이크로 렌즈 어레이의 제조방법

Country Status (1)

Country Link
KR (1) KR100561874B1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101022273B1 (ko) * 2008-12-15 2011-03-21 한국광기술원 마이크로 렌즈를 채용한 적외선 센서 어레이
KR102007438B1 (ko) * 2018-01-29 2019-08-05 (주)인터체크 비구면 마이크로 렌즈의 제조 방법
CN115144939A (zh) * 2022-06-28 2022-10-04 合肥英拓光电技术有限公司 一种微透镜阵列、微透镜阵列制备方法和光学检测装置

Also Published As

Publication number Publication date
KR20050088064A (ko) 2005-09-01

Similar Documents

Publication Publication Date Title
KR100537505B1 (ko) 마이크로 렌즈 어레이의 제조방법
KR100561844B1 (ko) 마이크로 렌즈 어레이 및 그 제조 방법
Ottevaere et al. Comparing glass and plastic refractive microlenses fabricated with different technologies
US8366949B2 (en) Mold for microlens and process for producing the same
KR20070093384A (ko) 광학 소자의 제조 방법
JP5182097B2 (ja) 光導波路モジュールの製造方法
KR100561874B1 (ko) 마이크로 렌즈 어레이의 제조방법
US20050003309A1 (en) Method of fabricating micro-lens and method of fabricating optical module using the method
JP2002321941A (ja) 光学素子の製造方法
Nussbaum et al. Micro-optics for sensor applications
Shields et al. Electron-beam lithography for thick refractive optical elements in SU-8
JP3081284B2 (ja) マイクロレンズの製造方法
JP2001290008A (ja) 光学素子の製造方法
JP2001296649A (ja) 濃度分布マスクとその製造方法及び表面形状の形成方法
JPH0749403A (ja) マイクロ光学素子の製造方法
JP2000280366A (ja) マイクロレンズの製造方法、その製造方法で製造したマイクロレンズ、そのマイクロレンズを使用した光デバイス装置、およびその光デバイス装置のスライダー
CN114280706B (zh) 一种基于uv激光直写光刻的双胶合微阵列透镜的制备方法
WO2002016975A2 (en) Lens arrays and methods of making the lens array
Voelkel et al. Design, fabrication, and testing of micro-optical components for sensors and microsystems
Raguin et al. Anamorphic and aspheric microlenses and microlens arrays for telecommunication applications
US8059345B2 (en) Integrated micro-optical systems
JP2006023759A (ja) マイクロレンズアレイとその製法
Voelkel et al. Fabrication of aspherical microlenses in fused silica and silicon
Ottevaere et al. Comparative study of glass and plastic refractive microlenses and their fabrication techniques
TW519578B (en) Method for fabricating integrated micro spherical lens for optical fiber switch and the device made therefrom

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090226

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee