KR100491337B1 - 에포싸일론 유도체의 제조방법 - Google Patents

에포싸일론 유도체의 제조방법 Download PDF

Info

Publication number
KR100491337B1
KR100491337B1 KR10-2003-0023721A KR20030023721A KR100491337B1 KR 100491337 B1 KR100491337 B1 KR 100491337B1 KR 20030023721 A KR20030023721 A KR 20030023721A KR 100491337 B1 KR100491337 B1 KR 100491337B1
Authority
KR
South Korea
Prior art keywords
chemical formula
formula
represented
compound represented
reaction
Prior art date
Application number
KR10-2003-0023721A
Other languages
English (en)
Other versions
KR20040089887A (ko
Inventor
이효원
최일영
홍용덕
Original Assignee
한국화학연구원
이효원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원, 이효원 filed Critical 한국화학연구원
Priority to KR10-2003-0023721A priority Critical patent/KR100491337B1/ko
Publication of KR20040089887A publication Critical patent/KR20040089887A/ko
Application granted granted Critical
Publication of KR100491337B1 publication Critical patent/KR100491337B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)

Abstract

본 발명은 에포싸일론 유도체의 제조방법에 관한 것으로서, 더욱 상세하게는 알돌축합 반응에 사용되어지는 알데하이드 화합물과 케톤 화합물의 구조를 특이성 있게 고안하여 반응에 사용함으로써 부분이성질체 중 원하는 이성질체의 비율이 절대적으로 우위에 있도록 합성하여 용이하게 이성질체를 분리할 수 있도록 하는 등의 일련의 제조방법의 특징으로 인하여 차세대 항암제로 유력한 에포싸일론(Epothilone) 유도체를 고 순도 및 고 수율로 전합성하는 제조방법에 관한 것이다.

Description

에포싸일론 유도체의 제조방법{Process for preparing Epothilone derivatives}
본 발명은 에포싸일론 유도체의 제조방법에 관한 것으로서, 더욱 상세하게는 알돌축합 반응에 사용되어지는 알데하이드 화합물과 케톤 화합물의 구조를 특이성 있게 고안하여 반응에 사용하므로써 부분이성질체 중 원하는 이성질체의 비율이 절대적으로 우위에 있도록 합성하여 용이하게 이성질체를 분리할 수 있도록 하는 등의 일련의 제조방법의 특징으로 인하여 차세대 항암제로 유력한 에포싸일론(Epothilone) 유도체를 고 순도 및 고 수율로 전합성하는 제조방법에 관한 것이다.
에포싸일론(Epothilone)은 토양에서 서식하는 박테리아 균주(myxobacterium Sorangium cellulosum strain 90)로부터 분리된 천연물로서, 탁솔(taxol)에 내성을 갖는 종양세포에 대하여 세포독성을 나타내며 탁솔(taxol)보다 우수한 임상학적 유용성을 가지는 것으로 증명되었다[J. Antibiotic, 1996, 560-563; Angew. Chem. Int. Ed. Engl. 1996, 35, 1567-1569]. 에포싸일론(epothilone)과 탁솔(taxol)은 동일한 분자적 기전으로 항암 활성을 나타내는 바, 세포 분열 주기에서 특정 위치에 정렬했다가 해체되는 실과 같은 세포 내부 골격인 미세소관(microtubule)에 작용하여 세포분열을 억제하게 된다. 미세소관(microtubule)을 안정화함에 있어서 에포싸일론은 탁솔 보다 2000 ∼ 5000배 강력한 것으로 보고되어 있다. 또한, 탁솔(taxol)이 물에 잘 녹지 않는 단점이 있는데 반하여, 에포싸일론(epothilone)은 부분적으로 수용성을 나타내므로 의약물로 제제화하는데 많은 장점을 가지고 있다. 탁솔(taxol)과 에포싸일론(epothilone)은 화학 구조적으로 상이함에도 불구하고 에포싸일론(epothilone)이 결합자리로부터 탁솔(taxol)을 대체하고 미세소관(microtubule)의 같은 활성자리에 결합하는 것으로 알려져 있다[Cancer. Res. 1995, 55, 2325-2333.]. 따라서, 구조적인 신규성, 중요한 생물학적 작용과 흥미로운 작용 기작 때문에 에포싸일론(epothilone)은 화학자, 생물학자, 임상학자들 사이에서 많은 관심을 불러 일으켰다.
에포싸일론(epothilone)의 X-선 결정 구조가 발표된 이래로 유기 화학자들은 이 화합물의 전합성에 관한 연구가 시도되었고, 니콜라우(Nicolaou)와 대니쉐프스키(Danishefsky)에 의해 가장 먼저 전합성되었다[J. Am. Chem. Soc. 1997, 119, 7960-7973; J. Am. Chem. Soc. 1997, 119, 10073-10092]. 그 이후에도 다수의 유기 화학자들이 에포싸일론의 전합성을 발표한 바도 있다[J. Am. Chem. Soc. 2000, 122, 10521-19532; Angew. Chem. Int. Ed. 2002, 41, 1381-1383; Org. Lett. 2001, 3, 3607-3609; Org. Lett. 2001, 3, 2221-2224; Chem. Eur. J. 1999, 5, 2492-2500; J. Am. Chem. Soc. 2001, 123, 5407-5413; Org. Lett. 2002 , 4, 3811-3814; J. Org. Chem. 2001, 66, 6410-6424].
현재까지 공지되어 있는 에포싸일론의 대표적인 전합성법은 다음과 같은 네 단계 제조과정으로 구성된다: (1) 싸이클로프로판의 유도체인 글리칼(glycal)을 가용매 분해시켜 싸이클로프로판의 고리를 개환하여 제미날 다이메틸기(gem-dimethyl)를 만드는 과정. (2) 알킬 스즈키 결합반응을 이용해서 옆사슬기를 붙이는 과정. (3) 에포싸일론의 C-16 위치에서 폐환되도록 분자내-알돌축합 반응을 수행하는 과정. (4) 시스-이중결합 위치를 매우 입체 특이적으로 에폭시화하는 과정.
그러나 현재까지 알려진 전합성 방법에 의해서는 목적하는 이성질체의 분리가 용이하지 않아 여전히 공업적으로 합성하기에는 적합하지 않았다.
본 발명의 발명자들은 에포싸일론을 고 광학순도로 제조할 수 있는 새로운 전합성법을 개발하고자 연구 노력하였고, 그 결과 제미날 메틸기가 치환된 케톤화합물과 알데히드 화합물의 알돌축합 반응이 최종 목적물의 광학 순도 및 수율을 결정짓는 주요 단계임을 인식하게 됨으로써 본 발명을 완성하게 되었다. 즉, 본 발명에서는 알돌축합 반응에 사용되어지는 알데하이드 화합물과 케톤 화합물의 구조를 특이성 있게 고안하여 반응에 사용함으로써 부분이성질체 중 원하는 이성질체의 비율이 5:1 정도로 절대적으로 우위에 있도록 합성하여 용이하게 이성질체를 분리할 수 있도록 한 것이다.
따라서, 본 발명은 고 순도의 에포싸일론을 고 수율로 전합성하는 개선된 제조방법을 제공하는데 그 목적이 있다.
본 발명이 합성하는 에포싸일론(epothilone) 유도체의 대표적인 화합물로서, 에포싸일론 A, 에포싸일론 B, 디옥시에포싸일론 A, 디옥시에포싸일론 B는 다음과 같다 :
본 발명은 다음 반응식 1에 나타낸 바와 같이 다음의 제조과정이 포함되는 에포싸일론 유도체의 제조방법을 그 특징으로 한다:
ⅰ) 다음 화학식 2로 표시되는 케톤산 유도체와 다음 화학식 3으로 표시되는 페닐설폰 치환된 알데하이드 유도체를 알돌축합 반응하여 다음 화학식 4로 표시되는 페닐설폰 치환된 하이드록시 케톤산 유도체를 제조하는 과정;
ⅱ) 상기 화학식 4로 표시되는 화합물로부터 페닐설폰기(-SO2Ph)를 제거한 후, 다음 화학식 5로 표시되는 입체선택성을 가지는 하이드록시 케톤산 유도체를 제조하는 과정;
ⅲ) 상기 화학식 5로 표시되는 이성질체 화합물과 다음 화학식 6으로 표시되는 싸이아졸 알코올 유도체를 결합반응하여 다음 화학식 7로 표시되는 에스터 유도체를 제조하는 과정;
ⅳ) 상기 화학식 7로 표시되는 화합물을 그룹스(Grubbs) 촉매를 사용한 이중결합간 결합반응을 수행한 후에 보호기(TBS)를 제거하여 다음 화학식 1a로 표시되는 디옥시에포싸일론 화합물을 제조하는 과정; 및
ⅴ) 상기 화학식 1a로 표시되는 디옥시에포싸일론 화합물을 에폭시화 반응하여 다음 화학식 1b로 표시되는 에포싸일론 화합물을 제조하는 과정.
상기 반응식 1에서, R은 수소원자 또는 탄소수 1 내지 6의 알킬기를 나타내고, TBS는 tert-뷰틸다이메틸실릴기를 나타낸다.
본 발명은 상기한 바와 같은 본 발명의 제조방법을 그 과정별로 보다 상세히 설명하면 다음과 같다.
먼저, 상기 화학식 2로 표시되는 케톤산 유도체와 상기 화학식 3으로 표시되는 페닐설폰 치환된 알데하이드 유도체를 염기(예를 들면, 리튬 다이아이소프로필아마이드(LDA)) 조건하에서 -90 ℃ 내지 -40 ℃의 반응온도로 알돌축합 반응하여 상기 화학식 4로 표시되는 페닐설폰 치환된 하이드록시 케톤산 유도체를 제조한다. 이러한 케톤 화합물과 알데하이드 화합물의 알돌축합 반응은 본 발명에 따른 제조방법을 수행하는데 있어 가장 특이성 있게 구성된 부분이다. 즉, 케톤 화합물로는 상기 화학식 2로 표시되는 바와 같이 케톤산 형태의 유도체로 제조하여 사용하고, 알데하이드 화합물로는 상기 화학식 3으로 표시되는 바와 같이 페닐설폰 치환기가 도입되어 있어, 이들의 알돌축합 반응결과로 생성되는 상기 화학식 4로 표시되는 페닐설폰 치환된 하이드록시 케톤산 유도체는 부분이성질체의 1:1의 혼합물로 합성되는 것이 아니고 두 이성질체 중 원하는 부분이성질체의 비율이 높아 반응의 효율성을 제고하는 우수성이 있는 것이다. 현재까지 보고 되어 있는 일반적 제조방법에서는 알돌축합 반응결과물이 1 : 1 부분입체이성질체 혼합물로 합성되고, 이로써 원하는 생성물을 분리하는 데는 많은 어려움이 있어 왔다.
그 다음은, 상기 알돌축합 반응결과로 제조된 상기 화학식 4로 표시되는 화합물로부터 페닐설폰기(-SO2Ph)를 제거한 후, 상기 화학식 5로 표시되는 입체선택성을 가지는 하이드록시 케톤산 유도체를 제조한다. 페닐설폰기(-SO2Ph)의 제거반응은 예컨대 소듐/아말감 수은(Na/Hg)을 사용하여 수행할 수 있다. 또한, 이성질체의 분리는 통상의 방법(예, 실리카겔 크로마토그래피)에 의하여 수행하더라도 충분히 고 순도의 이성질체를 분리할 수 있게 된다.
그 다음은, 상기에서 제조한 화학식 5로 표시되는 이성질체 화합물을 상기 화학식 6으로 표시되는 싸이아졸 알코올 유도체와 결합 반응하여 다음 화학식 7로 표시되는 에스터 유도체를 제조한다. 상기 결합반응은 결합제로서 1-(3-다이메틸아미노프로필)-3-에틸카복스다이이미드 하이드로클로라이드(EDC)를 사용하는 통상의 반응 조건에 의하여 수행한다.
그 다음은 상기 화학식 7로 표시되는 화합물을 그룹스(Grubbs) 촉매를 사용한 이중결합간 결합반응을 수행하여 고리화된 락톤 유도체를 제조한 후에, 보호기(TBS)를 제거하여 본 발명이 목적하는 상기 화학식 1a로 표시되는 디옥시에포싸일론 화합물을 제조한다. tert-뷰틸다이메틸실릴(TBS) 보호기의 제거방법은 트라이플루오로아세트산(CF3CO2H)을 사용하는 통상의 방법에 의한다. 그리고, 이중결합간 결합반응에 사용되는 그룹스(Grubbs) 촉매[Org. Lett., 1999, 1, 953-956]는 공지 촉매로 다음과 같다 :
그 다음은, 상기 화학식 1a로 표시되는 디옥시에포싸일론 화합물을 에폭시화 반응하여 본 발명이 목적하는 상기 화학식 1b로 표시되는 에포싸일론 화합물을 제조한다. 에폭시화 반응은 다이메틸다이옥시레인을 사용하여 -40 ℃ 내지 0 ℃ 온도범위에서 수행한다.
이상에서 설명한 바와 같은 본 발명의 제조방법에 의하면, 에포싸일론 A, 에포싸일론 B, 디옥시에포싸일론 A, 디옥시에포싸일론 B를 비롯한 이의 유도체를 고 순도와 고 수율로 합성할 수 있게 된다.
또한, 본 발명이 원료물질로 사용하는 상기 화학식 2, 화학식 3 및 화학식 6으로 표시되는 각각의 화합물의 제조방법은 다음과 같다.
상기 화학식 2로 표시되는 케톤산 유도체의 경우는 다음 반응식 2에 표시되는 제조방법으로 제조할 수 있다.
상기 반응식 2에 따른 제조방법에 의하면, 우선 상기 화학식 2-1로 표시되는 옥사졸리논 유도체를 n-BuLi 등의 염기 조건하에서 브로모아세틸 브로마이드(BrCOCH2Br)로 처리하여 상기 화학식 2-2로 표시되는 옥사졸리디논 아세틸 브로마이드 유도체를 제조한다. 그리고, 제조된 상기 화학식 2-2로 표시되는 화합물을 상기 화학식 2-3으로 표시되는 알데하이드 유도체와 사마리움(Ⅱ) 아이오다이드(SmI2)의 Reformasky 반응을 -90 내지 -60 ℃ 온도범위에서 수행한 후에 하이드록시기를 tert-뷰틸다이메틸실릴기(TBS)로 보호하여 다음 화학식 2-4로 표시되는 옥사졸리디논 유도체를 제조한다. 그리고, 제조된 상기 화학식 2-4로 표시되는 화합물을 0 ℃ 내지 상온의 온도범위에서 수산화리튬 및 과산화수소 용액을 사용한 환원 반응하여 상기 화학식 2로 표시되는 케톤산 유도체를 제조한다.
본 발명의 제조방법이 원료물질로 사용하는 상기 화학식 3으로 표시되는 페닐설폰 치환된 알데하이드 유도체의 경우는 다음 반응식 3에 표시되는 제조방법으로 제조할 수 있다.
상기 반응식 3에 따른 제조방법에 의하면, 우선 상기 화학식 3-1로 표시되는 tert-뷰틸다이메틸실릴(TBS) 보호된 페닐설폰산 유도체[J. Org. Chem. 2000, 65, 7456-7467]를 리튬 다이아이소프로필아마이드(LDA) 등의 염기 조건하에서 알켄일 브로마이드와 알켄일화 반응하여 상기 화학식 3-2로 표시되는 화합물을 제조한다, 그리고, 상기 화학식 3-2로 표시되는 화합물을 테트라뷰틸암모늄 플루오라이드(Bu4NF) 등으로 처리하여 tert-뷰틸다이메틸실릴(TBS) 보호기를 제거하여 하이드록시기로 전환하므로써 상기 화학식 3-3으로 표시되는 알코올 화합물을 제조한다. 그리고, 상기 화학식 3-3으로 표시되는 화합물을 산화하여 하이드록시기를 알데하이드기로 전환하여 상기 화학식 3으로 표시되는 페닐설폰 치환된 알데하이드 유도체를 제조한다.
본 발명의 제조방법이 원료물질로 사용하는 상기 화학식 6으로 표시되는 싸이아졸 알코올 유도체의 경우는 다음 반응식 4에 표시되는 제조방법으로 제조할 수 있다.
상기 반응식 4에 따른 제조방법에 의하면, 싸이아졸알데하이드[J. Heterocycl. Chem. 1979, 16, 1563; J. Heterocycl. Chem. 1989, 26, 1627]를 (S)-(-)-1,1'-바이-2-나프톨((S)-BINOL)과 Zr(OtBu)4를 사용하여 알릴 트라이뷰틸틴과의 비대칭 알릴화 반응하여 제조할 수 있다.
이상에서 설명한 바와 같은 본 발명은 다음의 실시예에 의거하여 더욱 상세히 설명하겠는 바, 본 발명이 이에 한정되는 것은 아니다.
실시예 1 : (-)-3 S -2-메틸-1-(2-메틸싸이아졸-4-일)-1,5-헥사다이엔-3-올 (화학식 6)
(S)-(-)-1,1'-바이-2-나프톨 ((S)-BINOL, 240 mg, 0.90 mmol)과 4Å 분자체(2.00 g)로 건조한 톨루엔(10 mL), 건조 피발로나이트릴(1.0 mL) 및 Zr(OtBu)(350 μL, 0.90 mmol)을 가하고 반응 혼합물을 1시간 동안 실온에서 교반하였다. -78 ℃에서 알릴 트라이뷰틸틴(1.40 mL, 4.50 mmol)과 씨이아졸카복스알데하이드(500 mg, 4.5 mmol)를 서서히 가하였다. 0 ℃에서 1시간 반응시킨 후, 반응 혼합물을 실온으로 올리고 24시간 동안 교반하였다. 포화 NaHCO3 수용액으로 반응을 종결하고 30분간 더 교반하였다. 반응 혼합물을 에터로 추출 후 유기층을 무수 황산마그네슘으로 건조하고 용매를 감압하에 제거하고 실리카겔 관 크로마토그래피(헥세인:에틸 아세이트 = 2:1)로 분리하여 목적 화합물(590 mg, 94 %)을 얻었다.
[α]20 D -24.4°(c 1.78, CHCl3); 1H NMR(300 MHz, CDCl 3) δ6.90(s, 1H), 6.53(s, 1H), 5.79(ddd, J=17.1, 10.0, 7.1Hz, 1H), 5.10(d, J=16.9 Hz, 1H), 5.06(d, J=9.2 Hz, 1H), 4.18(t, J=6.3 Hz, 1H), 3.36(brs, 1H), 2.68(s, 3H), 2.44 2.29(m, 2H), 1.98(s, 3H).
실시예 2: (-)-2 S -4-벤젠설폰일-2-메틸-6-헵텐일옥시)- tert- 뷰틸다이메틸실레인 (화학식 3-2)
페닐설폰 유도체(화학식 3-1; 2.00 g, 5.84 mmol)를 THF(15 mL)에 녹이고, 리튬다이아이소프로필아마이드 용액(LDA; 9.0 mL, 1.5 M solution in cyclohexane, 13.4 mmol)을 -78 ℃에서 서서히 가하였다. 30분 반응시킨 후, 알릴 브로마이드(610 μL, 6.13 mmol)를 서서히 가하고 그 용액을 15분 간 교반한 후 포화 NH4Cl 수용액으로 처리하고, 그 수용액을 에터로 추출하였다. 유기층을 무수 황산마그네슘으로 건조 여과하고 용매를 감압하에 제거하고 실리카겔 관 크로마토그래피(헥세인 :에틸 에터 = 4:1)로 분리하여 부분이성질체(diastereomic) 혼합물로 목적 화합물(2.08 g, 93%)을 얻었다.
실시예 3 : (-)-2 S -(4-벤젠설폰일-2,6-다이메틸-6-헵텐일옥시)- tert -뷰틸다이메틸실레인 (화학식 3-2)
페닐설폰 유도체(화학식 3-1; 2.00 g, 5.84 mmol)를 THF(15 mL)에 녹이고, 리튬다이아이소프로필아마이드 용액(LDA; 9.0 mL, 1.5 M solution in cyclohexane, 13.4 mmol)을 -78 ℃에서 서서히 가하였다. 30분 반응 후, 메탈릴브로마이드(710 μL, 7.00 mmol)를 서서히 가하고 그 용액을 15분간 교반한 후 포화 NH4Cl 수용액으로 처리하고. 그 수용액을 에터로 추출하였다. 유기층을 무수 황산마그네슘으로 건조하고 용매를 감압 하에 제거하고 실리카겔 관 크로마토그래피(헥세인:에틸 에터 = 4:1)로 분리하여 부분이성질체(diastereomeric) 혼합물로 목적 화합물(1.86 g, 80%)을 얻었다.
실시예 4 : (-)-2 S -4-벤젠설폰일-2-메틸-6-헵텐-1-올 (화학식 3-3)
알릴설폰 유도체(화학식 3-2; 3.50 g, 9.10 mmol)을 THF(30 mL)에 녹이고 테트라뷰틸암모니움 플루오라이드(13.7 mL, 1.0 M solution in THF, 13.7 mmol)를 실온에서 가하고 1시간 동안 교반하였다. 포화 NH4Cl 수용액으로 반응을 종결하고 에터로 세 번 추출하였다. 합쳐진 유기층을 무수 황산마그네슘으로 건조하고 용매를 감압 하에 제거하고 실리카겔 관 크로마토그래피(헥세인 : 에틸 아세테이트 = 2:1)로 분리하여 목적 화합물(2.30 g, 94%)을 얻었다
실시예 5 : (-)-2 S -4-벤젠설폰일-2,6-다이메틸-6-헵텐-1-올 (화학식 3-3)
메탈릴 설폰 유도체(화학식 3-2; 2.76 g, 6.96 mmol)를 THF(30 mL)에 녹이고 테트라뷰틸암모니움 플루오라이드(10.5 mL, 1.0 M solution in THF, 10.4 mmol)를 실온에서 가하고 1시간 동안 교반하였다. 포화 NH4Cl 수용액으로 반응을 종결하고 에터로 세 번(3×10 mL) 추출하였다. 합쳐진 유기층을 무수 황산마그네슘으로 건조하고 용매를 감압하에 제거하고 실리카겔 관 크로마토그래피(헥세인 : 에틸 아세테이트 = 2:1)로 분리하여 목적 화합물(1.82 g, 93%)을 얻었다.
IR(νmax, neat) 3459, 1643 cm-1; LRMS: calcd for C15H22O 3S 282.40; found. 283.15.
실시예 6 : (-)-2 S -4-벤젠설폰일-2-메틸-6-헵텐알 (화학식 3)
옥살릴클로라이드(850 μL, 9.70 mmol)를 다이클로로메탄(25 mL)에 가하고 무수 다이메틸설폭사이드(DMSO; 1.15 mL, 16.2 mmol)를 다이클로로메탄(5 mL)에 녹여 천천히 가하였다. 5분 동안 반응시킨 후 알코올 유도체(화학식 3-3; 2.17 g, 8.10 mmol)를 다이클로로메탄(15 mL)에 녹여서 가하였다. 그 용액을 -78 ℃에서 15분간 교반하고, 트라이에틸아민(3.40 mL, 24.3 mmol)을 가하고 5분간 교반 후 냉각조를 제거하고 실온으로 온도를 올렸다. 물을 가하고 다이클로로메탄층을 분리하였다. 유기층을 무수 황산마그네슘으로 건조 여과하고 용매를 감압 하에 제거하고 실리카겔 관 크로마토그래피(헥세인 : 에틸 아세테이트 = 3:1)로 분리하여 목적 화합물 (2.15 g, 95%)을 얻었다.
실시예 7 : (-)-2 S -4-벤젠설폰일-2,6-다이메틸-6-헵텐알 (화학식 3)
옥살릴클로라이드(368 μL, 4.22 mmol)를 다이클로로메탄(20 mL)에 가하고 무수 다이메틸설폭사이드(DMSO; 500 μL, 7.04 mmol)를 다이클로로메탄(2 mL)에 녹여 천천히 가하였다. 5분 동안 반응시킨 후, 알코올 유도체(화학식 3-3; 1.04 g, 3.68 mmol)를 다이클로로메탄(10 mL)에 녹여서 가하였다. 그 용액을 -78 ℃에서 15분간 교반하고, 트라이에틸아민(1.47 mL, 10.6 mmol)을 가하고 5분간 교반 후 냉각조를 제거하고 실온으로 온도를 올렸다. 그 후 반응 혼합물에 물을 가하고 디클로로메탄 층을 분리하였다. 유기층을 무수 황산마그네슘으로 건조하고 용매를 감압하에 제거하고 실리카겔 칼럼 크로마토그래피(헥세인 : 에틸 아세테이트 = 3:1)로 분리하여 목적 화합물(1.01 g, 97%)을 얻었다.
IR(νmax, neat) 2935, 1721, 1449, 1301, 1085 cm-1
실시예 8 :(-)-(4 R ,5 S )-3-(2-브로모아세틸)-4-메틸-5-페닐옥사졸린-2-온 (화학식 2-2)
옥사졸리논(화학식 2-1; 804 mg, 4,54 mmol)을 THF(10 mL)에 녹이고 n-BuLi(3.41 mL, 1.6 M solution in hexane, 5.45 mmol)을 -78 ℃에서 가한 다음, 10분 동안 반응시킨 후 브로모아세틸 브로마이드(475 μL, 5.45 mmol)를 천천히 가하였다. 그리고 약 10분 후 포화 NH4Cl 수용액으로 반응을 종결하고 에터로 두 번 추출하였다. 유기층을 물과 소금물로 세척하고 건조 후 용매를 제거하고 얻은 잔사를 실리카겔 관 크로마토그래피(헥세인 : 에틸 에터 = 4:1)로 분리하여 순수한 목적 화합물(1.23 g, 91%)을 얻었다.
[α]20 D -18.3°(c 0.037, CHCl3); 1H NMR(200 MHz, CDCl3) δ7.49-7.41(m, 3H), 7.39-7.28(m, 2H), 5.74(d, J=7.5 Hz, 1H), 4.83-4.76(m, 1H), 4.57(d, J=12.6 Hz, 1H), 4.51(d, J=12.6 Hz, 1H), 4.44(s, 2H), 0.93(d, J=6.7 Hz, 3H).
실시예 9 : (-)-(3 S ,4 R ,5 S )-3-( tert- 뷰틸다이메틸실란일옥시)-4,4-다이메틸-1-(4-메틸-2-옥소-5-페닐옥사졸리딘-3-일)-헵테인-1,5-다이온 (화학식 2-4)
사마리움 금속(1.06 g, 10.4 mmol)을 플라스크에 넣은 후 질소 분위기 하에서 열건조한 후 THF(50 mL)를 가하였다. 다이아이오도메탄(840 μL, 10.4 mmol)을 가하고 2시간 동안 교반하여 진한 청색이 되면 -78 ℃로 냉각하였다. 여기에 아실브로마이드 유도체(화학식 2-2; 1.55 g, 5.20 mmol)와 알데하이드 유도체(화학식 2-3; 800 mg, 5.20 mmol)의 혼합물을 THF(10 mL)에 녹여 첨가한 후 20분간 교반하였다. 반응 혼합물에 0.1 N HCl(20 mL)를 넣어 반응을 종결하고 냉각조를 제거하고 실온으로 상승시켰다. 반응 혼합물에 에터를 가하여 여러 번 추출한 후 에터 층을 무수 황산마그네슘으로 건조하고 용매를 감압 하에 제거하고 실리카겔 칼럼 크로마토그래피(헥세인:에틸 아세테이트 = 3:1)로 분리하여 (-)-(3S,4R,5S)-3-하이드록시-4,4-다이메틸-1-(4-메틸-2-옥소-5-페닐옥사졸리딘-3-일)-헵테인-1,5-다이온(1.54 g, 86%)을 얻었다.
[α]20 D +2.06o (c 5.40, CHCl3); 1H NMR(300 MHz, CDCl3) δ7.38-7.28(m, 5H), 5.67(d, J=7.2 Hz, 1H), 4.70(dq, J=13.0, 6.4 Hz, 1H), 4.39-4.36(m, 1H), 3.30(d, J=4.6 Hz,1H), 3.08-2.96(m, 2H), 2.63-2.48(m, 2H), 1.19(s, 3H), 1.14(s, 3H), 1.01(t, J=7.0 Hz, 3H), 0.88(d, J=6.4 Hz, 1H).
상기에서 제조한 하이드록시 화합물(1.30 g, 3.74 mmol)을 다이클로로메탄(10 mL)에 녹이고 0 ℃에서 2,6-루티딘(2.20 mL, 18.7 mmol)과 tert-부틸다이메틸실릴 트리플루오로메탄설포네이트(TBSOTf; 1.30 mL, 7.84 mmol)를 가하고 15분간 교반하였다. 반응 혼합물에 포화 NH4Cl 수용액으로 반응을 종결하고 그 용액을 다이클로로메탄으로 여러 번 추출하였다. 합친 유기 층을 무수 황산마그네슘으로 건조하고 용매를 감압 하에 제거하고 실리카겔 칼럼 크로마토그래피(헥세인:에틸 아세테이트 = 8:1)로 분리하여 목적 화합물(1.66 g, 97%)을 얻었다
[α]20 D -5.05°(c 1.65, CHCl3); 1H NMR(300 MHz, CDCl 3) δ7.42-7.37(m, 2H), 7.36-7.32(m, 3H), 5.69(d, J=7.2 Hz, 1H), 4.73-4.62(m, 2H), 3.24(dd, J=16.4, 6.3 Hz, 1H), 2.85(dd, J=16.5, 4.8 Hz, 1H), 2.62-2.46(m, 2H), 1.15(s, 6H), 1.00(t, J=7.0 Hz, 3H), 0.91 (d, J=3.3 Hz, 3H), 0.86(s, 9H), 0.09(s, 3H), 0.08(s, 3H).
실시예 10 : (-)-3 S -( tert -뷰틸다이메틸실라닐옥시)-4,4-다이메틸-5-옥소-헵테인산 (화학식 2)
실릴화합물(화학식 2-4; 1.50 g, 3.25 mmol)을 THF/H2O(3/1)의 혼합 용매(10 mL)에 녹인 다음 30% 과산화수소수(2.20 mL, 19.5 mmol)를 0 ℃에서 가하였다. 10분간 그 온도에서 교반 후 LiOH·H2O(273 mg, 6.50 mmol)을 반응 혼합물에 가하고 1시간 동안 교반하였다. 10% 아황산 소듐 수용액(5 mL)을 가하고 THF를 감압하에 제거하고 잔류물을 0.1N HCl로 산성화하고 그 용액을 에터로 추출한 후 무수 황산마그네슘으로 건조 후 용매를 감압 하에 제거하였다. 잔사를 실리카겔 관 크로마토그래피(헥세인 : 에틸 아세테이트 = 2:1)로 분리하여 무색 액체로 목적 화합물(900 mg, 92%)을 얻었다.
[α]20 D -17.0o (c 1.83, CHCl3); 1H NMR(300 MHz, CDCl3) δ10.6(brs, 1H), 4.47(dd, J=7.0, 3.5 Hz, 1H), 2.58-2.45(m, 3H), 2.32(dd, J=16.3, 7.0 Hz, 1H), 1.14(s, 3H), 1.07(s, 3H), 0.99(t, J=7.0 Hz, 3H), 0.83(s, 9H), 0.02(s, 3H), -0.06(s, 3H).
실시예 11 : (-)-(3 S ,6 R ,7 S ,8 S )-10-벤젠설폰일-3-( tert- 뷰틸다이메틸실란일옥시)-7-하이드록시-4,4,6,8 -테트라메틸-5-옥소-12-트라이데켄산 (화학식 4)
케톤산 화합물(화학식 2; 1.00 g, 3.31 mmol)를 THF(5 mL)에 녹이고 리튬 다이이소프로필아미드(2.1 eq, 6.95 mmol)를 -78 ℃에서 가하고 15분간 교반하였다. 반응온도를 -30 ℃로 상승시켜 45분간 교반하고 다시 -78 ℃로 냉각 후 알데하이드 화합물(화학식 3; 880 mg, 3.31 mmol)을 반응 혼합물에 첨가하였다. 20분간 교반 후 포화 NH4Cl 수용액으로 반응을 종결하고 에터로 두 번 추출하였다. 합친 에터 층을 무수 황산마그네슘으로 건조 후 용매를 감압 하에 제거하고 잔사를 실리카겔 관 크로마토그래피(헥세인:에틸 아세테이트=2:1)로 분리하여 무색 액체로 목적 화합물(1.57g, 87%)을 얻었다.
실시예 12 : (-)-(3 S ,6 R ,7 S ,8 S )-10-벤젠설폰일-3-( tert- 뷰틸다이메틸실란일옥시)-7-하이드록시-4,4,6,8,12-펜타메틸-5-옥소-12-트라이데켄산(화학식 4)
케톤산 화합물(화학식 2; 250 mg, 0.83 mmol)을 THF(1 mL)에 녹이고 리튬다이아이소프로필아미드(1.3 mL, 1.91 mmol, n-BuLi과 다이아이소프로필아민으로부터 즉석에서 제조)를 -78 ℃에서 가하고 15분간 교반하였다. 반응온도를 -30 ℃로 상승시켜 45분간 교반하고 다시 -78 ℃로 냉각 후 알데하이드 화합물(화학식 3; 220 mg, 0.83 mmol)을 반응 혼합물에 첨가하였다. 20분간 교반 후 포화 NH4Cl 수용액으로 반응을 종결하고 에터로 두 번 추출하였다. 합친 에터 층을 무수 황산마그네슘으로 건조 후 용매를 감압 하에 제거하고 잔사를 실리카겔 관 크로마토그래피(헥세인 : 에틸 아세테이트 = 2:1)로 분리하여 무색 액체로 목적 화합물 (450 mg, 94%)을 얻었다.
실시예 13 : (-)-(3 S ,6 R ,7 S ,8 S )-3-( tert- 뷰틸다이메틸실란일옥시)-7-하이드록시-4,4,6,8-테트라메틸-5-옥소-12-트라이데켄산 (화학식 5)
소듐/수은 아말감(6.00 g, 2 eq)과 일수소인산 다이소듐(Na2HPO4, 8.00 g, 20 eq)을 무수 메탄올(50 mL)을 넣고 10분간 교반 후, 이 현탁액에 페닐설폰치환 화합물(화학식 4; 1.00 g, 1.76 mmol)을 메탄올(2 mL)에 녹여서 가하였다. 3시간 교반한 다음 물을 가하여 반응을 종결하고 에터로 세 번 추출하였다. 합친 에터 층을 무수 황산마그네슘으로 건조 후 용매를 감압 하에 제거하고 잔사를 실리카겔 관 크로마토그래피(헥세인 : 에틸 아세테이트 = 2:1)로 분리하여 무색 액체로 목적 화합물(680 mg, 90%)을 얻었다.
[α]20 D -39.3o (c 1.96, CHCl3); 1H NMR(300 MHz, CDCl3) δ5.86-5.76(m, 1H), 5.02-4.91(m, 2H), 4.40(dd, J=6.6, 3.3 Hz, 1H), 3.31(d, J=9.4 Hz, 1H), 3.30(q, J=6.8 Hz, 1H), 2.46(dd, J=16.6, 3.3 Hz, 1H,), 2.32(dd, J=16.6, 6.7 Hz, 1H), 2.08-1.97(m. 2H), 1.78-1.70(m, 1H), 1.58-1.45(m, 2H), 1.37-1.22(m, 2H), 1.19(s, 3H), 1.14(s, 3H), 1.04(d, J=6.9 Hz, 3H), 0.87(s, 9H,), 0.83(d, J=6.6 Hz, 3H), 0.09(s, 3H2), 0.05(s, 3H).
실시예 14 :
(-)-(3 S , 6 R ,7 S , 8 S )-3-( tert- 뷰틸다이메틸실란일옥시)-7-하이드록시-4,4,6,8,12-펜타메틸-5-옥소-12-트라이데켄산 (화학식 5)
소듐/수은 아말감(930 mg, 2 eq)과 일수소인산 다이소듐(1.85 g, 20 eq) 을 무수 메탄올(20 mL)을 넣고 10분간 교반 후, 이 현탁액에 페닐설폰치환 화합물(화학식 4; 450 mg, 0.77 mol)을 메탄올(5 mL)에 녹여서 가하였다. 3시간 교반한 다음 물을 가하여 반응을 종결하고 메탄올을 감압 하에 제거하고 수용액을 에터로 세 번 추출 하였다. 합친 에터 층을 무수 황산마그네슘으로 건조 후 용매를 감압 하에 제거하고 잔사를 실리카겔 관 크로마토그래피(헥세인:에틸 아세테이트 = 2:1)로 분리하여 무색 액체로 목적 화합물(310 mg, 91%)을 얻었다.
[α]20 D -32.0o (c 1.10, CHCl3);1H NMR(300 MHz, CDCl3) δ4.69(s, 1H), 4.66(s, 1H), 4.41(dd, J=6.5, 3.4 Hz, 1H), 3.31(d, J=9.0 Hz, 1H), 3.27(dd, J=13.5, 6.5 Hz, 1H), 2.47(dd, J=6.5, 3.3 Hz, 1H,), 2.33(dd, J=16.5 Hz, 6.6 Hz, 1H), 2.04-1.92(m, 2H), 1.80-1.65(m, 1H), 1.70(s, 3H,), 1.57-1.53(m, 2H), 1.45-1.20(m, 2H), 1.20(s, 3H), 1.15(s, 3H), 1.04(d, J=6.8 Hz, 3H), 0.88(s, 9H), 0.85(d, J=6.8 Hz, 3H), 0.01(s, 3H), 0.06(s, 3H).
실시예 15 :
(-)-(1 S ,3 S ,6 R ,7 S ,8 S )-3-( tert- 뷰틸다이메틸실란일옥시)-7-하이드록시-4,4,6,8-테트라메틸-5-옥소-12-트라이데켄산-[1-메틸-2-(2-메틸싸이아졸-4-일)바이닐]-3-뷰테닐 에스터 (화학식 7)
하이드록시 케톤산 유도체(화학식 5; 123 mg, 0.29 mmol)과 싸이아졸 알코올 (화학식 6; 180 mg, 0.86 mmol), 4-다이메틸아미노피리딘(DMAP; 3 mg, 0.026 mmol)을 다이클로로메탄(2 mL)에 녹여서 0 ℃로 냉각하고 1-(3-다이메틸아미노프로필)-3-에틸카복스다이이미드 하이드로클로라이드(EDC; 52 mg, 0.27 mmol)를 가하고 2시간 동안 그 온도에서 교반하였다. 이 용액을 감압 하에 용매를 제거하고 잔사에 물을 가하고 에틸아세테이트로 추출한 후 유기층을 무수 황산마그네슘으로 건조 후 용매를 감압 하에 제거하고 잔사를 실리카겔 관 크로마토그래피(헥세인:에틸 아세테이트 = 10:1)로 분리하여 무색 액체로 목적 화합물(128 mg, 72%)을 얻었다
[α]20 D -55.2o (c 1.326, CHCl3); 1H NMR(300 MHz, CDCl3) δ6.97(s, 1H), 6.51(s, 1H), 5.86-5.65(m, 2H), 5.59(t, J=6.7 Hz, 1H), 5.09(d, J=18.1 Hz, 2H), 5.02(d, J=8.3 Hz, 1H), 4.93(d, J=15.2 Hz), 4.83(d, J=10.7 Hz, 1H), 4.40(dd, J=5.5, 3.8 Hz, 1H), 3.42(brs, 1H), 3.28(q, J=6.7 Hz, 1H), 3.25(d, J=8.7 Hz, 1H), 2.72(s, 3H), 2.51-2.44(m, 3H), 2.32(dd, J=17.1, 5.9 Hz, 1H), 2.05(s, 3H), 2.05-1.96(m. 2H), 1.76-1.65(m, 1H), 1.52-1.38(m, 2H), 1.32-1.11(m, 2H), 1.19(s, 3H), 1.10(s, 3H), 1.02(d, J=6.8 Hz, 3H), 0.87(s, 9H), 0.82(d, J=6.7 Hz, 3H), 0.10(s, 3H), 0.05(s, 3H).
실시예 16 :
(-)-(1 S ,3 S ,6 R ,7 S ,8 S )-3-( tert- 뷰틸다이메틸실란일옥시)-7-하이드록시-4,4,6,8,12-펜타메틸-5-옥소-12-트라이데켄산-[( E )-1-메틸-2-(2-메틸싸이아졸-4-일)바이닐]-3-뷰테닐 에스터 (화학식 7)
하이드록시 케톤산 유도체(화학식 5; 420 mg, 0.95 mmol)와 싸이아졸 알코올 (화학식 6; 800 mg, 3.82 mmol), 4-다이메틸아미노피리딘(DMAP; 12 mg, 0.096 mmol)을 다이클로로메탄에 녹여서 0 ℃로 냉각하고 1-(3-다이메틸아미노프로필)-3-에틸카복스다이이미드 하이드로클로라이드(EDC; 220 mg, 1.15 mmol)를 가한 다음 2시간 동안 그 온도에서 교반하였다. 이 용액을 감압 하에 용매를 제거하고 잔사에 물을 가하고 에틸아세테이트로 추출한 후 유기층을 무수 황산마그네슘으로 건조 후 용매을 감압하에 제거하고 잔사를 실리카겔 관 크로마토그래피(헥세인:에틸 아세테이트 = 10:1)로 분리하여 무색 액체로 목적 화합물(530 mg, 88%)을 얻었다.
[α]20 D -54.3o (c 2.2, CHCl3); 1H NMR(300 MHz, CDCl3) δ6.95(s, 1H), 6.49(s, 1H), 5.78-5.65(m, 2H), 5.29(t, J=6.8Hz, 1H), 5.10(d, 1H, J=18.5 Hz), 5.07(d, 1H, J=10.5 Hz), 4.73-4.68(m, 1H), 4.67(s, 1H), 4.65(s, 1H), 4.40(dd, J=5.7, 4.0Hz, 1H), 3.44(brs, 1H), 3.34-3.25(m, 2H), 2.72(s, 3H), 2.53-2.43(m, 3H), 2.32(dd, J=17.1, 5.9Hz, 1H), 2.06(s, 3H), 2.00-1.90(m, 3H), 1.69(s, 3H), 1.57-1.48(m, 2H), 1.39-1.31(m, 1H), 1.19(s, 3H), 1.10(s, 3H), 1.05(d, J=6.8 Hz, 3H), 1.02-0.92(m, 1H), 0.88(s, 9H), 0.83(d, J=6.7 Hz, 3H), 0.11(s, 3H), 0.08(s, 3H); IR(νmax, neat) 3498, 2935, 1736, 1686, 1462, 1380, 1177, 1086 cm-1
실시예 17 :
(4 S ,7 R ,8 S ,9 S ,13 Z ,16 S )-4-( tert -뷰틸다이메틸실란일옥시)-8-하이드록시-5,5,7,9-테트라메틸-16-[( E )-1-메틸-2-(2-메틸싸이아졸-4-일)-바이닐]-13-옥사사이클로헥사데켄]-2,6-다이온 (( Z )-이성질체)
(4 S ,7 R ,8 S ,9 S ,13 E ,16 S )-4-( tert -뷰틸다이메틸실란일옥시)-8-하이드록시-5,5,7,9-테트라메틸-16-[( E )-1-메틸-2-(2-메틸싸이아졸-4-일)-바이닐]-13-옥사사이클로헥사데켄]-2,6-다이온 (( E )-이성질체)
다이엔 화합물(화학식 7; 50 mg, 80 μmol)을 다이클로로메탄(500 mL)에 녹인 다음 그룹스(Grubbs) 촉매(8.0 mg, 19 μmol)를 가하고 22시간 환류하였다. 반응혼합물을 감압 하에 농축한 후 얻은 잔류물을 실리카겔 관 크로마토그래피(헥세인 : 에틸 아세테이트=4:1→2:1)로 분리하였다.
( Z )-이성질체 :
21 mg(44% 수율); [α]20 D -81.0°(c 1.035, CHCl3); 1H NMR(300 MHz, CDCl3) δ7.03(s, 1H), 6.67(s, 1H), 5.50-5.43(m, 1H), 5.38-5.29(m, 1H), 5.00(d, J=10.7 Hz, 1H), 4.06(d, J=10.6 Hz, 1H), 3.94(brs, 1H), 3.15-3.08(m, 1H), 2.99(brs, 1H), 2.87-2.66(m, 3H), 2.82(s, 3H), 2.45-2.35(m, 1H), 2.08(s, 3H), 2.12-2.03(m. 1H), 2.00-1.91(m, 1H), 1.83-1.72(m, 1H), 1.70-1.60(m, 1H), 1.57-1.42(m, 1H), 1.35-1.18(m, 2H), 1.16(s, 6H), 1.13(d, J=6.6 Hz, 3H), 1.01(d, J=6.8 Hz, 3H), 0.75(s, 9H), 0.10(s, 3H), -0.07(s, 3H ).
( E )-이성질체 :
[α]20 D -78.0°(c 0.72, CHCl3); 18 mg(38% 수율); 1H NMR(300 MHz, CDCl3) δ7.06(s, 1H), 6.71(s, 1H), 5.43-5.21(m, 2H), 5.21-5.13(m, 1H), 4.38-4.32(m, 1H), 3.85(brs, 1H), 3.21-3.17(m, 1H), 2.81(s, 3H), 2.73-2.70(m, 2H), 2.47-2.32(m, 2H), 2.07(s, 3H), 1.65-1.54(m. 3H), 1.49-1.38(m, 2H), 1.25-1.18(m, 2H), 1.23(d, J=6.8 Hz, 3H), 1.17(s, 3H), 1.10(s, 3H), 1.01(d, J=6.8 Hz, 3H), 0.85(s, 9H), 0.10(s, 3H), -0.003(s, 3H ).
실시예 18 : 디옥시에포싸일론 A
상기 실시예 17에서 제조한 (Z)-이성질체(30 mg, 50 μmol)를 다이클로로메탄(0.5 mL) 에 녹인 다음 0 ℃로 냉각하고 20% 트라이플루오로아세트산-다이클로로메탄(0.5 mL)을 가하였다. 1시간 후 용매를 감압 하에 제거한 다음 실리카겔 관 크로마토그래피(헥세인:에틸 아세테이트= 1:1)로 정제하여 디옥시에포싸일론 A(22 mg, 90% 수율)를 얻었다.
[α]20 D -80.3°(c 1.82, CHCl3); 1H NMR(300 MHz, CDCl3) δ6.96(s, 1H), 6.60(s, 1H), 5.49-5.38(m, 2H), 5.30-5.27(m, 1H), 4.23(dd, J=11.2, 2.7 Hz, 1H), 3.72(m, 1H), 3.12(dq, J=6.8, 2.0 Hz, 1H), 3.04(brs, 1H), 2.74 2.63(m, 1H), 2.70(s, 3H), 2.50(dd, J=15.0, 11.3 Hz, 1H), 2.34(dd, J=15.0, 2.7 Hz, 1H), 2.31 2.08(m, 2H), 2.07(s, 3H), 2.06-1.98(m, 1H), 1.76-1.72(m, 1H), 1.68-1.64(m, 1H), 1.38-1.29(m, 1H), 1.33(s, 3H), 1.25-1.13(m, 2H), 1.18(d, J=6.8 Hz, 3H), 1.08(s, 3H), 1.00(d, J=7.0 Hz, 3H).
실시예 19 : 디옥시에포싸일론의 이성질체
상기 실시예 17에서 제조한 (E)-이성질체(30 mg, 50 μmol)를 사용한 것을 제외하고는 상기 실시예 18과 같은 방법으로 반응시켰다. 잔사를 실리카겔 관 크로마토그래피(헥세인:에틸 아세테이트=1:1)로 정제하여 디옥시에포싸일론의 이성질체(24 mg, 92% 수율)을 얻었다.
[α]20 D -65.4°(c 0.52, CHCl3); 1H NMR(300 MHz, CDCl 3) δ6.98(s, 1H), 6.57(s, 1H), 5.58-5.49(m, 1H), 5.42-5.38(m, 2H), 4.25(dd, J=11.2, 2.7 Hz, 1H), 3.75(m, 1H), 3.24-3.06(m, 1H), 3.06(brs, 1H), 2.76-2.65(m, 1H), 2.73(s, 3H), 2.52(dd, J=15.0, 11.3 Hz, 1H), 2.36(dd, J=15.0, 2.7 Hz, 1H), 2.33-2.10(m, 2H), 2.10(s, 3H), 2.09-2.05(m, 2H), 1.78-1.74(m, 1H), 1.63-1.45(m, 5H), 1.30(s, 3H), 1.27(s, 3H), 1.21(d, J=6.7 Hz, 3H), 1.01(d, J=6.7 Hz, 3H).
실시예 20 :
(4 S ,7 R ,8 S ,9 S ,13 Z ,16 S )-4-( tert- 뷰틸다이메틸실라닐옥시)-8-하이드록시-5,5,7,9,13-펜타메틸-16-[( E )-1-메틸-2-(2-메틸싸이아졸-4-일)-바이닐]-13-옥사사이클로헥사데켄]-2,6-다이온 (( Z )-이성질체)
(4 S ,7 R ,8 S ,9 S ,13 E ,16 S )-4-( tert- 뷰틸다이메틸실라닐옥시)-8-하이드록시-5,5,7,9,13-펜타메틸-16-[( E )-1-메틸-2-(2-메틸싸이아졸-4-일)-바이닐]-13-옥사사이클로헥사데켄]-2,6-다이온 (( E )-이성질체)
다이엔 화합물(화학식 7; 40 mg, 63 μmol)을 다이클로로메탄(50 mL)에 녹인 다음 그룹스(Grubbs) 촉매(16 mg, 19 μmol)를 가하고 12시간 환류하였다. 반응 혼합물을 감압 하에 농축한 후 얻은 잔류물을 실리카겔 관 크로마토그래피(헥세인 : 에틸 아세테이트 = 2:1)로 분리하였다.
( Z )-이성질체 :
14 mg(37% 수율); [α]20 D -60.6°(c 0.81, CHCl3); 1H NMR(300 MHz, CDCl3) δ6.96(s, 1H), 6.54(s, 1H), 5.14(dd, J=10.0, 6.0Hz, 1H), 4.97(d, J=10.4 Hz, 1H), 4.05(dd, J=8.0, 4.3Hz, 1H), 3.93(brs, 1H), 3.09-3.01(m, 1H), 2.92(brs, 1H), 2.77-2.75(m, 2H), 2.70(s, 3H), 2.53-2.38(m, 2H), 2.36-2.25(m, 1H), 2.04(s, 3H), 1.80-1.73(m, 1H), 1.59(s, 3H), 1.48-1.34(m, 1H), 1.30-1.22(m, 2H), 1.13(s, 6H), 1.10(s, 3H), 1.02(d, J=7.0 Hz, 3H), 0.86(d, J=7.2 Hz, 3H), 0.82(s, 9H), 0.11(s, 3H), -0.08(s, 3H).
( E )-이성질체 :
12 mg(32% 수율); [α]20 D -53.0°(c 0.83, CHCl3); 1H NMR(300 MHz, CDCl3) δ6.92(s, 1H), 6.45(s, 1H), 5.42(brs, 1H), 4.67-4.65(m, 1H), 4.41(dd, J=5.7, 3.9Hz, 1H), 3.42(brs, 1H), 2.70(s, 3H), 2.43-2.30(m, 4H), 2.08-1.96(m, 2H), 1.98(s, 3H), 1.72-1.63(m, 1H), 1.67(s, 3H), 1.60-1.39(m, 3H), 1.30-1.22(m, 2H), 1.19(s, 3H), 1.10(s, 3H), 1.01(d, J=6.8 Hz, 3H), 0.88(s, 9H), 0.83(d, J=6.7 Hz, 3H), 0.08(s, 3H), 0.05(s, 3H).
실시예 21 : 디옥시에포싸일론 B
상기 실시예 20에서 제조한 (Z)-이성질체(35 mg, 50 μmol)를 사용한 것을 제외하고는 상기 실시예 18과 같은 방법으로 반응시켰다. 잔사를 실리카겔 관 크로마토그래피(헥세인 : 에틸 아세테이트 = 2:1)로 정제하여 디옥시에포싸일론 B(25 mg, 85%)를 얻었다.
[α]20 D -67.0°(c 0.80, CHCl3); 1H NMR(300 MHz, CDCl3) δ6.96(s, 1H), 6.60(s, 1H), 5.22(d,J=8.8 Hz, 1H), 5.15(dd, J=9.7, 5.1 Hz, 1H), 4.28(d, J=9.0 Hz, 1H), 3.72(m, 1H), 3.12(dq, J=6.8, 2.0 Hz, 1H), 3.04(brs, 1H), 2.74-2.63(m, 1H), 2.70(s, 3H), 2.50(dd, J=15.0, 11.3 Hz, 1H), 2.34(dd, J=15.0, 2.7 Hz, 1H), 2.31 2.08(m, 2H), 2.07(s, 3H), 1.92-1.84(m, 1H), 1.66(s, 3H), 1.38-1.21(m, 4H), 1.33(s, 3H), 1.18(d, J=6.8 Hz, 3H), 1.08(s, 3H), 1.00(d, J=7.0 Hz, 3H).
실시예 22 : 디옥시에포싸일론 B의 이성질체
상기 실시예 20에서 제조한 (E)-이성질체(35 mg, 50 μmol)를 사용한 것을 제외하고는 상기 실시예 18과 같은 방법으로 반응시켰다. 잔사를 실리카겔 관 크로마토그래피(헥세인 : 에틸 아세테이트 = 2:1)로 정제하여 디옥시에포싸일론 B의 이성질체(27 mg, 92%)를 얻었다.
[α]20 D -58.0°(c 0.40, CHCl3); 1H NMR(300 MHz, CDCl 3) δ6.98(s, 1H), 6.58(s, 1H), 5.49-5.38(m, 2H), 5.30 5.27(m, 1H), 4.23(dd, J=11.2, 2.7 Hz, 1H), 3.72(m, 1H), 3.12(dq, J=6.8, 2.0 Hz, 1H), 3.04(brs, 1H), 2.74-2.63(m, 1H), 2.71(s, 3H), 2.53(dd, J=15.0, 10.0 Hz, 1H), 2.41(dd, J=15.0, 2.7 Hz, 1H), 2.17(brs, 1H), 2.07(s, 3H), 2.06 1.98(m, 1H), 1.76-1.72(m, 1H), 1.68-1.64(m, 1H), 1.38-1.29(m, 1H), 1.29(s, 3H), 1.26(s, 3H), 1.25-1.13(m, 2H), 1.17(d, J=6.8 Hz, 3H), 1.05(s, 3H), 0.99(d, J=6.9 Hz, 3H).
실시예 23: 에포싸일론 A
디옥시에포싸일론 A(15 mg, 25 μmol)를 다이클로로메탄(2 mL)에 녹이고, -20 ℃에서 즉석에서 제조한 3,3-다이메틸다이옥시레인(2.3 mL, 0.09 M in acetone)을 가하였다. 2시간 교반 후 FeSO4 수용액 (10%, 5 mL)을 가하였다. 수용액을 에터로 세 번 추출하였다. 합친 유기 층을 무수 황산 마그네슘으로 건조 후 용매을 감압 하에 제거하고 잔사를 실리카겔 관 크로마토그래피(헥세인 : 에틸 아세테이트 = 2:1)로 분리하여 흰색 고체로 에포싸일론 A(13.0 mg, 82%)를 얻었다.
[α]20 D -43.8°(c 0.52, CHCl3); 1H NMR(300 MHz, CDCl 3) δ6.98(s, 1H), 6.60(s, 1H), 5.42(dd, J=9.4, 1.7 Hz, 1H), 4.20-4.18(m, 1H), 3.92(brd, J=5.9 Hz, 1H), 3.80(brs, 1H), 3.20(dq, J=6.9, 4.7 Hz, 1H), 3.02(dt, J=8.0, 4.1 Hz, 1H), 2.90(dt, J=8.0, 4.0 Hz, 1H), 2.70(s, 3H), 2.54(dd, J=14.5, 10.5 Hz, 1H), 2.42(dd, J=14.4, 3.2 Hz, 1H), 2.17-2.12(m, 1H), 2.10(s, 3H), 1.88(dt, J=15.1, 8.5 Hz, 1H), 1.81-1.65(m, 2H), 1.56-1.32(m, 5H), 1.37(s, 3H), 1.18(d, J=6.5 Hz, 3H) 1.10(s, 3H), 1.01(d, J=6.9 Hz, 3H).
실시예 24 : 에포싸일론 B
디옥시에포싸일론 B(15 mg, 25 μmol)를 다이클로로메탄(2 mL)에 녹이고, -20 ℃에서 즉석에서 제조한 3,3-다이메틸다이옥시레인(2.3 mL, 0.09 M in acetone)을 가하였다. 수용액을 에터로 세 번 추출하였다. 합친 유기 층을 무수 황산 마그네슘으로 건조 후 용매을 감압 하에 제거하고 잔사를 실리카겔 관 크로마토그래피(에틸 에터 : 다이클로로메탄 = 1:1)로 분리하여 흰색 고체로 에포싸일론 B(12.4 mg, 80%)를 얻었다.
[α]20 D -31.5°(c 0.70, CHCl3); 1H NMR(300 MHz, CDCl 3) δ6.97(s, 1H), 6.59(s, 1H), 5.42(dd, J=7.9, 2.8 Hz, 1H), 4.27(brs, 2H), 3.79(brs, 1H), 3.30(qd J=6.9, 4.1 Hz, 1H), 2.80(qd, J=7.6, 4.7 Hz, 1H), 2.70(s, 3H), 2.54(dd, J=14.5, 10.5 Hz, 1H), 2.36(dd, J=14.4, 2.9 Hz, 1H), 2.17-2.12(m, 1H), 2.10(s, 3H), 1.88(qd, J=15.1, 8.5 Hz, 1H), 1.81-1.65(m, 2H), 1.56-1.32(m, 5H), 1.27(s, 3H), 1.18(d, J=6.5 Hz, 3H), 1.10(s, 3H), 1.01(d, J=6.9 Hz, 3H).
이상에서 설명한 바와 같이, 본 발명의 제조방법에 의하면 항암 효과가 우수한 것으로 알려져 있는 에포싸일론과 이의 유도체를 고 순도 및 고 수율로 전합성을 가능케 하며 활성이 탁월한 항암제 개발을 용이하게 할 수 있다.

Claims (8)

  1. ⅰ) 다음 화학식 2로 표시되는 케톤산 유도체와 다음 화학식 3으로 표시되는 페닐설폰 치환된 알데하이드 유도체를 알돌축합 반응하여 다음 화학식 4로 표시되는 페닐설폰 치환된 하이드록시 케톤산 유도체를 제조하는 과정;
    ⅱ) 상기 화학식 4로 표시되는 화합물로부터 페닐설폰기(-SO2Ph)를 제거한 후, 다음 화학식 5로 표시되는 입체선택성을 가지는 하이드록시 케톤산 유도체를 제조하는 과정;
    ⅲ) 상기 화학식 5로 표시되는 이성질체 화합물과 다음 화학식 6으로 표시되는 싸이아졸 알코올 유도체를 결합 반응하여 다음 화학식 7로 표시되는 에스터 유도체를 제조하는 과정;
    ⅳ) 상기 화학식 7로 표시되는 화합물을 그룹스(Grubbs) 촉매를 사용한 이중결합간 결합반응을 수행한 후에 보호기(TBS)를 제거하여 다음 화학식 1a로 표시되는 디옥시에포싸일론 화합물을 제조하는 과정; 및
    ⅴ) 상기 화학식 1a로 표시되는 디옥시에포싸일론 화합물을 에폭시화 반응하여 다음 화학식 1b로 표시되는 에포싸일론 화합물을 제조하는 과정이
    포함되는 것을 특징으로 하는 에포싸일론 유도체의 제조방법 :
    상기 반응식 1에서, R은 수소원자 또는 탄소수 1 내지 6의 알킬기를 나타내고, TBS는 tert-뷰틸다이메틸실릴기를 나타낸다.
  2. 제 1 항에서, 상기 화학식 2로 표시되는 케톤산 유도체는
    (a) 다음 화학식 2-1로 표시되는 옥사졸리논 유도체를 염기 조건하에서 브로모아세틸 브로마이드로 처리하여 다음 화학식 2-2로 표시되는 옥사졸리디논 아세틸 브로마이드 유도체를 제조하고, (b) 제조된 상기 화학식 2-2로 표시되는 화합물을 다음 화학식 2-3으로 표시되는 알데하이드 유도체와 반응한 후에 하이드록시기를 tert-뷰틸다이메틸실릴기(TBS)로 보호하여 다음 화학식 2-4로 표시되는 케토 옥사졸리디논 유도체를 제조하고, (c) 제조된 상기 화학식 2-4로 표시되는 화합물을 수산화 리튬와 과산화수소 용액을 사용한 환원 반응하여 케톤산으로 전환하는 과정을 수행하여 제조 사용하는 것을 특징으로 하는 제조방법 :
    상기에서, TBS는 tert-뷰틸다이메틸실릴기를 나타낸다.
  3. 제 1 항에서, 상기 화학식 3으로 표시되는 페닐설폰 치환된 알데하이드 유도체는
    (a) 다음 화학식 3-1로 표시되는 tert-뷰틸다이메틸실릴기(TBS) 보호된 페닐설폰산 유도체를 염기 조건하에서 알켄일 브로마이드와 알켄화 반응하여 다음 화학식 3-2로 표시되는 화합물을 제조하고; (b) 제조된 상기 화학식 3-2로 표시되는 화합물의 tert-뷰틸다이메틸실릴(TBS) 보호기를 제거하여 하이드록시기로 전환하여 다음 화학식 3-3으로 표시되는 알코올 화합물을 제조하고; (c) 제조된 상기 화학식 3-3으로 표시되는 화합물을 산화하여 하이드록시기를 알데하이드기로 전환하는 과정을 수행하여 제조 사용하는 것을 특징으로 하는 제조방법 :
  4. 제 1 항에서, 상기 화학식 6으로 표시되는 싸이아졸 알코올 유도체는
    싸이아졸 카복스알데하이드를 비대칭 알릴화 반응하여 제조 사용하는 것을 특징으로 하는 제조방법 :
  5. 제 4 항에서, 상기 비대칭 알릴화 반응은 (S)-(-)-1,1'-바이-2-나프톨((S)-BINOL)과 Zr(OtBu)4의 존재하에서 알릴 트라이뷰틸틴과 반응시키는 것을 특징으로 하는 제조방법.
  6. 제 1 항에 있어서, ⅳ) 상기 그룹스(Grubbs) 촉매가
    또는 인 것을 특징으로 하는 제조방법.
  7. 제 1 항에 있어서, ⅴ) 상기 화학식 8로 표시되는 화합물을 트라이플루오르산(CF3COOH) 또는 불화수소산(HF)으로 처리하여 tert-뷰틸다이메틸실릴(TBS) 보호기를 제거하는 것을 특징으로 하는 제조방법.
  8. 제 1 항에 있어서, 상기 ⅴ) 에폭시화 반응은 m-클로로과벤조산 또는 다이메틸다이옥시레인을 사용하여 수행하는 것을 특징으로 하는 제조방법.
KR10-2003-0023721A 2003-04-15 2003-04-15 에포싸일론 유도체의 제조방법 KR100491337B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-0023721A KR100491337B1 (ko) 2003-04-15 2003-04-15 에포싸일론 유도체의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0023721A KR100491337B1 (ko) 2003-04-15 2003-04-15 에포싸일론 유도체의 제조방법

Publications (2)

Publication Number Publication Date
KR20040089887A KR20040089887A (ko) 2004-10-22
KR100491337B1 true KR100491337B1 (ko) 2005-05-24

Family

ID=37371084

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0023721A KR100491337B1 (ko) 2003-04-15 2003-04-15 에포싸일론 유도체의 제조방법

Country Status (1)

Country Link
KR (1) KR100491337B1 (ko)

Also Published As

Publication number Publication date
KR20040089887A (ko) 2004-10-22

Similar Documents

Publication Publication Date Title
US6700025B2 (en) Process for stereoselective synthesis of prostacyclin derivatives
JP4183099B2 (ja) エポチロンcおよびd、製造法ならびに組成物
JP6440896B2 (ja) ベラプロストを作製するための方法
WO2000047584A2 (de) Epothilon-derivate, verfahren zu deren herstellung und ihre pharmazeutische verwendung
JP6584696B2 (ja) 3−((2s,5s)−4−メチレン−5−(3−オキソプロピル)テトラヒドロフラン−2−イル)プロパノール誘導体の製造方法及びそのための中間体
US6350878B1 (en) Intermediates for the synthesis of epothilones and methods for their preparation
KR100491337B1 (ko) 에포싸일론 유도체의 제조방법
JP7109029B2 (ja) Pge1コアブロック誘導体およびその製造方法
KR20000075623A (ko) 제약 화합물을 제조하기 위한 선택적 에폭시화 방법
JP2896946B2 (ja) ネオカルジリン類の製造法
US7786314B2 (en) Processes for preparing bicyclo [3.1.0] hexane derivatives, and intermediates thereto
CA2050820A1 (en) In-situ preparation of diisopinocamphenyl chloroborane
DE60316456T2 (de) Neues verfahren zur herstellung von epothilone-derivaten
JP3017338B2 (ja) インドールアルカロイド誘導体製造用の新規中間体化合物
US7265229B2 (en) Method for synthesizing macrosphelides
DE19813821A1 (de) Verfahren zur Herstellung von C1-C6-Bausteinen zur Totalsynthese von Epothilon und Epothilon-Derivaten
WO2020193650A1 (fr) Procédé de préparation de composés 1,2-endoperoxyde
DE19735574A1 (de) Neue [C1(Carboxa)-C6]-Fragmente, Verfahren zu ihrer Herstellung und ihre Verwendung zur Synthese von Epothilon und Epothilonderivaten
MXPA02007077A (es) Metodo para la preparacion enantioselectiva de acido 3,3-difenil-2,3-epoxipropionico.
JP2006511469A5 (ko)
EP0478803B1 (en) Process for producing (S)-gamma-acyloxy-methyl-alpha-beta-butenolide
WO2009112077A1 (en) Process for the preparation of epothilone precursor compounds
DE10010984A1 (de) Verfahren zur Herstellung von Oxazolin-Verbindungen
DE19748928A1 (de) C13-C16-Epothilon-Bausteine zur Totalsynthese neuer Epothilon-Derivate sowie Verfahren zur Herstellung dieser Bausteine
WO2003024975A1 (en) Laulimalide-derivatives, their use and process for the production of laulimalide and laulimalide-derivatives

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100518

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee