KR100548729B1 - High strength invar alloy - Google Patents

High strength invar alloy Download PDF

Info

Publication number
KR100548729B1
KR100548729B1 KR1020030096356A KR20030096356A KR100548729B1 KR 100548729 B1 KR100548729 B1 KR 100548729B1 KR 1020030096356 A KR1020030096356 A KR 1020030096356A KR 20030096356 A KR20030096356 A KR 20030096356A KR 100548729 B1 KR100548729 B1 KR 100548729B1
Authority
KR
South Korea
Prior art keywords
less
weight
invar alloy
strength
high strength
Prior art date
Application number
KR1020030096356A
Other languages
Korean (ko)
Other versions
KR20050064765A (en
Inventor
성환진
하태권
김경호
Original Assignee
주식회사 포스코
창원특수강주식회사
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 창원특수강주식회사, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR1020030096356A priority Critical patent/KR100548729B1/en
Publication of KR20050064765A publication Critical patent/KR20050064765A/en
Application granted granted Critical
Publication of KR100548729B1 publication Critical patent/KR100548729B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 송전선용으로 적합한 고강도 인바 합금에 관한 것으로, 중량%로, C: 0.15~0.45%, Si: 0.1~0.35%, Mn: 1.5% 이하, Cr: 0.3~2.0%, Ni: 33~38%, Co: 5%이하, Mo: 0.5~4.5%, V: 0.1~0.5%, Nb: 0.3% 이하, Al: 1~5% 바람직하게는 2~4%, 나머지는 Fe 및 기타 불가피한 불순물로 조성되는 것을 특징으로 하는 고강도 인바 합금을 제공한다.The present invention relates to a high strength invar alloy suitable for power transmission lines, in weight%, C: 0.15-0.45%, Si: 0.1-0.35%, Mn: 1.5% or less, Cr: 0.3-2.0%, Ni: 33-38 %, Co: 5% or less, Mo: 0.5 to 4.5%, V: 0.1 to 0.5%, Nb: 0.3% or less, Al: 1 to 5% preferably 2 to 4%, the remainder as Fe and other unavoidable impurities It provides a high strength Invar alloy, characterized in that the composition.

Description

고강도 인바 합금{HIGH STRENGTH INVAR ALLOY}High Strength Invar Alloy {HIGH STRENGTH INVAR ALLOY}

본 발명은 고강도 송전선의 심선 용으로 사용되는 인바 합금에 관한 것으로서, 보다 상세하게는 이러한 인바 합금의 강도 향상에 관한 것이다.The present invention relates to an Invar alloy used for the core wire of a high-strength transmission line, and more particularly, to the strength improvement of such an Invar alloy.

인바 합금은 타 강종에 비해 열팽창 계수가 낮아 정밀 계측기기, 서모스태틱 바이메탈(thermostatic bimetal), 칼라 TV의 쇄도우마스크(shadow mask) 등 전자 부품용 소재로 널리 사용되어 왔다. 인바 합금의 발명 이후 지난 100여년 동안 기본 조성에 Co, Mo, W, Ti, Al, Cr, C 등을 첨가하여 온도변화에 따른 탄성변화를 보상한 인바(Elinvar), 낮은 열팽창 특성과 석출에 의한 강화 효과를 함께 실현시킨 인바(Metelinvar), 기존 인바 합금의 문제점 중의 하나인 템포럴/디멘져널 불안정성(temporal/dimensional instability)를 상쇄시킨 인바(Fixinvar) 등을 비롯한 다양한 종류의 인바 합금들이 개발되어 사용되고 있다.Invar alloys have a lower coefficient of thermal expansion than other steels and have been widely used in electronic components such as precision measuring instruments, thermostatic bimetals, and shadow masks of color TVs. Since the invention of Invar alloy, Colin, Mo, W, Ti, Al, Cr, C, etc. have been added to the basic composition for the last 100 years to compensate for the elastic change due to temperature changes. Various types of Invar alloys have been developed and used, including Intel (Metelinvar), which combines reinforcement effects, and Fixinvar, which offsets the temporal / dimensional instability, one of the problems of existing Invar alloys. have.

최근 고도의 경제성장에 따라 전력수요도 급증하고 있으며, 산업의 팽창에 의한 도시의 과밀화가 진행됨에 따라 대도시 근교의 전력수요가 급증하면서 매년 전력예비율의 감소로 인해 안정된 전력공급을 위한 송전량의 증가가 요구되고 있다. 송전량을 증가시키기 위해서는 신규 송전선로를 가설하기 위한 송전탑을 설 치해야 하는데, 이 경우 도시근교의 주택화에 의한 용지 난과 땅값 상승으로 과도한 설치비용이 소요되어 신규 송전선로의 추가설치는 어려운 실정이다. Recently, the demand for electricity is increasing rapidly due to the high economic growth, and the demand for power supply in suburban cities is increasing due to the overcrowding of cities due to industrial expansion. Is required. In order to increase the amount of transmission, it is necessary to install transmission towers for the construction of new transmission lines. In this case, it is difficult to add new transmission lines due to excessive installation cost due to land shortage and land price increase caused by the urbanization near the city. to be.

송전량 증량요구에 대한 대안으로 기존의 송전선로를 이용하여 송전량을 증가시키는 방법이 있으나, 기존 송전선로에 승압하여 송전량을 증가시킬 경우, 전선온도가 상승하여 열팽창에 의해 전선의 처짐(sagging) 정도가 증가되어 고압전류 통과 시 지상으로부터 안전에 필요한 높이를 확보할 수 없는 위험이 존재한다. 이러한 문제점 보완을 위해 선진국에서는 고압 송전선 보강재로 기존의 고탄소강재 대신 열팽창 계수가 작은(탄소강의 1/10수준) 인바계 합금(Invar, 36%Ni-Fe-Co) 선재를 사용한 ACIR(Aluminum Conductor Invar Reinforced) 송전선을 사용하여 기존 송전선로를 그대로 활용, 승압 송전을 실시하고 있다.As an alternative to the increase in power transmission requirements, there is a method of increasing power transmission using existing power transmission lines.However, when power is increased by boosting an existing power transmission line, the temperature of the wire increases and sagging of the wire due to thermal expansion. There is a risk that the height required for safety from ground level cannot be obtained when high voltage current passes. In developed countries, ACIR (Aluminum Conductor) using invar alloy (Invar, 36% Ni-Fe-Co) wire with low thermal expansion coefficient (1/10 of carbon steel) instead of high carbon steel is used in advanced countries. Invar Reinforced) Power transmission lines are used to carry out boosted power transmission by utilizing existing transmission lines.

그러므로 고강도 고압 송전선용 인바 합금은 열팽창 계수가 10-6수준으로 낮아야 하고, 강도는 열간 압연 상태에서 1000MPa이상으로 높아야 한다. 강도가 낮을 경우 선재의 직경을 늘려야 하고 이는 다시 선재의 하중을 증가시켜 송전탑에 많은 부하를 주게 되는 단점이 초래된다. 그리고 바람이 심하게 불 때 특히 태풍이 지나가게 되면 선재의 직경이 클수록 송전선에 큰 힘이 작용하게 되어 단선 등의 문제가 발생하게 된다. Therefore, the Invar alloy for high-strength high-voltage transmission lines should have a low coefficient of thermal expansion of 10 -6 and a high strength of 1000 MPa or more in the hot rolling state. If the strength is low, the diameter of the wire rod should be increased, which in turn increases the load of the wire rod, which causes a disadvantage of giving a large load to the transmission tower. And when the wind blows badly, especially when a typhoon passes, the larger the diameter of the wire rod, the greater the force acting on the transmission line, such as a disconnection.

따라서, 본 발명은 상기와 같은 종래기술의 문제점을 효과있게 해결할 수 있는 강도가 향상된 인바 합금을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide an Invar alloy with improved strength that can effectively solve the problems of the prior art as described above.

이하에서, 상기한 목적을 달성하기 위한 본 발명을 상세히 설명한다.Hereinafter, the present invention for achieving the above object will be described in detail.

본 발명은 중량%로, C: 0.15~0.45%, Si: 0.1~0.35%, Mn: 1.5% 이하, Cr: 0.3~2.0%, Ni: 33~38%, Co: 5%이하, Mo: 0.5~4.5%, V: 0.1~0.5%, Al: 1~5%, Nb: 0.3%이하, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 것을 특징으로 하는 인바 합금을 제공한다.In the present invention, by weight%, C: 0.15-0.45%, Si: 0.1-0.35%, Mn: 1.5% or less, Cr: 0.3-2.0%, Ni: 33-38%, Co: 5% or less, Mo: 0.5 ˜4.5%, V: 0.1-0.5%, Al: 1-5%, Nb: 0.3% or less, and provides an Invar alloy, which is composed of the remaining Fe and other unavoidable impurities.

본 발명의 인바 합금에 대한 바람직한 열처리 방법은, 상기와 같이 조성되는 합금을 대형 잉곳의 전체에 걸쳐 균일한 온도를 확보하기 위하여 1000-1100℃에서 일정시간동안 예열 처리하고, Mo고용체 석출물의 분해처리 시에 보다 빠른 속도의 재용해를 위해 1250-1300℃에서 1차 균질화 처리를 하고 1100-1150℃에서 2차 균질화 처리를 함으로써 인바 합금 주조재에 내재된 조대한 Mo고용체 석출물을 효과적으로 분해하고 이어서 가공경화에 의한 강화에 유익한 미세한 Mo2C 탄화물을 석출시키는 열처리를 하도록 한다.In the preferred heat treatment method for the Invar alloy of the present invention, the alloy prepared as described above is preheated for a predetermined time at 1000-1100 ℃ to ensure a uniform temperature over the entire large ingot, the decomposition treatment of Mo solid precipitate The first homogenization treatment at 1250-1300 ° C. and the second homogenization treatment at 1100-1150 ° C. for faster re-dissolution at Si, effectively decomposes the coarse Mo solids precipitate in the Invar alloy casting and then processes it. Heat treatment is performed to precipitate fine Mo2C carbides which are beneficial for hardening by hardening.

본 발명자들은 고압 송전선용 인바 합금 주조재를 사용하여 조대한 석출물을 효과적으로 제거하는 연구를 진행하던 중, 다음과 같은 사실을 확인하였다.The inventors of the present invention conducted the research to effectively remove coarse precipitates by using an invar alloy casting material for a high-voltage power transmission line, and confirmed the following facts.

(1) 1250-1300℃의 온도영역에서 2시간의 유지시간에서 조대한 석출물의 완전한 재용해가 일어난다는 점.(1) Complete redissolution of coarse precipitates occurs at a holding time of 2 hours in the temperature range of 1250-1300 ° C.

(2) 1100-1150℃ 의 온도영역에 장시간 유지하는 경우에도 조대한 석출물의 상당량이 잔존하며 강도는 1250-1300℃의 온도영역에서 유지한 경우에 비해 높게 나타나는 점.(2) Even when kept in the temperature range of 1100-1150 ° C for a long time, a considerable amount of coarse precipitates remain and the strength is higher than that maintained in the temperature range of 1250-1300 ° C.

따라서, 상기 2가지 사실에 주목하여 균질화 열처리 절차를 적절하게 행하면, 조대한 석출물의 완전한 분해와 동시에 강화효과를 함께 이룰 수 있다는 것을 알아내었다.Therefore, it was found that, with proper attention to the above two facts, the proper homogenization heat treatment procedure can achieve both the complete decomposition of the coarse precipitate and the strengthening effect at the same time.

본 발명의 인바 합금은 적합한 열처리에 의해 고압 송전선용 인바 합금 잉곳재에서 내재된 조대한 석출물의 완전한 분해와 동시에 강화효과를 함께 이룰 수 있는 특징이 있는 것으로, 이하 적용대상 합금의 조성한정 범위와 이에 대한 적합한 열처리 방법에 대해서 설명한다.Invar alloy of the present invention is characterized by being able to achieve both the complete decomposition of the coarse precipitate inherent in the invar alloy ingot material for high-voltage transmission line by a suitable heat treatment, and at the same time, the strengthening effect, the composition limitation range of the alloy to be applied to A suitable heat treatment method will be described.

[본 발명 합금의 조성한정 범위][Composition Limitation Range of the Alloy of the Invention]

C: 0.15~0.45중량%C: 0.15 to 0.45 wt%

인바 합금에서의 탄소 함량은 탄화물 형성원소인 Mo, V, Nb 및 Cr의 함량에 의해 결정되는 인자로서, 상기 V, Cr, Mo, Nb등과 같은 여러 가지 탄화물 형성원소와 결합하여 다양한 탄화물을 형성하는데 필요한 기본 성분으로, 0.15중량% 미만 첨가되면 충분한 양의 탄화물 형성이 어렵고, 0.45중량%를 초과하여 첨가되면 열팽창 특성을 저하시키므로, 그 함량을 0.15~0.45중량%로 제한하는 것이 바람직하다.The carbon content of the Invar alloy is a factor determined by the contents of the carbide forming elements Mo, V, Nb and Cr, and forms various carbides by combining with various carbide forming elements such as V, Cr, Mo, and Nb. As a necessary basic component, the addition of less than 0.15% by weight is difficult to form a sufficient amount of carbide, and when added in excess of 0.45% by weight lowers the thermal expansion characteristics, it is preferable to limit the content to 0.15 to 0.45% by weight.

Si: 0.1~0.35중량%Si: 0.1 ~ 0.35 wt%

상기 Si은 탈산제로 첨가되는 성분으로, 탄화물 석출을 보다 증대시켜 경도 향상에도 기여한다. 상기 Si의 함량이 0.1중량% 미만이면 Si 고유의 탈산효과가 거의 없으며, 0.35중량%를 초과하여 첨가되면 고온측의 열팽창 계수를 증가시키므로, 그 함량을 0.1~0.35중량%로 제한하는 것이 바람직하다.Said Si is a component added as a deoxidizer and contributes to the improvement of hardness by further increasing carbide precipitation. If the content of Si is less than 0.1% by weight, there is almost no inherent deoxidation effect of Si, and if it is added in excess of 0.35% by weight, the coefficient of thermal expansion on the high temperature side is increased, so that the content is preferably limited to 0.1 to 0.35% by weight. .

Mn: 1.5중량% 이하Mn: 1.5 wt% or less

상기 Mn은 오스테나이트 안정화 원소로, 1.5중량%를 초과하여 첨가되면 열팽창 계수 증가 천이온도를 낮추기 때문에, 그 함량을 1.5중량% 이하로 제한하는 것이 바람직하다.The Mn is an austenite stabilizing element, and when added in excess of 1.5% by weight, the thermal expansion coefficient increase transition temperature is lowered, it is preferable to limit the content to 1.5% by weight or less.

Cr: 0.3~2.0중량%Cr: 0.3-2.0 wt%

상기 Cr은 Fe-Ni계 합금에서 강도향상 효과가 매우 큰 성분으로, 0.3중량% 미만 첨가되면 강화효과가 작고, 2.0중량%를 초과하여 첨가되면 열팽창 특성을 저하고 시키기 때문에, 그 함량을 0.3~2.0중량%로 제한하는 것이 바람직하다.The Cr is a component having a very high strength improvement effect in Fe-Ni-based alloys, and when the content is less than 0.3% by weight, the reinforcing effect is small. It is preferable to limit to 2.0% by weight.

Ni: 33~38중량%Ni: 33-38 wt%

상기 Ni은 36중량%에서 최저 열팽창 계수를 갖는다. 33중량% 미만 또는 38중량% 이상 첨가되면 인바 합금이 송전선 용으로 사용하기 어려우므로, 그 함량을 33~38중량%로 제한하는 것이 바람직하다.Ni has the lowest coefficient of thermal expansion at 36% by weight. If less than 33% by weight or more than 38% by weight is added to the Invar alloy is difficult to use for the transmission line, it is preferable to limit the content to 33 to 38% by weight.

Co: 5.0중량%이하 Co: 5.0 wt% or less

상기 Co는 Ni의 일부를 치환시켜 열팽창 계수 증가 천이온도를 변화시키지 않고 열팽창 계수를 낮추는 효과가 있다. 그러나 5.0중량%를 초과하면 그 효과가 포화되고 가격이 매우 비싸므로, 그 함량을 5.0중량% 이하로 제한하는 것이 바람직하다.Co has the effect of lowering the coefficient of thermal expansion without changing the thermal expansion coefficient increase transition temperature by substituting a part of Ni. However, if it exceeds 5.0% by weight, the effect is saturated and the price is very expensive, so it is preferable to limit the content to 5.0% by weight or less.

Mo: 0.5~4.5중량%Mo: 0.5-4.5 wt%

상기 Mo는 M2C형태의 탄화물 형성을 위해 첨가되는 성분으로, Fe-Ni계 합금을 강화하는 효과가 있지만, 0.5중량% 미만 첨가되면 효과가 적고, 4.5중량%를 초과하여 첨가되면 포화되어 불필요하게 원료비를 높이므로, 그 함량을 0.5~4.5중량% 로 제한하는 것이 바람직하다.The Mo is a component added to form a carbide of the M2C type, but the effect of strengthening the Fe-Ni-based alloy, but less than 0.5% by weight is less effective, when added in excess of 4.5% by weight is unnecessary raw material costs Since to increase, it is preferable to limit the content to 0.5 to 4.5% by weight.

V: 0.1~0.5중량%V: 0.1-0.5 wt%

상기 V은 MC형태의 탄화물 형성을 위해 첨가되며, 0.1중량% 미만 첨가되면 충분한 탄화물의 확보가 어렵고, 0.5중량%를 초과하여 첨가되면 기지에 잔류하여 기지의 열간 가공성을 떨어뜨리므로, 그 함량을 0.1~0.5중량%로 제한하는 것이 바람직하다.The V is added for the formation of MC-type carbide, if less than 0.1% by weight it is difficult to secure sufficient carbide, when it is added more than 0.5% by weight is left in the matrix to reduce the hot workability of the matrix, It is preferable to limit it to 0.1-0.5 weight%.

Al: 1.0~5.0 중량% Al: 1.0-5.0 wt%

상기 Al은 Ni 과 결합하여 금속간 화합물을 형성하여 강도를 향상시키는 효과가 있다. 1 중량% 미만은 그 효과가 미미하고 5.0중량%이상 첨가시키면 연신율이 저하되는 단점이 있어 그 함량을 1.0~5.0중량%로 제한하는 것이 바람직하다.The Al combines with Ni to form an intermetallic compound, thereby improving the strength. Less than 1% by weight of the effect is insignificant and the addition of more than 5.0% by weight has a disadvantage in that the elongation is lowered, the content is preferably limited to 1.0 to 5.0% by weight.

Nb: 0.3중량% 이하Nb: 0.3 wt% or less

상기 Nb은 V과 마찬가지로 MC형태의 탄화물 형성을 위해 첨가되며, 0.1중량% 이상 첨가되면 기지에 잔류하여 기지의 열간 가공성을 떨어뜨리므로, 그 함량을 0.3중량% 이하로 제한하는 것이 바람직하다.Nb is added to form MC in the same manner as V, and when added in an amount of 0.1 wt% or more, it remains in the matrix and degrades hot workability of the matrix. Thus, the content is preferably limited to 0.3 wt% or less.

상기한 조성 이외에 나머지는 Fe 및 기타 불가피한 불순물로 조성된다.In addition to the above compositions, the remainder is composed of Fe and other unavoidable impurities.

[발명 합금의 열처리 방법][Heat treatment method of invention alloy]

상기와 같이 조성되는 합금을 대형 잉곳의 전체에 걸쳐 균일한 온도를 확보하기 위하여 먼저 1000-1100℃에서 일정시간동안 예열 처리한다. 이어서 조대한 Mo 고용체 석출물의 완전한 재용해를 이루기 위하여 1250-1300℃에서 1차 균질화 처리를 하고 1100-1150℃에서 2차 균질화 처리를 함으로써 인바 합금 주조재에 내재된 조대한 석출물을 제거하고 이어서 강도향상에 효과적인 탄화물을 효과적으로 분포시킬 수 있다.The alloy formed as described above is first preheated for a predetermined time at 1000-1100 ° C. in order to ensure a uniform temperature throughout the large ingot. Subsequently, the first homogenization treatment at 1250-1300 ° C. and the second homogenization treatment at 1100-1150 ° C. in order to achieve complete redissolution of the coarse Mo solid solution precipitate are performed. Effective carbide can be effectively distributed.

상기 균질화 처리 온도가 1250-1300℃ 구간에서 1차 균질화 처리하는 이유는 1250℃ 이하에서는 주조 시 생성된 조대한 Mo 고용체 석출물을 재용해 시키기 위해서는 많은 유지시간이 필요하여 현실적으로 적용이 어렵고, 1300℃를 초과하는 것은 현장적용이 어려울 뿐더러 강도 향상에 효과적인 탄화물까지 재용해된다는 문제점이 있기 때문이다. The reason for the first homogenization treatment in the homogenization treatment temperature range is 1250-1300 ° C. is less than 1250 ° C., in order to re-dissolve the coarse Mo solid solution precipitate produced during casting, it is difficult to apply practically, and 1300 ° C. This is because it is difficult to apply in the field and re-dissolves even carbides effective for improving strength.

그리고 2차 균질화 처리온도가 1100-1150℃ 구간인 이유는 1100℃ 미만이면 열간 선재압연 또는 단조 시 온도강하로 인하여 롤이나 프레스 해머의 부하가 증가되어 기계의 부담이 가중되고, 1150℃를 초과하면 강도향상에 도움이 되는 탄화물의 핵 생성이 어려워 추후 강도를 확보하는데 문제점을 야기하므로, 상기 열간 가공 온도는 1100~1150℃로 제한하는 것이 바람직하다.The second homogenization temperature is 1100-1150 ℃. If the temperature is less than 1100 ℃, the load of the roll or press hammer increases due to the temperature drop during hot wire rolling or forging. Since it is difficult to nucleate the carbide to help improve the strength to cause a problem to secure the strength in the future, the hot working temperature is preferably limited to 1100 ~ 1150 ℃.

이하, 본 발명을 실시예를 통하여 설명한다.Hereinafter, the present invention will be described through examples.

(실시예)(Example)

하기 표 1에 비교재와 개발재의 조성을 나타내었다. 상기 제조된 잉곳을 열처리로에서 1000~1100℃로 2시간 동안 예열 처리한 후에 균질화 처리를 위하여 1130, 1200, 1280℃에서 3-9시간동안 유지하였다. Table 1 shows the composition of the comparative and development materials. The prepared ingot was preheated at 1000 to 1100 ° C. for 2 hours in a heat treatment furnace, and then maintained at 1130, 1200, and 1280 ° C. for 3-9 hours for homogenization.

표2는 열간 압연재의 인장 강도 특성을 나타낸 것으로 Al이 첨가된 개발재의 강도가 비교재에 비해 높음을 알 수 있다.Table 2 shows the tensile strength characteristics of the hot rolled material, and it can be seen that the strength of the Al-added development material is higher than that of the comparative material.

표 3에는 개발재 냉간압연 후의 인장 특성을 나타내었는데 인장강도가 최고 1676 MPa 까지 올라감을 볼 수 있다.Table 3 shows the tensile properties after cold rolling of the development material, and the tensile strength can be increased up to 1676 MPa.

<표1> 개발재와 비교재의 조성<Table 1> Composition of Development and Comparative Materials

구분division NiNi MoMo CoCo CrCr CC MnMn SiSi NbNb VV CuCu AlAl [P][P] [S][S] [N][N] [O][O] 비 교 재Comparison H01H01 3636 2.82.8 22 0.80.8 0.320.32 0.220.22 0.150.15 0.060.06 0.110.11 00 -- -5-5 -5-5 -20-20 -20-20 H02H02 3636 2.82.8 22 0.80.8 0.320.32 0.220.22 0.150.15 0.060.06 0.110.11 0.50.5 -- -5-5 -5-5 -20-20 -20-20 H03H03 3636 2.82.8 22 0.80.8 0.320.32 0.220.22 0.150.15 0.060.06 0.110.11 1One -- -5-5 -5-5 -20-20 -20-20 H04H04 3636 2.82.8 22 0.80.8 0.250.25 0.220.22 0.150.15 0.060.06 0.110.11 00 -- -5-5 -5-5 -20-20 -20-20 H05H05 3636 2.82.8 22 0.80.8 0.40.4 0.220.22 0.150.15 0.060.06 0.110.11 00 -- -5-5 -5-5 -20-20 -20-20 H06H06 3434 2.82.8 22 0.80.8 0.320.32 0.220.22 0.150.15 0.060.06 0.110.11 00 -- -5-5 -5-5 -20-20 -20-20 H07H07 3434 2.82.8 22 0.80.8 0.320.32 0.220.22 0.150.15 0.060.06 0.110.11 0.50.5 -- -5-5 -5-5 -20-20 -20-20 H08H08 3434 2.82.8 22 0.80.8 0.320.32 0.220.22 0.150.15 0.060.06 0.110.11 1One -- -5-5 -5-5 -20-20 -20-20 H09H09 3636 2.82.8 22 0.80.8 0.320.32 0.220.22 0.150.15 0.030.03 0.110.11 00 -- -5-5 -5-5 -20-20 -20-20 H10H10 3636 2.82.8 22 0.80.8 0.320.32 0.220.22 0.150.15 0.10.1 0.110.11 00 -- -5-5 -5-5 -20-20 -20-20 개 발 재Dog paw HA1HA1 3636 2.82.8 22 0.80.8 0.320.32 0.220.22 0.150.15 0.060.06 0.110.11 0.50.5 1One -- -- -- -- HA2HA2 3636 2.82.8 22 0.80.8 0.320.32 0.220.22 0.150.15 0.060.06 0.110.11 0.50.5 33 -- -- -- -- YA3YA3 3636 2.82.8 22 0.80.8 0.320.32 0.220.22 0.150.15 0.060.06 0.110.11 0.50.5 55 -- -- -- --

<표2> 비교재와 개발재를 사용한 열간 압연 판재의 기계적 특성<Table 2> Mechanical Properties of Hot Rolled Sheet Using Comparative and Development Materials

NoNo YSYS UTSUTS Elong.(%)Elong. (%) H01-1H01-1 413413 10571057 4242 H01-2H01-2 410410 10621062 4343 H01-3H01-3 429429 10851085 4343 H02-1H02-1 493493 10501050 3434 H02-2H02-2 460460 10541054 3737 H02-3H02-3 530530 10651065 3131 H03-1H03-1 475475 10451045 3434 H03-2H03-2 530530 10751075 3333 H03-3H03-3 476476 10511051 3434 H04-1H04-1 418418 978978 3939 H04-2H04-2 436436 976976 3737 H04-3H04-3 422422 977977 3939 H05-1H05-1 460460 11221122 4040 H05-2H05-2 460460 11221122 3838 H05-3H05-3 446446 11081108 3838 H06-1H06-1 483483 10491049 3434 H06-2H06-2 527527 10721072 3535 H06-3H06-3 486486 10751075 3535 H07-1H07-1 485485 10431043 3434 H07-2H07-2 505505 10761076 3636 H07-3H07-3 474474 10581058 3737 H08-1H08-1 452452 10541054 3838 H08-2H08-2 458458 10501050 3737 H08-3H08-3 458458 10461046 3838 H09-1H09-1 397397 10981098 4949 H09-2H09-2 385385 10831083 4646 H09-3H09-3 386386 10851085 4848 H10-1H10-1 471471 10751075 3737 H10-2H10-2 426426 10601060 4040 H10-3H10-3 428428 10661066 4040 A1-1A1-1 422422 10571057 5252 A1-2A1-2 412412 10561056 5151 A1-3A1-3 408408 10881088 5353 A2-1A2-1 458458 11901190 5353 A2-2A2-2 474474 11791179 5454 A2-3A2-3 456456 11851185 5656 A3-1A3-1 702702 12151215 2020 A3-2A3-2 707707 13701370 2929 A3-3A3-3 701701 12021202 2020

<표3> 냉간압연 후 인장 특성<Table 3> Tensile Properties after Cold Rolling

NoNo 냉간압하(%)Cold rolling pressure (%) YS(MPa)YS (MPa) UTS(MPa)UTS (MPa) Elong.(%)Elong. (%) HA1HA1 5050 437437 1254.31254.3 13.913.9 6767 1036.51036.5 1313.41313.4 10.410.4 7878 1132.51132.5 1367.91367.9 7.77.7 HA2HA2 5050 363.5363.5 1345.21345.2 1515 6767 10781078 1394.41394.4 9.39.3 7878 11381138 1427.71427.7 7.27.2 HA3HA3 5050 393.5393.5 1487.11487.1 9.99.9 6767 450450 1537.11537.1 7.77.7 7878 1223.51223.5 1676.31676.3 5.15.1 HC0HC0 5050 442442 1223.81223.8 16.216.2 6767 965965 1297.11297.1 11.211.2 7878 10771077 13531353 88

상술한 바와 같이, 본 발명의 인바 합금은 그 강도가 현저히 향상되어 고강도 송전선용으로 적합한 효과가 있다.As described above, the invar alloy of the present invention is remarkably improved in strength, and has an effect suitable for high strength transmission lines.

Claims (1)

송전선용 인바 합금에 있어서, 중량%로, C: 0.15~0.45%, Si: 0.1~0.35%, Mn: 1.5% 이하, Cr: 0.3~2.0%, Ni: 33~38%, Co: 5%이하, Mo: 0.5~4.5%, V: 0.1~0.5%, Nb: 0.3% 이하, Al: 1~5% 바람직하게는 2~4%, 나머지는 Fe 및 기타 불가피한 불순물로 조성되며,Invar alloy for power transmission lines, in weight%, C: 0.15 to 0.45%, Si: 0.1 to 0.35%, Mn: 1.5% or less, Cr: 0.3 to 2.0%, Ni: 33 to 38%, Co: 5% or less , Mo: 0.5-4.5%, V: 0.1-0.5%, Nb: 0.3% or less, Al: 1-5%, preferably 2-4%, the remainder is composed of Fe and other unavoidable impurities, 상기 인바 합금을 잉곳 상태에서 예열처리를 수행하고, 1250 ~ 1300℃에서 1차 균질화 처리와 1100 ~ 1150℃에서 2차 균질화 처리를 수행한 것 을 특징으로 하는 고강도 인바 합금. The invar alloy is subjected to a preheating treatment in the ingot state, a high-strength invar alloy characterized in that the first homogenization treatment at 1250 ~ 1300 ℃ and the second homogenization treatment at 1100 ~ 1150 ℃ .
KR1020030096356A 2003-12-24 2003-12-24 High strength invar alloy KR100548729B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030096356A KR100548729B1 (en) 2003-12-24 2003-12-24 High strength invar alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030096356A KR100548729B1 (en) 2003-12-24 2003-12-24 High strength invar alloy

Publications (2)

Publication Number Publication Date
KR20050064765A KR20050064765A (en) 2005-06-29
KR100548729B1 true KR100548729B1 (en) 2006-02-02

Family

ID=37256325

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030096356A KR100548729B1 (en) 2003-12-24 2003-12-24 High strength invar alloy

Country Status (1)

Country Link
KR (1) KR100548729B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104451207A (en) * 2014-11-14 2015-03-25 沈阳铸造研究所 Technical method for performing vacuum induction melting of 4J36 low-expansion alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104451207A (en) * 2014-11-14 2015-03-25 沈阳铸造研究所 Technical method for performing vacuum induction melting of 4J36 low-expansion alloy

Also Published As

Publication number Publication date
KR20050064765A (en) 2005-06-29

Similar Documents

Publication Publication Date Title
CN100447275C (en) High-strength invar alloy and its alloy wire rod production method
CN101994064A (en) Weathering steel with yield strength of 550MPa level and manufacturing method thereof
CN108893648B (en) Preparation method of yttrium-based heavy rare earth copper-nickel alloy
CN113969372B (en) Low-carbon anti-fatigue steel plate for wind power and preparation method
CN111676429A (en) Hot-rolled weather-resistant angle steel with good low-temperature toughness and production method thereof
CN114807765B (en) Invar alloy with high strength and low expansion coefficient and preparation method thereof
KR101091863B1 (en) Stainless steel having excellent high temperature strength and manufacturing method for the same
KR100910332B1 (en) Invar alloy wire excellent in strength and turning characteristics and method for production thereof
CN112760553A (en) Super austenitic heat-resistant steel, seamless pipe and manufacturing method thereof
CN104372246A (en) 400 MPa-grade tungsten-containing corrosion-resistant twisted steel and preparation method thereof
KR100548729B1 (en) High strength invar alloy
CN108950392B (en) Ultrahigh-ductility low-density steel and preparation method thereof
US5393358A (en) Method for producing abrasion-resistant steel having excellent surface property
KR20100046995A (en) High-strength corrosion resistance steel, and method for producing the same
US5403410A (en) Abrasion-resistant steel
CN101709426A (en) Economical weathering steel for transmission tower and preparation method thereof
US4008078A (en) Low-carbon rail steel
KR100548728B1 (en) Method for heat treatment of high strength invar alloy
EP4134466A1 (en) High-strength austenitic stainless steel with excellent productivity and cost reduction effect and method for producing same
KR100358939B1 (en) Method for manufacturing steel for construction with tensile strength of 58 kgf/mm¬2 class
CA2063329A1 (en) Abrasion-resistant steel
KR100884539B1 (en) Invar alloy wire with improving turning characteristics, high strength and low thermalexpansion and method for production thereof
KR20030055516A (en) Method of manufacturing high carbon wire rod having superior cold formability for bolt
JP3905332B2 (en) Steel for high strength bolts
TWI760241B (en) Multi-performance medium-entropy lightweight steel and method of fabricating the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130125

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140121

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150120

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160125

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170125

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180125

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20191203

Year of fee payment: 15