KR100528046B1 - Fabrication method for ultrafine cermet alloys with a homogeneous solid solution grain structure - Google Patents

Fabrication method for ultrafine cermet alloys with a homogeneous solid solution grain structure Download PDF

Info

Publication number
KR100528046B1
KR100528046B1 KR20030058941A KR20030058941A KR100528046B1 KR 100528046 B1 KR100528046 B1 KR 100528046B1 KR 20030058941 A KR20030058941 A KR 20030058941A KR 20030058941 A KR20030058941 A KR 20030058941A KR 100528046 B1 KR100528046 B1 KR 100528046B1
Authority
KR
South Korea
Prior art keywords
powder
cermet
solid solution
reaction vessel
ultrafine
Prior art date
Application number
KR20030058941A
Other languages
Korean (ko)
Other versions
KR20050021753A (en
Inventor
심재혁
박종구
조영환
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR20030058941A priority Critical patent/KR100528046B1/en
Priority to JP2003347486A priority patent/JP2005068547A/en
Priority to US10/681,009 priority patent/US7217390B2/en
Publication of KR20050021753A publication Critical patent/KR20050021753A/en
Application granted granted Critical
Publication of KR100528046B1 publication Critical patent/KR100528046B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/10Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on titanium carbide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1084Alloys containing non-metals by mechanical alloying (blending, milling)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Powder Metallurgy (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

본 발명은 초미세 결정립 서메트 제조방법에 관한 것으로서, 특히 탄화물 결정립 내부에 코어-림 구조가 없는 균일한 고용체 형태의 매우 미세한 복합탄화물 결정립을 갖는 TiC계 서메트를 제조하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ultrafine grained cermets, and more particularly, to a process for producing TiC-based cermets having very fine composite carbide grains in the form of a solid solution having no core-rim structure inside the carbide grains.

본 발명의 목적은 코어-림 구조를 갖지않으며, 성분면에서 균일한 미세조직을 가지고 서브마이크론 크기의 결정립을 갖는 TiC계 서메트의 제조 방법을 제공하는 것이다. 이러한 본 발명의 목적은 기계화학적 합성법(고에너지 볼밀링)에 의해 얻어진 Ti-TM(TM=전이금속) 복합탄화물과 Ni-Co 금속상이 공존하는 나노복합분말, (Ti,TM)C-(Co,Ni)을 일반적인 방법으로 소결함으로써 달성될 수 있다. It is an object of the present invention to provide a method for producing a TiC-based cermet that has no core-rim structure, has a uniform microstructure in terms of components, and has grains of submicron size. The object of the present invention is a nano-composite powder in which Ti-TM (TM = transition metal) composite carbide and Ni-Co metal phase obtained by mechanochemical synthesis (high energy ball milling) coexist, (Ti, TM) C- (Co , Ni) can be achieved by sintering in a general manner.

Description

균일한 고용체 입자구조를 갖는 초미세 결정립 서메트 제조 방법 {Fabrication method for ultrafine cermet alloys with a homogeneous solid solution grain structure}Fabrication method for ultrafine cermet alloys with a homogeneous solid solution grain structure

본 발명은 초미세 결정립 서메트(cermet) 제조방법에 관한 것으로서, 특히 탄화물 결정립 내부에 코어-림(core-rim) 구조가 없는 균일한 고용체 형태의 매우 미세한 복합탄화물 결정립을 갖는 탄화티타늄(TiC)계 서메트를 제조하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preparing ultrafine cermet, in particular titanium carbide having very fine composite carbide grains in the form of a solid solution having no core-rim structure inside the carbide grains. It relates to a method for producing a system cermet.

일반적으로 TiC계 서메트는 그 미세조직이 가지는 높은 경도와 높은 내마모성 특성으로 인하여 강과 주철 등의 마무리 가공에 필요한 절삭공구재료로 널리 사용되고 있다. In general, TiC-based cermets are widely used as cutting tool materials for finishing processing of steel and cast iron due to their high hardness and high wear resistance.

TiC계 서메트 소결체는 탄화물 결정립 내부에 TiC 또는 TiCN을 주성분으로 하는 영역(코어(core)) 및 상기 코어를 둘러싸고 있는 (Ti,TM)C 또는 (Ti,TM)(C,N)의 복합 탄화물 성분의 영역(림(rim))으로 구분되는 코어-림이라는 독특한 이중구조의 미세조직을 가지는 것으로 잘 알려져 있다(도 8 참조; Hans-Olof Andr n, "Microstructures of cemented carbides," Materials and Design, 22, 491-498(2002)). 또한 상기 코어-림 구조는 액상소결 과정중 전이금속(TM) 성분이 액상 Ni에 용해되었다가 TiC 또는 TiCN 입자 주위에 복합 탄화물의 형태로 TiC 또는 TiCN 입자 주위에 재석출하는 결정립 성장과정의 결과로 형성되거나(T. Yamamoto, A. Jaroenworaluck, Y. Ikuhara and T. Sakuma, "Nanoprobe analysis of core-rim structure of carbides in TiC-20 wt% Mo2C-20 wt% Ni cermet," Journal of Materials Research, 14, (1999) 4129-4131) 또는 열역학적으로 안정한 평형구조가 아니고 속도론적인 이유 때문에 형성된다고 알려져 있다(J.-H. Shim, C.-S. Oh and D.N. Lee, "A thermodynamic evaluation of the Ti-Mo-C system," Metallurgical and Materials Transactions B, 27B, (1996) 955-996).TiC-based cermet sintered body is a composite carbide of (Ti, TM) C or (Ti, TM) (C, N) surrounding the core with a core (core) containing TiC or TiCN as a main component inside the carbide grains It is well known to have a unique dual structured microstructure called core-rim divided into regions of constituents (rims) (see FIG. 8; Hans-Olof Andr n, "Microstructures of cemented carbides," Materials and Design, 22, 491-498 (2002)). In addition, the core-rim structure is a result of a grain growth process in which a transition metal (TM) component is dissolved in liquid Ni during liquid sintering and re-precipitates around TiC or TiCN particles in the form of a composite carbide around TiC or TiCN particles. T. Yamamoto, A. Jaroenworaluck, Y. Ikuhara and T. Sakuma, "Nanoprobe analysis of core-rim structure of carbides in TiC-20 wt% Mo 2 C-20 wt% Ni cermet," Journal of Materials Research , 14, (1999) 4129-4131), or thermodynamically stable equilibrium structures and are known to be formed for kinematic reasons (J.-H. Shim, C.-S. Oh and DN Lee, "A thermodynamic evaluation of the Ti-Mo-C system, "Metallurgical and Materials Transactions B, 27B, (1996) 955-996).

상기한 코어-림 구조를 갖는 TiC계 서메트는 조성이 허용하는 균일한 복합 탄화물의 물성을 나타내는 것이 아니라 이중구조의 탄화물 결정립으로부터 유래하는 물성을 나타내며, 소결체의 물성이 저하될 수 있다는 단점을 가지고 있다. 따라서, 성분면에서 균일한 미세조직을 갖는 서메트는 기존 서메트와는 다른 물성을 나타낼 가능성을 갖고 있다. 그러나, 아직까지 속도론적으로 결정되는 한계를 극복하고 코어-림 구조를 갖지않는 TiC계 서메트 제조 방법에 대해서는 보고되지 않았다.The TiC-based cermet having the core-rim structure does not exhibit the properties of uniform composite carbides allowed by the composition, but exhibits physical properties derived from the carbide grains of the dual structure, and has the disadvantage that the physical properties of the sintered body may be degraded. have. Therefore, the cermet having a uniform microstructure in terms of components has a possibility of exhibiting different physical properties from the existing cermet. However, no reports have been made on TiC-based cermet manufacturing methods that overcome the limitations determined kinetically and do not have a core-rim structure.

한편, 최근 절삭공구재료 개발에 있어서, 큰 흐름중의 하나는 탄화물 결정입자의 크기를 수 마이크로미터(micrometer(㎛))에서 마이크로미터 이하(submicrometer)의 크기로 만들어 경도와 인성을 크게 향상시키는 것인데, 현재까지 알려진 서브마이크론 결정립 절삭공구재료의 제조방법은 기상법이나 액상법으로 제조된 100 나노미터(nanometer(㎚)) 이하의 크기를 갖는 탄화물 분말을 소결하는 것이다. 그러나, 기상법이나 액상법은 탄화물 나노분말의 대량 제조에 부적당할 뿐만 아니라 이러한 방법에 의해 얻어진 나노분말은 대기중에 노출될 경우 쉽게 산화되는 문제를 갖고 있다. Meanwhile, in the development of cutting tool materials in recent years, one of the big flows is to greatly increase the hardness and toughness by making the size of carbide grains from several micrometers (μm) to submicrometers. [0003] A method for producing a submicron grain cutting tool material known to date is to sinter carbide powder having a size of 100 nanometers or less manufactured by a gas phase method or a liquid phase method. However, the gas phase method and the liquid phase method are not only inadequate for mass production of carbide nanopowders, but also have a problem that the nanopowders obtained by these methods are easily oxidized when exposed to the atmosphere.

이와 같은 문제점을 해결하기 위하여 안출된 본 발명은, 코어-림 구조를 갖지않는 TiC계 서메트 제조 방법을 제공하는데 목적이 있다.The present invention devised to solve such a problem is an object of the present invention to provide a TiC-based cermet manufacturing method does not have a core-rim structure.

본 발명의 다른 목적은 성분면에서 균일한 미세조직을 가지고 서브마이크론의 결정립 크기를 갖는 고경도의 TiC계 서메트 제조 방법을 제공하는 것이다.Another object of the present invention is to provide a high hardness TiC based cermet manufacturing method having a uniform microstructure in terms of components and having a grain size of submicron.

이러한 본 발명의 목적은 기계화학적 합성법(고에너지 볼밀링)에 의해 얻어진 Ti-TM 복합탄화물과 Ni-Co 금속상이 공존하는 나노복합분말, (Ti,TM)C-(Co,Ni)을 일반적인 방법(진공소결)으로 소결함으로써 달성될 수 있다. This object of the present invention is a general method of nano-composite powder (Ti, TM) C- (Co, Ni) in which the Ti-TM composite carbide and Ni-Co metal phase obtained by mechanochemical synthesis (high energy ball milling) coexist. By sintering (vacuum sintering).

본 발명에 따른 균일 고용체 입자구조를 갖는 초미세 결정립 서메트 제조 방법은 티타늄(Ti) 분말, 전이금속(TM) 분말, 탄소(C) 분말, 니켈(Ni) 분말 및 코발트(Co) 분말을 혼합하여 TiC 50∼90 중량%, TMxCy(x와 y는 정수) 5∼30 중량%, 니켈(Ni) 또는 코발트(Co) 또는 니켈(Ni)과 코발트(Co)의 혼합물 5∼30 중량%로 이루어진 혼합분말을 생성하는 단계와; 상기 혼합 분말을 소정 직경의 볼과 함께 반응용기에 투입하는 단계와; 상기 혼합 분말에 대하여 밀링강도는 5~50 G(G=중력가속도 9.8 m/s2)로 하고, 분당 회전수는 적어도 200 rpm으로 하는 고에너지 볼밀링을 수행함으로써 나노복합분말, (Ti,TM)C-(Ni,Co)을 생성하되, 상기 고에너지 볼밀링을 수행하는 동안에 비접촉식 적외선 온도계를 이용하여 반응용기 표면의 온도를 측정하는 단계와; 상기 생성된 나노복합분말을 성형 및 소결하는 단계;를 포함하는 것을 특징으로 한다.Ultrafine grained cermet manufacturing method having a uniform solid solution particle structure according to the present invention is mixed with titanium (Ti) powder, transition metal (TM) powder, carbon (C) powder, nickel (Ni) powder and cobalt (Co) powder 50 to 90% by weight of TiC, 5 to 30% by weight of TM x C y (x and y are integers), 5 to 30% by weight of nickel (Ni) or cobalt (Co) or a mixture of nickel (Ni) and cobalt (Co) Generating a mixed powder composed of%; Injecting the mixed powder into a reaction vessel together with a ball having a predetermined diameter; Milling intensity with respect to the mixed powder is 5 ~ 50 G (G = gravitational acceleration 9.8 m / s 2) in, and a nanocomposite powder by the number of revolutions per minute are performed for the high-energy ball milling of at least 200 rpm, (Ti, TM Generating C- (Ni, Co), and measuring the temperature of the reaction vessel surface using a non-contact infrared thermometer during the high energy ball milling; And forming and sintering the produced nanocomposite powder.

상기 티타늄(Ti) 분말, 전이금속(TM) 분말, 탄소(C) 분말, 니켈(Ni) 분말 및 코발트(Co) 분말은 순도 95% 이상이고, 입자크기가 1㎜ 이하이며, 상기 전이금속(TM) 분말은 몰리브데늄(Mo), 텅스텐(W), 니오븀(Nb), 바나늄(V), 크롬(Cr)으로 구성된 군으로부터의 1종이상의 금속을 포함한다. The titanium (Ti) powder, transition metal (TM) powder, carbon (C) powder, nickel (Ni) powder and cobalt (Co) powder have a purity of 95% or more, a particle size of 1 mm or less, and the transition metal ( TM) powder comprises at least one metal from the group consisting of molybdenum (Mo), tungsten (W), niobium (Nb), vananium (V), and chromium (Cr).

상기 반응용기와 볼의 재질은 공구강, 스테인레스강, 초경합금, 질화규소, 알루미나 또는 지르코니아 중의 어느 하나이다. The material of the reaction vessel and the ball is any one of tool steel, stainless steel, cemented carbide, silicon nitride, alumina or zirconia.

상기 볼의 직경은 5∼30㎜이고, 상기 반응용기에 투입되는 혼합분말과 볼의 비율이 중량비로 1:1∼1:100 범위이다.The diameter of the ball is 5 to 30mm, the ratio of the mixed powder and the ball to be added to the reaction vessel is 1: 1 to 1: 100 by weight ratio.

상기 고에너지 볼밀링을 수행하는 동안 비접촉식 적외선 온도계를 이용하여 반응용기 표면의 온도를 측정하는 단계를 더 포함하는데, 상기 반응용기 표면의 급격한 온도 상승이 측정되면 그 시점으로부터 1∼20시간 동안 고에너지 볼밀링을 지속한다. Measuring the temperature of the surface of the reaction vessel using a non-contact infrared thermometer during the high energy ball milling, if the rapid rise in temperature of the surface of the reaction vessel is measured for 1 to 20 hours from that point Continue ball milling.

상기 고에너지 볼밀링은 상기 반응용기에 아르곤(Ar) 가스를 충진한후 쉐이커밀, 진동밀, 유성밀 또는 어트리터밀을 이용하여 수행된다. 또한, 상기 소결은 10-2 torr 이하의 진공 또는 아르곤 분위기에서 1300∼1500℃의 온도로 1∼4시간 동안 수행된다.The high energy ball milling is performed using a shaker mill, a vibration mill, a planetary mill or an attritor mill after filling the reaction vessel with argon (Ar) gas. In addition, the sintering is carried out for 1 to 4 hours at a temperature of 1300 ~ 1500 ℃ in a vacuum or argon atmosphere of 10 -2 torr or less.

이와 같은 본 발명에 따른 균일 고용체 입자구조를 갖는 초미세 결정립 서메트 제조 방법을 더욱 상세히 설명하면 다음과 같다.Such a method for producing an ultrafine grain cermet having a uniform solid solution particle structure according to the present invention will be described in more detail as follows.

우선, 순도 95% 이상/입자 크기 1㎜ 이하의 티타늄(Ti) 분말, 순도 95% 이상/입자크기 1㎜ 이하의 몰리브데늄(Mo), 텅스텐(W), 니오븀(Nb), 바나늄(V), 크롬(Cr)과 같은 전이금속(TM) 분말, 순도 95% 이상/ 입자크기 1㎜ 이하의 탄소(C) 분말, 순도 95% 이상/입자크기 1㎜ 이하의 니켈(Ni) 분말 및 순도 95% 이상/입자크기 1㎜ 이하의 코발트(Co) 분말을 TiC가 50∼90 중량%, TMxCy(x, y는 정수)이 5∼30 중량%, 니켈(Ni) 또는 코발트(Co) 또는 니켈(Ni)과 코발트(Co)의 혼합물이 5∼30 중량%가 되도록 혼합한다. 여기서, x와 y는 전이금속(TM)의 종류에 따라 결정되며, 전이금속(TM)의 탄화물(TMxCy)은 한 종류 이상일 수 있다.First, titanium (Ti) powder having a purity of 95% or more / particle size of 1 mm or less, molybdenum (Mo), tungsten (W), niobium (Nb), and vanadium (95% or more of purity / particle size of 1 mm or less) V), transition metal (TM) powders such as chromium (Cr), carbon (C) powder with a purity of at least 95% / particle size of 1 mm or less, nickel (Ni) powder with a purity of 95% or more / particle size of 1 mm or less, and Cobalt (Co) powder having a purity of 95% or more and a particle size of 1 mm or less is 50 to 90% by weight of TiC, 5 to 30% by weight of TM x C y (x and y are integers), nickel (Ni) or cobalt ( Co) or a mixture of nickel (Ni) and cobalt (Co) is mixed to 5 to 30% by weight. Here, x and y are determined according to the type of transition metal (TM), the carbide (TM x C y ) of the transition metal (TM) may be one or more.

다음에, 상기 혼합분말을 직경 5∼30㎜의 볼과 함께 반응용기(jar)에 투입한다. 이때, 상기 반응용기에 투입되는 혼합분말과 볼의 비율은 중량비로 1:1∼1:100 범위이다. 여기서, 혼합분말과 볼의 중량비를 1:1∼1:100으로 한정하는 이유는 혼합분말과 볼의 중량비를 1:1 이하로 할 경우에는 볼과 용기의 마모에 의해 혼입되는 불순물의 양이 필요 이상으로 증가하기 때문이다. 상기 반응용기와 볼은 공구강, 스테인레스강, 초경합금, 질화규소, 알루미나 또는 지르코니아중 어느 하나의 재질로 이루어진다. Next, the mixed powder is put into a reaction jar with a ball having a diameter of 5 to 30 mm. At this time, the ratio of the mixed powder and the ball added to the reaction vessel is in the range of 1: 1 to 1: 100 by weight ratio. Here, the reason for limiting the weight ratio of the mixed powder and the ball to 1: 1 to 1: 100 is that when the weight ratio of the mixed powder and the ball is 1: 1 or less, the amount of impurities mixed by the wear of the ball and the container is required. This is because it increases more than. The reaction vessel and the ball is made of any one of tool steel, stainless steel, cemented carbide, silicon nitride, alumina or zirconia.

다음에, 상기 용기내에 아르곤(Ar) 가스를 충진한후 쉐이커밀(shaker mill), 진동밀(vibratory mill), 유성밀(planetary mill) 또는 어트리터밀(attritor mill)을 이용하여 상기 혼합 분말에 대하여 밀링강도는 5~50 G(G=중력가속도 9.8 m/s2)로 하고, 분당 회전수는 적어도 200 rpm으로 하는 고에너지 볼밀링을 수행한다. 여기서, 반응용기에 아르곤(Ar)을 충진하는 이유는 밀링중 공기중의 산소에 의한 분말의 산화를 막기 위함이다. 고에너지 볼밀링에 사용되는 볼은 모두 같은 크기의 것일 수도 있고, 2가지 이상의 크기를 갖는 볼을 함께 사용할 수도 있다.Next, after filling argon (Ar) gas in the container, the mixed powder is applied to a shaker mill, a vibratory mill, a planetary mill, or an attritor mill. High energy ball milling is performed with a milling strength of 5 to 50 G (G = gravity acceleration 9.8 m / s 2 ) and a revolution per minute of at least 200 rpm. Here, the reason for filling the argon (Ar) in the reaction vessel is to prevent the oxidation of the powder by oxygen in the air during milling. Balls used in high-energy ball milling may be all the same size, or two or more balls may be used together.

고에너지 볼밀링을 수행하는 동안, 용기내에서 일어나는 반응을 간접적으로 관찰하기 위하여 비접촉식 적외선 온도계를 이용하여 반응용기 표면의 온도를 측정 및 기록한다. During high energy ball milling, the temperature of the reaction vessel surface is measured and recorded using a non-contact infrared thermometer to indirectly observe the reaction occurring in the vessel.

밀링공정동안 도 1에 나타낸 것과 같은 용기표면 온도의 급격한 상승을 관찰할 수 있다. 이러한 용기표면의 급격한 온도상승은 반응용기내에서 밀링중 원소분말들이 반응하여 (Ti,TM)C가 형성될때 방출되는 열에 의한 것이며, 이후 온도가 완만하게 감소하는 것은 반응이 완료된후 열이 용기 외부로 서서히 빠져나가기 때문이다. 급격한 온도 상승은 투입한 혼합분말과 볼의 중량비에 영향을 받지만 대체로 밀링시작후 1∼2시간 사이에 관찰된다. 발열반응이 종료된후 고에너지 볼밀링을 1∼20시간 동안 지속한다. 밀링을 지속하는 이유는 형성된 (Ti,TM)C의 결정립 크기를 약 10㎚까지 낮추기 위한 목적이다.During the milling process a sharp rise in vessel surface temperature as shown in FIG. 1 can be observed. This rapid rise of the surface of the vessel is caused by the heat released when (Ti, TM) C is formed by the reaction of the elemental powders during milling in the reaction vessel.Afterwards, the temperature decreases slowly after the reaction is completed. This is because it slowly exits. Sudden increase in temperature is affected by the weight ratio of the mixed powder and the feed, but is usually observed between 1 and 2 hours after the start of milling. After the exothermic reaction is completed, high energy ball milling is continued for 1 to 20 hours. The reason for continuing milling is to lower the grain size of the formed (Ti, TM) C to about 10 nm.

다음에, 고에너지 볼밀링으로 합성한 분말을 회수하여 성형하고, 성형체를 10-2torr이하의 진공 또는 아르곤 분위기에서 소결한다. 이때, 소결온도는 1300∼1500℃, 소결시간은 1∼4 시간으로 하였다.Next, the powder synthesized by high energy ball milling is recovered and molded, and the molded body is sintered in a vacuum or argon atmosphere of 10 -2 torr or less. At this time, the sintering temperature was 1300-1500 degreeC, and the sintering time was 1-4 hours.

이하 실시예를 통하여 본 발명을 상세하게 설명한다.The present invention will be described in detail through the following examples.

실시예1Example 1

순도 99.7% / 입자크기 45㎛의 티타늄(Ti) 분말, 순도 99.7% 이상 / 입자크기 5㎛의 몰리브데늄(Mo) 분말, 순도 99% 이상 / 입자크기 5㎛의 탄소(C) 분말, 순도 99.7% 이상 / 입자크기 6㎛의 니켈(Ni) 분말을 최종 조성이 TiC 60중량%, Mo2C 20중량%, 니켈(Ni) 20중량%가 되도록 혼합하였다. 혼합분말을 공구강재 반응용기에 공구강재 직경 9.5 ㎜ 볼과 10:1의 중량비로 합께 투입하고 아르곤 가스를 반응용기에 충진한후 쉐이커밀을 이용하여 고에너지 볼밀링을 20시간동안 행하였다. 반응용기 표면의 온도를 비접촉식 적외선 온도계를 이용하여 측정 및 기록하였다. 도 1에 도시된 바와 같이 밀링이 100분 정도 경과하였을 때, 반응용기의 표면온도가 급격히 상승하였다. 밀링한 분말을 회수하여 이를 20 MPa의 압력으로 성형하고, 성형체를 10-5torr의 진공분위기, 1400℃에서 1시간동안 소결하였다.Titanium (Ti) powder with purity 99.7% / particle size 45㎛, Molecular powder (Mo) with purity 99.7% or more / particle size 5㎛, carbon (C) powder with purity over 99% / particle size 5㎛, purity Nickel (Ni) powder of 99.7% or more / particle size 6㎛ was mixed so that the final composition is 60% by weight of TiC, 20% by weight of Mo 2 C, 20% by weight of nickel (Ni). The mixed powder was put together in a tool steel reaction vessel with a tool steel diameter of 9.5 mm and a weight ratio of 10: 1, and filled with argon gas in a reaction vessel, and high energy ball milling was performed for 20 hours using a shaker mill. The temperature of the reaction vessel surface was measured and recorded using a non-contact infrared thermometer. As shown in FIG. 1, when milling passed about 100 minutes, the surface temperature of the reaction vessel rapidly increased. The milled powder was recovered and molded at a pressure of 20 MPa, and the molded body was sintered for 1 hour at 10 -5 torr in a vacuum atmosphere.

도 2는 고에너지 볼밀링 시간에 따른 분말의 X-선 회절 패턴 변화를 나타낸다. 밀링전의 티타늄(Ti), 몰리브데늄(Mo), 탄소(C) 및 니켈(Ni) 원소분말은 5시간 밀링수행후 (Ti,Mo)C와 니켈(Ni)의 혼합상으로 변하였다. 밀링을 지속한 경우에도 더 이상의 상변화는 나타나지 않았으며, 회절곡선(peak)의 높이가 감소하고 폭이 증가하였다. 이것은 밀링중 먼저 (Ti,Mo)C 상이 형성되고, 계속되는 밀링의 기계적 에너지에 의해 결정립이 분쇄되어 결정립의 크기가 감소함을 의미한다. 20시간 밀링후 X-선 회절패턴으로부터 계산된 (Ti,Mo)C 결정립 크기는 약 10 ㎚이다.2 shows the X-ray diffraction pattern change of the powder with high energy ball milling time. The elements of titanium (Ti), molybdenum (Mo), carbon (C) and nickel (Ni) before milling were changed into a mixed phase of (Ti, Mo) C and nickel (Ni) after milling for 5 hours. When milling was continued, no further phase change was observed, and the height of the diffraction curve was decreased and the width was increased. This means that the (Ti, Mo) C phase is first formed during milling, and the grains are crushed by the mechanical energy of subsequent milling, thereby reducing the size of the grains. The (Ti, Mo) C grain size calculated from the X-ray diffraction pattern after 20 hours milling is about 10 nm.

도 3은 20시간 밀링으로 제조한 분말의 주사전자현미경 사진이다. 분말 형상은 불규칙하고 약 1㎛ 크기를 갖는 입자들이 응집된 형태를 취하고 있다.3 is a scanning electron micrograph of a powder prepared by milling for 20 hours. The powder shape is irregular and takes the form of agglomerated particles having a size of about 1 μm.

도 4는 제조한 분말을 소결하여 얻은 TiC계 서메트의 주사전자현미경 미세조직 사진이다. 사진에서 약간 각진 둥근 회색 입자는 (Ti,Mo)C 결정립이며 밝은 부분은 Ni 기지(Ni-rich 고용체)이다. 도 8과 같은 기존 방법으로 제조한 TiCN계 서메트의 미세조직과는 대조적으로 본 발명에 따른 서메트에서는 탄화물 입자 내부에 코어-림 구조가 나타나지 않았으며, 탄화물 입자의 크기도 매우 미세하였다. 화상분석을 통해 측정된 탄화물 입자의 평균크기는 약 0.5㎛로, 종래 서메트의 탄화물 입자크기인 2∼5㎛에 비하여 매우 미세함을 알 수 있다. 4 is a scanning electron microscope microstructure photograph of a TiC-based cermet obtained by sintering the prepared powder. Slightly angled round gray particles in the picture are (Ti, Mo) C grains, and the bright part is Ni matrix (Ni-rich solid solution). In contrast to the microstructure of the TiCN-based cermet prepared by the conventional method as shown in FIG. 8, in the cermet according to the present invention, the core-rim structure did not appear inside the carbide particles, and the size of the carbide particles was also very fine. The average size of the carbide particles measured through image analysis is about 0.5 μm, which is very fine compared to 2 to 5 μm of the carbide particle size of the conventional cermet.

본 발명에 따른 서메트의 경도는 약 92HRA이었으며, 이와 같이 높은 경도값은 탄화물의 미세한 크기에 기인한 것으로 판단된다. 또한 본 발명에 따라 제조된 서메트가 코어-림 구조를 갖지않은 이유는 고에너지 볼밀링 과정에서 형성되는 상이 TiC와 Mo2C가 혼합된 복합상이 아니라 열역학적으로 안정한 고용체인 (Ti, Mo)C가 형성되어 코어-림을 형성할 수 있는 불균일성이 분말내에 존재하지 않았기 때문이다.The hardness of the cermet according to the invention was about 92 HRA, and this high hardness value is believed to be due to the fine size of the carbide. In addition, the reason that the cermet prepared according to the present invention does not have a core-rim structure is that the phase formed during the high energy ball milling process is not a composite phase in which TiC and Mo 2 C are mixed, but a thermodynamically stable solid solution (Ti, Mo) C. This is because there was no nonuniformity in the powder that could form to form the core-rim.

도 5는 본 발명에 따라 제조된 TiC계 서메트의 투과전자현미경 미세조직 사진이다. 서브마이크론의 미세한 탄화물 입자가 관찰되며, 탄화물 입자 내부에는 조직상의 불균일성이 존재하지않음을 알 수 있다. 투과전자현미경에 장착된 X-선 분광기로 분석한 탄화물 중심부와 주변부의 화학조성을 나타낸 하기의 표 1에서 Ti과 Mo의 농도가 탄화물 입자 전체에 걸쳐 일정함을 알 수 있다.5 is a transmission electron microscope microstructure photograph of a TiC-based cermet prepared according to the present invention. Fine carbide particles of submicron are observed, and it can be seen that there is no tissue nonuniformity inside the carbide particles. It can be seen that the concentrations of Ti and Mo are constant throughout the carbide particles in Table 1 below, which shows the chemical composition of the carbide center and periphery analyzed by X-ray spectroscopy mounted on the transmission electron microscope.

실시예2Example 2

순도 99.7% / 입자크기 45㎛의 티타늄(Ti) 분말, 순도 99.9% 이상 / 입자크기 1㎛의 텅스텐(W) 분말, 순도 99% 이상 / 입자크기 5㎛의 탄소(C) 분말, 순도 99.7% 이상 / 입자크기 6㎛의 니켈(Ni) 분말, 순도 99.8% 이상 / 입자크기 10㎛의 코발트(Co) 분말을 최종 조성이 TiC 65중량%, WC 20중량%, Ni 8중량%, Co 7중량%가 되도록 혼합하였다. 혼합분말을 공구강재 반응용기에 초경재 직경 8 ㎜ 볼과 23:1의 중량비로 합께 투입하고 아르곤 가스를 반응용기에 충진한후 유성밀을 이용하여 고에너지 볼밀링을 5시간동안 행하였다. 반응용기 표면의 온도를 비접촉식 적외선 온도계를 이용하여 측정 및 기록하였다. 밀링한 분말을 회수하여 이를 20 MPa의 압력으로 성형하고, 성형체를 10-5torr의 진공분위기, 1400℃에서 1시간동안 소결하였다.Purity 99.7% / Titanium (Ti) powder with a particle size of 45 ㎛, purity 99.9% or more / Tungsten (W) powder with a particle size of 1 ㎛, 99% purity or more / carbon (C) powder with a particle size of 5 ㎛, purity 99.7% Nickel (Ni) powder with a particle size of 6㎛, purity 99.8% or more / Cobalt (Co) powder with a particle size of 10㎛, the final composition is 65% by weight of TiC, 20% by weight WC, 8% by weight Ni, 7% by weight Co Mix to%. The mixed powder was put together in a tool steel reaction vessel in a weight ratio of 8 mm diameter to a cemented carbide 8 mm and 23: 1, and filled with argon gas in a reaction vessel, and high energy ball milling was performed for 5 hours using a planetary mill. The temperature of the reaction vessel surface was measured and recorded using a non-contact infrared thermometer. The milled powder was recovered and molded at a pressure of 20 MPa, and the molded body was sintered for 1 hour at 10 -5 torr in a vacuum atmosphere.

도 6은 5시간 고에너지 볼밀링후 분말의 X-선 회절 패턴을 나타낸다. 밀링전 티타늄(Ti), 텅스텐(W), 탄소(C), 니켈(Ni) 및 코발트(Co) 원소분말의 혼합분말이었는데 5시간 밀링후에는 (Ti,W)C의 복합탄화물을 형성하였으며, 니켈(Ni)과 코발트(Co)는 서로 고용체를 이루고 있는 것으로 판단된다. X-선 회절 패턴으로부터 계산된 (Ti,W)C 결정립 크기는 약 10 ㎚이다.6 shows the X-ray diffraction pattern of the powder after high energy ball milling for 5 hours. It was a mixed powder of titanium (Ti), tungsten (W), carbon (C), nickel (Ni) and cobalt (Co) element powders before milling. After 5 hours of milling, (Ti, W) C composite carbides were formed. Nickel (Ni) and cobalt (Co) are believed to form a solid solution with each other. The (Ti, W) C grain size calculated from the X-ray diffraction pattern is about 10 nm.

도 7은 제조한 분말을 소결하여 얻은 (Ti,W)C계 서메트의 주사전자현미경 미세조직 사진이다. 사진에서 약간 각진 둥근 회색 입자는 (Ti,W)C의 결정립이며 밝은 부분은 Ni-Co 기지(Ni-Co 고용체)이다. 본 발명에 따른 서메트에서는 탄화물 입자 내부에 코어-림 구조가 나타나지 않았으며, 탄화물 입자의 크기도 매우 미세하였다. 화상분석을 통해 측정된 탄화물 입자의 평균크기는 약 0.6㎛로, 종래 서메트의 탄화물 입자크기인 2∼5㎛에 비하여 매우 미세함을 알 수 있다. 본 발명에 따른 서메트의 경도는 약 92HRA이었으며, 이와 같이 높은 경도값은 탄화물의 미세한 크기에 기인한 것으로 판단된다. 7 is a scanning electron microscope microstructure photograph of a (Ti, W) C-based cermet obtained by sintering the prepared powder. The slightly gray rounded gray particles in the picture are grains of (Ti, W) C and the bright part is Ni-Co matrix (Ni-Co solid solution). In the cermet according to the present invention, the core-rim structure did not appear inside the carbide particles, and the size of the carbide particles was also very fine. The average size of the carbide particles measured through image analysis is about 0.6 μm, which is very fine compared to 2 to 5 μm of the carbide particle size of the conventional cermet. The hardness of the cermet according to the invention was about 92 HRA, and this high hardness value is believed to be due to the fine size of the carbide.

본 발명에 따르면, 티타늄(Ti), 전이금속(TM), 탄소(C), 니켈(Ni) 및 코발트(Co)의 원소 분말을 원료로 하고, 고에너지 볼밀링에 의해 얻어지는 10㎚ 내외의 결정립 크기를 갖는 나노복합분말, (Ti,TM)C-(Ni,Co)을 소결함으로써 코어-림 구조가 없고 서브마이크론의 결정립 크기를 갖는 균일한 고용체 복합탄화물 결정립의 서메트 합금 제조를 가능케한다. 이는 기존의 방법으로는 제조하기 어려운 높은 경도를 갖는 새로운 미세조직의 서메트 합금을 비교적 단순한 공정으로 제조할 수 있게 한다.According to the present invention, crystal grains of about 10 nm obtained by elemental powders of titanium (Ti), transition metal (TM), carbon (C), nickel (Ni) and cobalt (Co) as raw materials and obtained by high energy ball milling By sintering the nanocomposite powder, (Ti, TM) C- (Ni, Co), having a size, it is possible to prepare a cermet alloy of uniform solid solution composite carbide grains having no core-rim structure and having a grain size of submicron. This makes it possible to produce a new microstructured cermet alloy having a high hardness that is difficult to manufacture by a conventional method in a relatively simple process.

도 1은 고에너지 볼밀링시 밀링시간에 따른 반응용기 표면의 온도변화를 나타내는 그래프이다.1 is a graph showing the temperature change of the reaction vessel surface with milling time during high-energy ball milling.

도 2는 TiC-20중량%Ni 분말의 고에너지 볼밀링시 밀링시간에 따른 X-선 회절패턴의 변화를 나타내는 그래프이다.2 is a graph showing the change of X-ray diffraction pattern with milling time during high energy ball milling of TiC-20 wt% Ni powder.

도 3은 20시간동안 고에너지 볼밀링한 TiC-20중량%Mo2C-20중량%Ni 분말의 주사전자현미경 사진이다.3 is a scanning electron micrograph of TiC-20 wt% Mo 2 C-20 wt% Ni powder subjected to high energy ball milling for 20 hours.

도 4는 본 발명에 따라 제조된 (Ti,Mo)C-Ni 서메트의 미세조직을 나타내는 주사전자현미경 사진이다.Figure 4 is a scanning electron micrograph showing the microstructure of the (Ti, Mo) C-Ni cermet prepared according to the present invention.

도 5는 본 발명에 따라 제조된 (Ti,Mo)C-Ni 서메트의 미세조직을 나타내는 투과전자현미경 사진이다.5 is a transmission electron micrograph showing the microstructure of the (Ti, Mo) C-Ni cermet prepared according to the present invention.

도 6은 TiC-20중량%WC-8중량%Ni-7중량%Co 분말의 5시간 고에너지 볼밀링시 X-선 회절패턴을 나타내는 그래프이다.6 is a graph showing an X-ray diffraction pattern during 5 hours high energy ball milling of TiC-20 wt% WC-8 wt% Ni-7 wt% Co powder.

도 7은 본 발명에 따라 제조된 (Ti,W)C-(Ni,Co) 서메트의 미세조직을 나타내는 주사전자현미경 사진이다.7 is a scanning electron micrograph showing the microstructure of the (Ti, W) C- (Ni, Co) cermet prepared according to the present invention.

도 8은 종래의 방법에 따라 제조된 TiC-TiN-Mo2C-Ni 서메트의 미세조직을 나타내는 주사전자현미경 사진이다.8 is a scanning electron micrograph showing the microstructure of the TiC-TiN-Mo 2 C-Ni cermet prepared according to the conventional method.

Claims (10)

티타늄(Ti) 분말, 전이금속(TM) 분말, 탄소(C) 분말, 니켈(Ni) 분말 및 코발트(Co) 분말을 혼합하여 TiC 50∼90 중량%, TMxCy(x와 y는 정수) 5∼30 중량%, 니켈(Ni) 또는 코발트(Co) 또는 니켈(Ni)과 코발트(Co)의 혼합물 5∼30 중량%로 이루어진 혼합분말을 생성하는 단계와;50 to 90 wt% of TiC, TM x C y (x and y are integers) by mixing titanium (Ti) powder, transition metal (TM) powder, carbon (C) powder, nickel (Ni) powder and cobalt (Co) powder ) 5 to 30% by weight, nickel (Ni) or cobalt (Co) or 5 to 30% by weight of a mixture of nickel (Ni) and cobalt (Co) to produce a mixed powder; 상기 혼합 분말을 소정 직경의 볼과 함께 반응용기에 투입하는 단계와;Injecting the mixed powder into a reaction vessel together with a ball having a predetermined diameter; 상기 혼합 분말에 대하여 밀링강도는 5~50 G(G=중력가속도 9.8 m/s2)로 하고, 분당 회전수는 적어도 200 rpm으로 하는 고에너지 볼밀링을 수행함으로써 나노복합분말, (Ti,TM)C-(Ni,Co)을 생성하되, 상기 고에너지 볼밀링을 수행하는 동안에 비접촉식 적외선 온도계를 이용하여 반응용기 표면의 온도를 측정하는 단계와;Milling strength of the mixed powder is 5 ~ 50 G (G = gravitational acceleration 9.8 m / s 2 ), and the nano-composite powder, (Ti, TM) by performing a high-energy ball milling at least 200 rpm Generating C- (Ni, Co), and measuring the temperature of the reaction vessel surface using a non-contact infrared thermometer during the high energy ball milling; 상기 생성된 나노복합분말을 성형 및 소결하는 단계;Molding and sintering the produced nanocomposite powder; 를 포함하는 것을 특징으로 하는 균일 고용체 입자구조를 갖는 초미세 결정립 서메트 제조 방법. Ultrafine grained cermet manufacturing method having a uniform solid solution particle structure comprising a. 청구항1에 있어서, 상기 티타늄(Ti) 분말, 전이금속(TM) 분말, 탄소(C) 분말, 니켈(Ni) 분말 및 코발트(Co) 분말은 순도 95% 이상이고, 입자크기가 1㎜ 이하인 것을 특징으로 하는 균일 고용체 입자구조를 갖는 초미세 결정립 서메트 제조 방법.The method of claim 1, wherein the titanium (Ti) powder, transition metal (TM) powder, carbon (C) powder, nickel (Ni) powder and cobalt (Co) powder has a purity of 95% or more, the particle size of 1mm or less A method for producing an ultrafine grain cermet having a uniform solid solution particle structure. 청구항1에 있어서, 상기 반응용기와 볼의 재질은 공구강, 스테인레스강, 초경합금, 질화규소, 알루미나 또는 지르코니아 중의 어느 하나인 것을 특징으로 하는 균일 고용체 입자구조를 갖는 초미세 결정립 서메트 제조 방법.The method of claim 1, wherein the reaction vessel and the material of the ball are any one of tool steel, stainless steel, cemented carbide, silicon nitride, alumina, or zirconia. 청구항1에 있어서, 상기 전이금속(TM) 분말은 몰리브데늄(Mo), 텅스텐(W), 니오븀(Nb), 바나늄(V), 크롬(Cr)으로 구성된 군으로부터의 1종이상의 금속을 포함하는 것을 특징으로 하는 균일 고용체 입자구조를 갖는 초미세 결정립 서메트 제조 방법. The method of claim 1, wherein the transition metal (TM) powder is at least one metal from the group consisting of molybdenum (Mo), tungsten (W), niobium (Nb), vananium (V), chromium (Cr). Ultrafine grained cermet manufacturing method having a uniform solid solution particle structure comprising a. 청구항1에 있어서, 상기 볼의 직경은 5∼30㎜이고, 상기 반응용기에 투입되는 혼합분말과 볼의 비율이 중량비로 1:1∼1:100 범위인 것을 특징으로 하는 균일 고용체 입자구조를 갖는 초미세 결정립 서메트 제조 방법.The method of claim 1, wherein the diameter of the ball is 5 to 30mm, the ratio of the mixed powder and the ball to be added to the reaction vessel has a uniform solid solution particle structure, characterized in that the range of 1: 1 to 1: 100 by weight ratio. Ultrafine Grain Cermet Manufacturing Method. 삭제delete 청구항1에 있어서, 상기 비접촉식 적외선 온도계에 의해 반응용기 표면의 급격한 온도 상승이 측정되면 그 시점으로부터 1∼20시간 동안 고에너지 볼밀링을 지속하는 것을 특징으로 하는 균일 고용체 입자구조를 갖는 초미세 결정립 서메트 제조 방법.The ultrafine crystal grain having a uniform solid solution particle structure according to claim 1, wherein if a rapid temperature rise of the surface of the reaction vessel is measured by the non-contact infrared thermometer, high energy ball milling is continued for 1 to 20 hours. Method of making a mat. 청구항1, 청구항6 또는 청구항7중 어느 한항에 있어서, 상기 고에너지 볼밀링은 쉐이커밀, 진동밀, 유성밀 또는 어트리터밀을 이용하여 수행되는 것을 특징으로 하는 균일 고용체 입자구조를 갖는 초미세 결정립 서메트 제조 방법.The ultrafine grain having a uniform solid solution particle structure according to any one of claims 1 to 6, wherein the high energy ball milling is performed using a shaker mill, a vibration mill, a planetary mill, or an attritor mill. Cermet manufacturing method. 청구항1, 청구항6 또는 청구항7중 어느 한항에 있어서, 상기 반응용기에 아르곤 가스를 충진한후 고에너지 볼밀링을 수행하는 것을 특징으로 하는 균일 고용체 입자구조를 갖는 초미세 결정립 서메트 제조 방법.The ultrafine grain cermet manufacturing method according to any one of claims 1 to 6, wherein the reaction vessel is filled with argon gas and then high energy ball milling is performed. 청구항1에 있어서, 상기 소결은 성형체를 10-2 torr 이하의 진공 또는 아르곤 분위기에서 1300∼1500℃의 온도로 1∼4시간 동안 수행되는 것을 특징으로 하는 균일 고용체 입자구조를 갖는 초미세 결정립 서메트 제조 방법.The ultrafine crystal cermet according to claim 1, wherein the sintering is performed for 1 to 4 hours at a temperature of 1300 to 1500 ° C in a vacuum or argon atmosphere of 10 -2 torr or less. Manufacturing method.
KR20030058941A 2003-08-26 2003-08-26 Fabrication method for ultrafine cermet alloys with a homogeneous solid solution grain structure KR100528046B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR20030058941A KR100528046B1 (en) 2003-08-26 2003-08-26 Fabrication method for ultrafine cermet alloys with a homogeneous solid solution grain structure
JP2003347486A JP2005068547A (en) 2003-08-26 2003-10-06 Method of fabricating superfine cermet alloy with homogeneous solid solution grain structure
US10/681,009 US7217390B2 (en) 2003-08-26 2003-10-08 Method of fabricating ultra-fine cermet alloys with homogeneous solid grain structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20030058941A KR100528046B1 (en) 2003-08-26 2003-08-26 Fabrication method for ultrafine cermet alloys with a homogeneous solid solution grain structure

Publications (2)

Publication Number Publication Date
KR20050021753A KR20050021753A (en) 2005-03-07
KR100528046B1 true KR100528046B1 (en) 2005-11-15

Family

ID=34214685

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20030058941A KR100528046B1 (en) 2003-08-26 2003-08-26 Fabrication method for ultrafine cermet alloys with a homogeneous solid solution grain structure

Country Status (3)

Country Link
US (1) US7217390B2 (en)
JP (1) JP2005068547A (en)
KR (1) KR100528046B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100755882B1 (en) * 2005-05-06 2007-09-05 재단법인서울대학교산학협력재단 New Ti-based solid-solution cutting tool materials
WO2009082180A2 (en) * 2007-12-26 2009-07-02 Seoul National University Industry Foundation Solid-solution carbide/carbonitride powder and method for preparing thereof
WO2009082178A2 (en) * 2007-12-26 2009-07-02 Seoul National University Industry Foundation Solid-solution carbide/carbonitride powder and method for preparing thereof under high temperature
KR101505372B1 (en) 2014-07-15 2015-03-23 주식회사 대화알로이테크 Cermet and method of manufacturing the same

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100792190B1 (en) * 2005-04-19 2008-01-07 재단법인서울대학교산학협력재단 Solid-solution powder without core/rim structure, method to prepare the same, powder for cermet including said solid-solution powder, method to prepare the same and ceramics, cermet using said powder for solid-solution powder and cermet
KR100796649B1 (en) * 2006-06-21 2008-01-22 재단법인서울대학교산학협력재단 Ceramic and cermet having the second phase to improve toughness via phase separation from complete solid-solution phase and the method for preparing them
JP2010500477A (en) * 2006-08-08 2010-01-07 財団法人ソウル大学校産学協力財団 Mixed powder containing solid solution powder and sintered body using the same, mixed cermet powder containing solid solution powder, cermet using the same, and method for producing them
US7771649B2 (en) * 2007-11-19 2010-08-10 Korea Institute Of Science And Technology Method of producing ultrafine crystalline TiN/TIB2 composite cermet
KR101113489B1 (en) * 2007-12-26 2012-02-29 재단법인서울대학교산학협력재단 Solid-solution carbide/carbonitride powder and method for preparing thereof
US9187810B2 (en) * 2008-12-16 2015-11-17 Sandvik Intellectual Property Ab Cermet body and a method of making a cermet body
KR101145299B1 (en) * 2008-12-22 2012-05-14 한국과학기술원 Method For Preparing Nitride/Tungsten Nanocomposite Powders And The Nitride/Tungsten Nanocomposite Powders Thereof
EP2465960B1 (en) * 2010-12-17 2014-10-08 Sandvik Intellectual Property AB Cermet body and a method of making a cermet body
CN102436864B (en) * 2011-07-28 2013-10-09 攀枝花学院 Titanium carbide based electrical contact material as well as preparation method and applications thereof
GB201209482D0 (en) * 2012-05-29 2012-07-11 Element Six Gmbh Polycrystalline material,bodies comprising same,tools comprising same and method for making same
KR101248996B1 (en) * 2012-10-10 2013-04-02 한국지질자원연구원 Production of carbide and carbonitride powders containing binder, and cermet therefrom
JP5807850B2 (en) * 2013-06-10 2015-11-10 住友電気工業株式会社 Cermet, cermet manufacturing method, and cutting tool
JP5807851B1 (en) 2014-04-10 2015-11-10 住友電気工業株式会社 Cermets and cutting tools
CN107177767A (en) * 2017-06-12 2017-09-19 成都众鑫达超硬工具材料科技有限公司 A kind of TiC ceramic tools material and preparation method thereof
CN107758666B (en) * 2017-10-16 2020-06-23 四川理工学院 (Ti, M) C nano solid solution powder and preparation method thereof
CN108946733B (en) * 2018-08-14 2020-11-13 华南理工大学 Method for preparing nano titanium carbide powder by plasma room temperature induced self-propagating reaction
CN111822721B (en) * 2020-07-14 2022-05-10 苏州大学 Tungsten-doped titanium-based composite porous material and preparation method thereof
CN113046613B (en) * 2021-03-05 2022-03-29 中南大学 High-strength non-magnetic light TiC-based metal ceramic material and preparation method thereof
CN114737094B (en) * 2022-04-14 2023-03-17 四川轻化工大学 High-temperature wear-resistant corrosion-resistant metal ceramic material, composite roller and preparation method thereof
CN116535215B (en) * 2023-05-08 2023-12-19 中南大学 Preparation method of non-stoichiometric multi-carbide ceramic

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3785801A (en) * 1968-03-01 1974-01-15 Int Nickel Co Consolidated composite materials by powder metallurgy
US4013460A (en) * 1972-03-21 1977-03-22 Union Carbide Corporation Process for preparing cemented tungsten carbide
US4070184A (en) * 1976-09-24 1978-01-24 Gte Sylvania Incorporated Process for producing refractory carbide grade powder
CA1103042A (en) * 1977-05-04 1981-06-16 Akio Hara Sintered compact for use in a cutting tool and a method of producing the same
JPS63169356A (en) * 1987-01-05 1988-07-13 Toshiba Tungaloy Co Ltd Surface-tempered sintered alloy and its production
US5322666A (en) * 1992-03-24 1994-06-21 Inco Alloys International, Inc. Mechanical alloying method of titanium-base metals by use of a tin process control agent
EP0698002B1 (en) * 1993-04-30 1997-11-05 The Dow Chemical Company Densified micrograin refractory metal or solid solution (mixed metal) carbide ceramics

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100755882B1 (en) * 2005-05-06 2007-09-05 재단법인서울대학교산학협력재단 New Ti-based solid-solution cutting tool materials
WO2009082180A2 (en) * 2007-12-26 2009-07-02 Seoul National University Industry Foundation Solid-solution carbide/carbonitride powder and method for preparing thereof
WO2009082178A2 (en) * 2007-12-26 2009-07-02 Seoul National University Industry Foundation Solid-solution carbide/carbonitride powder and method for preparing thereof under high temperature
WO2009082178A3 (en) * 2007-12-26 2009-09-24 Seoul National University Industry Foundation Solid-solution carbide/carbonitride powder and method for preparing thereof under high temperature
WO2009082180A3 (en) * 2007-12-26 2009-10-08 Seoul National University Industry Foundation Solid-solution carbide/carbonitride powder and method for preparing thereof
KR101505372B1 (en) 2014-07-15 2015-03-23 주식회사 대화알로이테크 Cermet and method of manufacturing the same
WO2016010226A1 (en) * 2014-07-15 2016-01-21 주식회사 대화알로이테크 Cermet and method for preparing same

Also Published As

Publication number Publication date
US7217390B2 (en) 2007-05-15
US20050047950A1 (en) 2005-03-03
KR20050021753A (en) 2005-03-07
JP2005068547A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
KR100528046B1 (en) Fabrication method for ultrafine cermet alloys with a homogeneous solid solution grain structure
EP3611282B1 (en) Cobalt based alloy powder
US5778301A (en) Cemented carbide
US5441693A (en) Method of making cemented carbide articles and the resulting articles
US5482670A (en) Cemented carbide
JP4773416B2 (en) Method for producing sintered body, powder mixture used in the method, and sintered body produced by the method
KR100626224B1 (en) solid-solution powder, method to prepare the same, powder for cermet including said solid-solution powder, method to prepare the same and cermet using said powder for cermet
JP5840827B2 (en) Cermet member and method for producing cermet member
JP6011946B2 (en) Nickel-based intermetallic compound composite sintered material and method for producing the same
GB2542948A (en) Cemented carbide material
Balouchi et al. Developing (W, Ti) C-(Ni, Co) nanocomposite by SHS method
JP2010503764A (en) Method for producing W-Mo composite powder and composite powder
SE511102C2 (en) Process for producing diamond impregnated carbide via in-situ conversion of dispersed graphite
JP2004142993A (en) Hexagonal composite carbide, and production method therefor
KR100714978B1 (en) The method for fabricatiing ultrafine crystalline TiN/TiB2 composite cermet
CN102597281B (en) Method for manufacturing reinforced alloy through scattering of nitride nanoparticles
JP3898387B2 (en) High rigidity steel
KR20170093402A (en) The hard metal and method for manufacturing the same
JP2000144301A (en) Tungsten carbide sintered body and its production
WO2022230110A1 (en) Cemented carbide and mold for ultra-high pressure generator using this
JPH1136022A (en) Production of cemented carbide containing plate crystal wc
JPH02277746A (en) Wear-resistant low thermal expansion sintered alloy and its manufacture
JPS6311645A (en) Nitrogenous sintered hard alloy and its production
Muchavi Effects of Thermal Processing of Blended and Roll Compacted TI6AL4V Strips on Microstructure and Properties
Alhazza Production of Nanocomposite Tungsten Carbide Buttons by Mixing with Co and ZrO2 Nanopowders

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111019

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20121031

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee