KR100548728B1 - Method for heat treatment of high strength invar alloy - Google Patents

Method for heat treatment of high strength invar alloy Download PDF

Info

Publication number
KR100548728B1
KR100548728B1 KR1020030096355A KR20030096355A KR100548728B1 KR 100548728 B1 KR100548728 B1 KR 100548728B1 KR 1020030096355 A KR1020030096355 A KR 1020030096355A KR 20030096355 A KR20030096355 A KR 20030096355A KR 100548728 B1 KR100548728 B1 KR 100548728B1
Authority
KR
South Korea
Prior art keywords
invar alloy
heat treatment
less
weight
ingot
Prior art date
Application number
KR1020030096355A
Other languages
Korean (ko)
Other versions
KR20050064764A (en
Inventor
하태권
성환진
김경호
Original Assignee
주식회사 포스코
창원특수강주식회사
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 창원특수강주식회사, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR1020030096355A priority Critical patent/KR100548728B1/en
Publication of KR20050064764A publication Critical patent/KR20050064764A/en
Application granted granted Critical
Publication of KR100548728B1 publication Critical patent/KR100548728B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 고강도 송전선용 인바 합금 잉곳재에 내재된 조대한 Mo 고용체 석출물을 효과적으로 분해시킴으로써 건전한 미세조직을 가진 선재의 생산을 용이하게 하고 인바 합금 제품의 품질을 향상시킬 수 있는 효과가 있는 고강도 인바 합금의 열처리 방법에 관한 것이다.The present invention facilitates the production of wire rods with sound microstructure by effectively degrading the coarse Mo solid solution precipitate in the invar alloy ingot material for high-strength transmission line and has the effect of improving the quality of the Invar alloy product. It relates to a heat treatment method of.

본 발명은 중량%로, C: 0.15~0.45%, Si: 0.1~0.35%, Mn: 1.5% 이하, Cr: 0.3~2.0%, Ni: 33~38%, Co: 5%이하, Mo: 0.5~4.5%, V: 0.1~0.5%, Nb: 0.3% 이하, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 인바 합금을 이용하여 잉곳을 만들고, 이 잉곳을 1250-1300℃에서 1차 균질화 처리하고 1100-1150℃에서 2차 균질화 처리하는 2단 균질화 처리를 하는 것을 특징으로 하는 고강도 인바 합금의 열처리 방법을 제공한다.In the present invention, by weight%, C: 0.15-0.45%, Si: 0.1-0.35%, Mn: 1.5% or less, Cr: 0.3-2.0%, Ni: 33-38%, Co: 5% or less, Mo: 0.5 ˜4.5%, V: 0.1-0.5%, Nb: 0.3% or less, making an ingot using an Invar alloy composed of the remaining Fe and other unavoidable impurities. The ingot was first homogenized at 1250-1300 ° C. Provided is a heat treatment method of a high strength Invar alloy, characterized in that a two-stage homogenization treatment is performed at 1150 ° C. for a second homogenization treatment.

Description

고강도 인바 합금의 열처리 방법{METHOD FOR HEAT TREATMENT OF HIGH STRENGTH INVAR ALLOY}Heat treatment method of high strength invar alloy {METHOD FOR HEAT TREATMENT OF HIGH STRENGTH INVAR ALLOY}

도1은 본 발명에 따라 인바 합금 잉곳재를 1130, 1200, 1280℃에서 균질화 열처리한 후에 석출물의 분해 상태를 나타낸 사진.Figure 1 is a photograph showing the decomposition state of the precipitate after homogenizing heat treatment at 1130, 1200, 1280 ℃ inva alloy ingot material according to the present invention.

본 발명은 고강도 송전선의 심선 용으로 사용되는 인바 합금 잉곳재의 열처리 방법에 관한 것으로서, 보다 상세하게는 인바 합금 잉곳재에 내재된 조대 석출물을 제거하는 열처리 방법에 관한 것이다.The present invention relates to a heat treatment method for the Inba alloy ingot material used for the core wire of the high-strength transmission line, and more particularly to a heat treatment method for removing coarse precipitates in the Inba alloy ingot material.

인바 합금은 타 강종에 비해 열팽창 계수가 낮아 정밀 계측기기, 서모스태틱 바이메탈(thermostatic bimetal), 칼라 TV의 쇄도우마스크(shadow mask) 등 전자 부품용 소재로 널리 사용되어 왔다. 인바 합금의 발명 이후 지난 100여년 동안 기본 조성에 Co, Mo, W, Ti, Al, Cr, C 등을 첨가하여 온도변화에 따른 탄성변화를 보상한 인바(Elinvar), 낮은 열팽창 특성과 석출에 의한 강화 효과를 함께 실현시킨 인바(Metelinvar), 기존 인바 합금의 문제점 중의 하나인 템포럴/디멘져널 불안정성(temporal/dimensional instability)를 상쇄시킨 인바(Fixinvar) 등을 비롯한 다양한 종류의 인바 합금들이 개발되어 사용되고 있다.Invar alloys have a lower coefficient of thermal expansion than other steels and have been widely used in electronic components such as precision measuring instruments, thermostatic bimetals, and shadow masks of color TVs. Since the invention of Invar alloy, Colin, Mo, W, Ti, Al, Cr, C, etc. have been added to the basic composition for the last 100 years to compensate for the elastic change due to temperature changes. Various types of Invar alloys have been developed and used, including Intel (Metelinvar), which combines reinforcement effects, and Fixinvar, which offsets the temporal / dimensional instability, one of the problems of existing Invar alloys. have.

최근 고도의 경제성장에 따라 전력수요도 급증하고 있으며, 산업의 팽창에 의한 도시의 과밀화가 진행됨에 따라 대도시 근교의 전력수요가 급증하면서 매년 전력예비율의 감소로 인해 안정된 전력공급을 위한 송전량의 증가가 요구되고 있다. 송전량을 증가시키기 위해서는 신규 송전선로를 가설하기 위한 송전탑을 설치해야 하는데, 이 경우 도시근교의 주택화에 의한 용지 난과 땅값 상승으로 과도한 설치비용이 소요되어 신규 송전선로의 추가설치는 어려운 실정이다. Recently, the demand for electricity is increasing rapidly due to the high economic growth, and the demand for power supply in suburban cities is increasing due to the overcrowding of cities due to industrial expansion. Is required. In order to increase the amount of transmission, it is necessary to install transmission towers for the construction of new transmission lines. In this case, it is difficult to install new transmission lines due to excessive installation costs due to the increase of land price and land price caused by residentialization in urban suburbs. .

송전량 증량요구에 대한 대안으로 기존의 송전선로를 이용하여 송전량을 증가시키는 방법이 있으나, 기존 송전선로에 승압하여 송전량을 증가시킬 경우, 전선온도가 상승하여 열팽창에 의해 전선의 처짐(sagging) 정도가 증가되어 고압전류 통과 시 지상으로부터 안전에 필요한 높이를 확보할 수 없는 위험이 존재한다. 이러한 문제점 보완을 위해 선진국에서는 고압 송전선 보강재로 기존의 고탄소강재 대신 열팽창 계수가 작은(탄소강의 1/10수준) 인바계 합금(Invar, 36%Ni-Fe-Co) 선재를 사용한 ACIR(Aluminum Conductor Invar Reinforced) 송전선을 사용하여 기존 송전선로를 그대로 활용, 승압 송전을 실시하고 있다.As an alternative to the increase in power transmission requirements, there is a method of increasing power transmission using existing power transmission lines.However, when power is increased by boosting an existing power transmission line, the temperature of the wire increases and sagging of the wire due to thermal expansion. There is a risk that the height required for safety from ground level cannot be obtained when high voltage current passes. In developed countries, ACIR (Aluminum Conductor) using invar alloy (Invar, 36% Ni-Fe-Co) wire with low thermal expansion coefficient (1/10 of carbon steel) instead of high carbon steel is used in advanced countries. Invar Reinforced) Power transmission lines are used to carry out boosted power transmission by utilizing existing transmission lines.

그러므로 고강도 고압 송전선용 인바 합금은 열팽창 계수가 10-6수준으로 낮아야 하고, 강도는 열간 압연 상태에서 1000MPa이상으로 높아야 한다. 이러한 고강도를 실현하기 위해 많은 연구자들이 기본 인바 조성에 Co, Mo, Ti, Cr, C, V, Nb 등을 첨가하여 고용강화 및 가공경화에 의한 강도향상을 이루고자 노력해 왔다. 그 러나 이러한 첨가원소의 영향으로 주조 시에 강도향상에 기여하는 탄화물뿐만 아니라, 비평형상인 조대한 Mo 고용체가 형성되어 이어지는 열간 선재압연 및 냉간 인발 공정에서 크랙을 발생시킴으로써, 제품불량의 원인으로 작용하는 문제점이 있었다.Therefore, the Invar alloy for high-strength high-voltage transmission lines should have a low coefficient of thermal expansion of 10 -6 and a high strength of 1000 MPa or more in the hot rolling state. In order to realize such high strength, many researchers have been trying to achieve strength improvement by solid solution strengthening and work hardening by adding Co, Mo, Ti, Cr, C, V, and Nb to the basic invar composition. However, due to the influence of these additional elements, not only carbides that contribute to the strength improvement during casting, but also coarse Mo solid solutions are formed, causing cracks in the hot wire rolling and cold drawing processes that are followed. There was a problem.

본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위한 것으로, 인바 합금 주조재에 존재하는 조대한 Mo 고용체 석출물을 열처리 제어방법에 의해 효과적으로 분해 또는 제거하는 방법을 제공하는데 그 목적이 있다.The present invention is to solve the problems of the prior art as described above, it is an object of the present invention to provide a method for effectively decomposing or removing the coarse Mo solid solution precipitate present in the Invar alloy casting material by a heat treatment control method.

이하에서, 상기한 목적을 달성하기 위한 본 발명을 상세히 설명한다.Hereinafter, the present invention for achieving the above object will be described in detail.

본 발명은 중량%로, C: 0.15~0.45%, Si: 0.1~0.35%, Mn: 1.5% 이하, Cr: 0.3~2.0%, Ni: 33~38%, Co: 5%이하, Mo: 0.5~4.5%, V: 0.1~0.5%, Nb: 0.3% 이하, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 인바 합금에 대하여 하기와 같이 2단 균질화 열처리를 수행하는 방법이다.In the present invention, by weight%, C: 0.15-0.45%, Si: 0.1-0.35%, Mn: 1.5% or less, Cr: 0.3-2.0%, Ni: 33-38%, Co: 5% or less, Mo: 0.5 It is a method of performing a two-stage homogenization heat treatment as follows for the Invar alloy composed of ~ 4.5%, V: 0.1-0.5%, Nb: 0.3% or less, the remaining Fe and other unavoidable impurities.

본 발명의 인바 합금의 열처리 방법은, 상기와 같이 조성되는 대형 인바 합금 잉곳의 전체에 걸쳐 균일한 온도를 확보하기 위하여 1000-1100℃에서 일정시간동안 예열 처리하고, Mo고용체 석출물의 분해처리 시에 보다 빠른 속도의 재용해를 위해 1250-1300℃에서 1차 균질화 처리를 하고 1100-1150℃에서 2차 균질화 처리를 함으로써 인바 합금 주조재에 내재된 조대한 Mo고용체 석출물을 효과적으로 분해하 고 이어서 가공경화에 의한 강화에 유익한 미세한 Mo2C 탄화물을 석출시키는 열처리 방법을 포함하여 이루어진다.The heat treatment method of the Invar alloy of the present invention is preheated at 1000-1100 ° C. for a predetermined time in order to secure a uniform temperature throughout the large invar alloy ingots prepared as described above, and at the time of decomposition treatment of Mo solid precipitates. First homogenization at 1250-1300 ° C and second homogenization at 1100-1150 ° C for faster redissolution, effectively disintegrating the coarse Mo solids precipitate in the Invar alloy casting and subsequently hardening It comprises a heat treatment method for depositing fine Mo 2 C carbide beneficial for strengthening by.

본 발명자들은 고압 송전선용 인바 합금 주조재를 사용하여 조대한 석출물을 효과적으로 제거하는 연구를 진행하던 중, 다음과 같은 사실을 확인하였다.The inventors of the present invention conducted the research to effectively remove coarse precipitates by using an invar alloy casting material for a high-voltage power transmission line, and confirmed the following facts.

(1) 1250-1300℃의 온도영역에서 2시간의 유지시간에서 조대한 석출물의 완전한 재용해가 일어난다는 점.(1) Complete redissolution of coarse precipitates occurs at a holding time of 2 hours in the temperature range of 1250-1300 ° C.

(2) 1100-1150℃ 의 온도영역에 장시간 유지하는 경우에도 조대한 석출물의 상당량이 잔존하며 강도는 1250-1300℃의 온도영역에서 유지한 경우에 비해 높게 나타나는 점.(2) Even when kept in the temperature range of 1100-1150 ° C for a long time, a considerable amount of coarse precipitates remain and the strength is higher than that maintained in the temperature range of 1250-1300 ° C.

따라서, 상기 2가지 사실에 주목하여 균질화 열처리 절차를 적절하게 제어하면, 조대한 석출물의 완전한 분해와 동시에 강화효과를 함께 이룰 수 있다는 결론에 이르렀다.Therefore, paying attention to the above two facts, it has been concluded that proper control of the homogenization heat treatment procedure can achieve both the complete decomposition of the coarse precipitate and the strengthening effect at the same time.

본 발명은 고압 송전선용 인바 합금 잉곳재에서 내재된 조대한 석출물의 완전한 분해와 동시에 강화효과를 함께 이룰 수 있는 열처리 방법에 특징이 있는 것으로, 이하 적용대상 합금의 조성한정 범위와 열처리 방법에 대해서 설명한다.The present invention is characterized by a heat treatment method that can achieve both the complete decomposition of the coarse precipitates and the strengthening effect at the same time in the invar alloy ingot material for high-voltage transmission lines, the following describes the composition limitation range and heat treatment method of the alloy to be applied do.

[적용대상합금의 조성한정 범위][Scope of application of the alloy to be applied]

C: 0.15~0.45중량%C: 0.15 to 0.45 wt%

인바 합금에서의 탄소 함량은 탄화물 형성원소인 Mo, V, Nb 및 Cr의 함량에 의해 결정되는 인자로서, 상기 V, Cr, Mo, Nb등과 같은 여러 가지 탄화물 형성원소 와 결합하여 다양한 탄화물을 형성하는데 필요한 기본 성분으로, 0.15중량% 미만 첨가되면 충분한 양의 탄화물 형성이 어렵고, 0.45중량%를 초과하여 첨가되면 열팽창 특성을 저하시키므로, 그 함량을 0.15~0.45중량%로 제한하는 것이 바람직하다.The carbon content in the Invar alloy is a factor determined by the contents of the carbide forming elements Mo, V, Nb and Cr, and forms various carbides by combining with various carbide forming elements such as V, Cr, Mo, and Nb. As a necessary basic component, the addition of less than 0.15% by weight is difficult to form a sufficient amount of carbide, and when added in excess of 0.45% by weight lowers the thermal expansion characteristics, it is preferable to limit the content to 0.15 to 0.45% by weight.

Si: 0.1~0.35중량%Si: 0.1 ~ 0.35 wt%

상기 Si은 탈산제로 첨가되는 성분으로, 탄화물 석출을 보다 증대시켜 경도 향상에도 기여한다. 상기 Si의 함량이 0.1중량% 미만이면 Si 고유의 탈산효과가 거의 없으며, 0.35중량%를 초과하여 첨가되면 고온측의 열팽창 계수를 증가시키므로, 그 함량을 0.1~0.35중량%로 제한하는 것이 바람직하다.Said Si is a component added as a deoxidizer and contributes to the improvement of hardness by further increasing carbide precipitation. If the content of Si is less than 0.1% by weight, there is almost no inherent deoxidation effect of Si, and if it is added in excess of 0.35% by weight, the coefficient of thermal expansion on the high temperature side is increased, so that the content is preferably limited to 0.1 to 0.35% by weight. .

Mn: 1.5중량% 이하Mn: 1.5 wt% or less

상기 Mn은 오스테나이트 안정화 원소로, 1.5중량%를 초과하여 첨가되면 열팽창 계수 증가 천이온도를 낮추기 때문에, 그 함량을 1.5중량% 이하로 제한하는 것이 바람직하다.The Mn is an austenite stabilizing element, and when added in excess of 1.5% by weight, the thermal expansion coefficient increase transition temperature is lowered, it is preferable to limit the content to 1.5% by weight or less.

Cr: 0.3~2.0중량%Cr: 0.3-2.0 wt%

상기 Cr은 Fe-Ni계 합금에서 강도향상 효과가 매우 큰 성분으로, 0.3중량% 미만 첨가되면 강화효과가 작고, 2.0중량%를 초과하여 첨가되면 열팽창 특성을 저해하기 때문에, 그 함량을 0.3~2.0중량%로 제한하는 것이 바람직하다.The Cr is a component having a very high strength improvement effect in the Fe-Ni-based alloy, and when added below 0.3 wt%, the reinforcing effect is small, and when added in excess of 2.0 wt%, the thermal expansion property is inhibited. It is preferable to limit the weight percentage.

Ni: 33~38중량%Ni: 33-38 wt%

상기 Ni은 36중량%에서 최저 열팽창 계수를 갖는다. 33중량% 미만 또는 38중량% 이상 첨가되면 인바 합금이 송전선 용으로 사용하기 어려우므로, 그 함량을 33~38중량%로 제한하는 것이 바람직하다.Ni has the lowest coefficient of thermal expansion at 36% by weight. If less than 33% by weight or more than 38% by weight is added to the Invar alloy is difficult to use for the transmission line, it is preferable to limit the content to 33 to 38% by weight.

Co: 5.0중량%이하 Co: 5.0 wt% or less

상기 Co는 Ni의 일부를 치환시켜 열팽창 계수 증가 천이온도를 변화시키지 않고 열팽창 계수를 낮추는 효과가 있다. 그러나 5.0중량%를 초과하면 그 효과가 포화되고 가격이 매우 비싸므로, 그 함량을 5.0중량% 이하로 제한하는 것이 바람직하다.Co has the effect of lowering the coefficient of thermal expansion without changing the thermal expansion coefficient increase transition temperature by substituting a part of Ni. However, if it exceeds 5.0% by weight, the effect is saturated and the price is very expensive, so it is preferable to limit the content to 5.0% by weight or less.

Mo: 0.5~4.5중량%Mo: 0.5-4.5 wt%

상기 Mo는 M2C형태의 탄화물 형성을 위해 첨가되는 성분으로, Fe-Ni계 합금을 강화하는 효과가 있지만, 0.5중량% 미만 첨가되면 효과가 적고, 4.5중량%를 초과하여 첨가되면 포화되어 불필요하게 원료비를 높이므로, 그 함량을 0.5~4.5중량%로 제한하는 것이 바람직하다.The Mo is a component added to form a carbide of the M 2 C form, but has the effect of reinforcing the Fe-Ni-based alloy, but less than 0.5% by weight is less effective, when added in excess of 4.5% by weight is saturated In order to increase the raw material cost, it is preferable to limit the content to 0.5 to 4.5% by weight.

V: 0.1~0.5중량%V: 0.1-0.5 wt%

상기 V은 MC형태의 탄화물 형성을 위해 첨가되며, 0.1중량% 미만 첨가되면 충분한 탄화물의 확보가 어렵고, 0.5중량%를 초과하여 첨가되면 기지에 잔류하여 기지의 열간 가공성을 떨어뜨리므로, 그 함량을 0.1~0.5중량%로 제한하는 것이 바람직하다.The V is added for the formation of MC-type carbide, if less than 0.1% by weight it is difficult to secure sufficient carbide, when it is added more than 0.5% by weight is left in the matrix to reduce the hot workability of the matrix, It is preferable to limit it to 0.1-0.5 weight%.

Nb: 0.3중량% 이하Nb: 0.3 wt% or less

상기 Nb은 V과 마찬가지로 MC형태의 탄화물 형성을 위해 첨가되며, 0.1중량% 이상 첨가되면 기지에 잔류하여 기지의 열간 가공성을 떨어뜨리므로, 그 함량을 0.3중량% 이하로 제한하는 것이 바람직하다.Nb is added to form MC in the same manner as V, and when added in an amount of 0.1 wt% or more, it remains in the matrix and degrades hot workability of the matrix. Thus, the content is preferably limited to 0.3 wt% or less.

상기한 조성 이외에 나머지는 Fe 및 기타 불가피한 불순물로 조성된다.In addition to the above compositions, the remainder is composed of Fe and other unavoidable impurities.

[열처리방법][Heat treatment method]

본 발명에서는 상기와 같이 조성되는 합금을 대형 잉곳의 전체에 걸쳐 균일한 온도를 확보하기 위하여 먼저 1000-1100℃에서 일정시간동안 예열 처리한다. 이어서 조대한 Mo 고용체 석출물의 완전한 재용해를 이루기 위하여 1250-1300℃에서 1차 균질화 처리를 하고 1100-1150℃에서 2차 균질화 처리를 함으로써 인바 합금 주조재에 내재된 조대한 석출물을 제거하고 이어서 강도향상에 효과적인 탄화물을 효과적으로 분포시키는 열처리를 행하는 것을 특징으로 한다.In the present invention, the alloy prepared as described above is first preheated for a predetermined time at 1000-1100 ℃ in order to ensure a uniform temperature throughout the large ingot. Subsequently, the first homogenization treatment at 1250-1300 ° C. and the second homogenization treatment at 1100-1150 ° C. in order to achieve complete redissolution of the coarse Mo solid solution precipitate are performed. A heat treatment for effectively distributing carbides effective for improvement is performed.

상기 균질화 처리 온도가 1250-1300℃ 구간에서 1차 균질화 처리하는 이유는 1250℃ 이하에서는 주조 시 생성된 조대한 Mo 고용체 석출물을 재용해시키기 위해서는 많은 유지시간이 필요하여 현실적으로 적용이 어렵고, 1300℃를 초과하는 것은 현장적용이 어려울 뿐더러 강도 향상에 효과적인 탄화물까지 재용해된다는 문제점이 있기 때문이다. The reason for the first homogenization treatment in the homogenization treatment temperature range is 1250-1300 ° C. is less than 1250 ° C., in order to re-dissolve the coarse Mo solid solution precipitate produced during casting, it is difficult to apply practically, and 1300 ° C. This is because it is difficult to apply in the field and re-dissolves even carbides effective for improving strength.

그리고 2차 균질화 처리온도가 1100-1150℃ 구간인 이유는 1100℃ 미만이면 열간 선재압연 또는 단조 시 온도강하로 인하여 롤이나 프레스 해머의 부하가 증가되어 기계의 부담이 가중되고, 1150℃를 초과하면 강도향상에 도움이 되는 탄화물의 핵 생성이 어려워 추후 강도를 확보하는데 문제점을 야기하므로, 상기 열간 가공 온도는 1100~1150℃로 제한하는 것이 바람직하다.The second homogenization temperature is 1100-1150 ℃. If the temperature is less than 1100 ℃, the load of the roll or press hammer increases due to the temperature drop during hot wire rolling or forging. Since it is difficult to nucleate the carbide to help improve the strength to cause a problem to secure the strength in the future, the hot working temperature is preferably limited to 1100 ~ 1150 ℃.

이하, 본 발명을 실시예를 통하여 설명한다.Hereinafter, the present invention will be described through examples.

(실시예1)Example 1

하기 표 1과 같은 조성을 갖는 3가지 종류의 강을 진공용해로를 이용하여 50kg의 잉곳으로 제조하였다. 이 제조된 잉곳을 열처리로에서 1000~1100℃로 2시간 동안 예열 처리한 후에 균질화 처리를 위하여 1130, 1200, 1280℃에서 3-9시간동안 유지하였다. Three kinds of steels having the composition as shown in Table 1 below were prepared in a 50 kg ingot using a vacuum melting furnace. The prepared ingot was preheated at 1000 to 1100 ° C. for 2 hours in a heat treatment furnace, and then maintained at 1130, 1200, and 1280 ° C. for 3-9 hours for homogenization.

도1은 상기 잉곳재를 이용하여 예열처리 후에 각각 1130, 1230, 1280℃에서 9시간동안 균질화 처리한 경우의 조대 석출물의 상태를 나타낸 사진이다. 도1에서 볼 수 있듯이 1130℃에서 균질화 처리한 경우 많은 양의 석출물이 미분해된 상태로 잔류하고 있는 반면, 1280℃에서 균질화 처리한 경우에는 거의 모든 석출물이 재용해 되어 없어진 것을 관찰할 수 있다. 1 is a photograph showing the state of coarse precipitates when the homogenization treatment for 1 hour at 1130, 1230, 1280 ℃ after preheating using the ingot material. As shown in FIG. 1, when the homogenization treatment is performed at 1130 ° C., a large amount of precipitates remain undecomposed, whereas when the homogenization treatment is performed at 1280 ° C., almost all precipitates are dissolved again and disappeared.

<표1><Table 1>

구분division 성분(중량%)Ingredient (% by weight) CC SiSi MnMn CrCr NiNi CoCo MoMo VV NbNb FeFe 합금1Alloy 1 0.320.32 0.150.15 0.280.28 0.810.81 36.236.2 2.152.15 2.282.28 0.120.12 0.090.09 나머지Remainder 합금2Alloy 2 0.280.28 0.260.26 0.810.81 1.101.10 33.833.8 1.431.43 4.144.14 0.320.32 0.260.26 나머지Remainder 합금3Alloy 3 0.160.16 0.310.31 1.201.20 1.851.85 37.737.7 4.164.16 3.763.76 0.410.41 0.180.18 나머지Remainder

(실시예2)Example 2

상기표1과 같은 조성을 갖는 3종류의 강을 진공용해로를 이용하여 50kg의 잉곳으로 제조하였다. 이 제조된 잉곳을 열처리로에서 1000~1100℃로 2시간 동안 예열 처리한 후에 균질화 처리를 위하여 1130, 1200, 1280℃에서 3-9시간동안 유지하였다.Three kinds of steels having the composition as shown in Table 1 above were prepared in a 50 kg ingot using a vacuum melting furnace. The prepared ingot was preheated at 1000 to 1100 ° C. for 2 hours in a heat treatment furnace, and then maintained at 1130, 1200, and 1280 ° C. for 3-9 hours for homogenization.

<표2><Table 2>

균질화처리 온도(℃)Homogenization temperature (℃) 기계적 성질Mechanical properties 항복강도(MPa)Yield strength (MPa) 인장강도(MPa)Tensile Strength (MPa) 연신율(%)Elongation (%) 11301130 424424 10711071 3939 12301230 425425 10581058 4040 12801280 422422 10621062 4343

상표 표2는 상기 잉곳재를 이용하여 균질화 처리 후에 1100~1150℃의 온도범위에서 열간압연 한 판재의 상온 인장시험 결과를 정리한 것이다. 도1에서 확인한 바와 같이 1280℃에서 균질화 처리하게 되면 조대한 석출물이 거의 없어진 후에도 1000MPa 이상의 높은 강도를 얻을 수 있음은 물론 연신율은 오히려 약간 향상된 결과를 얻을 수 있었다. 이는 본 발명에서 제시한 1250~1300℃에서 1차 균질화 처리 후 열간 가공온도인 1100~1150℃에서 2차 균질화 처리하는 공정이 조대한 석출물을 거의 완전히 제거하면서 강도는 기존과 동등한 수준을 얻을 수 있다는 것을 확인시켜 주는 결과이다.Table 2 summarizes the results of room temperature tensile test of the hot-rolled sheet in the temperature range of 1100 ~ 1150 ℃ after the homogenization treatment using the ingot material. As shown in FIG. 1, when the homogenization treatment was performed at 1280 ° C., the high strength of 1000 MPa or more was obtained even after the coarse precipitate was almost disappeared, and the elongation was slightly improved. This is because the first homogenization treatment at 1250 ~ 1300 ℃ presented in the present invention, the second homogenization treatment at 1100 ~ 1150 ℃, which is a hot working temperature, almost completely removes coarse precipitates, and the strength can be obtained at the same level as before. This confirms the result.

상술한 바와 같이, 본 발명은 고강도 송전선용 인바 합금 잉곳재에 내재된 조대한 Mo 고용체 석출물을 효과적으로 분해시킴으로써 건전한 미세조직을 가진 선재의 생산을 용이하게 하고 인바 합금 제품의 품질을 향상시킬 수 있는 효과가 있다.As described above, the present invention is to effectively decompose the coarse Mo solid solution precipitate in the invar alloy ingot material for high-strength transmission line to facilitate the production of wire rods with a healthy microstructure and to improve the quality of the Invar alloy products There is.

Claims (2)

중량%로, C: 0.15~0.45%, Si: 0.1~0.35%, Mn: 1.5% 이하, Cr: 0.3~2.0%, Ni: 33~38%, Co: 5%이하, Mo: 0.5~4.5%, V: 0.1~0.5%, Nb: 0.3% 이하, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 인바 합금을 이용하여 잉곳을 만들고, 이 잉곳을 1250-1300℃에서 3~9시간 동안 1차 균질화 처리하고 1100-1150℃에서 3~9시간 동안 2차 균질화 처리하는 2단 균질화 처리를 하는 것을 특징으로 하는 고강도 인바 합금의 열처리 방법.By weight%, C: 0.15-0.45%, Si: 0.1-0.35%, Mn: 1.5% or less, Cr: 0.3-2.0%, Ni: 33-38%, Co: 5% or less, Mo: 0.5-4.5% , V: 0.1-0.5%, Nb: 0.3% or less, the ingot is made of an Invar alloy composed of the remaining Fe and other unavoidable impurities, and the ingot is first homogenized at 1250-1300 ° C. for 3-9 hours. Heat treatment method of high strength Invar alloy, characterized in that the two-stage homogenization treatment to secondary homogenization treatment for 3 to 9 hours at 1100-1150 ℃. 제1항에 있어서, 상기 잉곳재의 2단 균질화 처리전에 1000-1100℃에서 2시간 동안 예열처리를 하는 것을 특징으로 하는 고강도 인바 합금의 열처리 방법.The method of claim 1, wherein the preheating treatment is performed at 1000-1100 ° C. for 2 hours before the two-step homogenization of the ingot material.
KR1020030096355A 2003-12-24 2003-12-24 Method for heat treatment of high strength invar alloy KR100548728B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030096355A KR100548728B1 (en) 2003-12-24 2003-12-24 Method for heat treatment of high strength invar alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030096355A KR100548728B1 (en) 2003-12-24 2003-12-24 Method for heat treatment of high strength invar alloy

Publications (2)

Publication Number Publication Date
KR20050064764A KR20050064764A (en) 2005-06-29
KR100548728B1 true KR100548728B1 (en) 2006-02-02

Family

ID=37256324

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030096355A KR100548728B1 (en) 2003-12-24 2003-12-24 Method for heat treatment of high strength invar alloy

Country Status (1)

Country Link
KR (1) KR100548728B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200042822A (en) 2018-10-16 2020-04-24 (주)피엔티 Apparatus for heat treatment of invar alloy web

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100884539B1 (en) * 2008-02-18 2009-02-19 주식회사 백철금속 Invar alloy wire with improving turning characteristics, high strength and low thermalexpansion and method for production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200042822A (en) 2018-10-16 2020-04-24 (주)피엔티 Apparatus for heat treatment of invar alloy web

Also Published As

Publication number Publication date
KR20050064764A (en) 2005-06-29

Similar Documents

Publication Publication Date Title
CN103221562B (en) There is high strength steel material of ultralow-temperature flexibility of excellence and preparation method thereof
KR101322170B1 (en) Steel with high ductility
CN103320717A (en) Ultra high-strength high titanium steel plate with yield strength of 960 MPa and preparing method of same
DE69702428T2 (en) High-strength and high-tough heat-resistant cast steel
EP3504349A1 (en) Method for producing a high-strength steel strip with improved properties for further processing, and a steel strip of this type
CN112195402B (en) Precipitation-strengthened high-strength and high-toughness medium manganese steel plate and preparation method thereof
DE102016117508B4 (en) Process for producing a flat steel product from a medium manganese steel and such a flat steel product
WO2019124671A1 (en) Low-temperature steel material having excellent toughness in welding portion thereof and manufacturing method therefor
DE1483218B2 (en) Process for producing a heat-resistant, ferritic Cr-Mo-V steel with high creep strength and improved creep elongation
KR20090132796A (en) Method for manufacturing high-strength deformed bar with low yield ratio
EP1069202B1 (en) A paramagnetic, corrosion resistant austenitic steel with high elasticity, strength and toughness and a process for its manufacture
KR100548728B1 (en) Method for heat treatment of high strength invar alloy
KR20100046995A (en) High-strength corrosion resistance steel, and method for producing the same
DE102016115618A1 (en) Process for producing a high-strength steel strip with improved properties during further processing and such a steel strip
KR101988759B1 (en) Wire rod having corrosion resistance and impact toughness for fastening, fastening parts using the same, and manufacturing method tehreof
KR100884539B1 (en) Invar alloy wire with improving turning characteristics, high strength and low thermalexpansion and method for production thereof
KR100548729B1 (en) High strength invar alloy
KR101957601B1 (en) Cold rolled steel sheet and method of manufacturing the same
CN114164373B (en) Nb microalloying duplex stainless steel and preparation method thereof
WO2020111705A1 (en) High strength hot rolled steel sheet having excellent elongation and method for manufacturing same
WO2019031681A1 (en) Hot rolled steel sheet having excellent strength and elongation, and manufacturing method
TWI760241B (en) Multi-performance medium-entropy lightweight steel and method of fabricating the same
KR20010060763A (en) Method of manufacturing hot rolling steel sheet having high strength for linepipe
KR20100087481A (en) Steel sheet having high strength and toughness, and method for producing the same
KR20000042008A (en) Method of manufacturing molten metal with ferrite structure

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130125

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140121

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150120

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160125

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170125

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180125

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20200120

Year of fee payment: 15