KR100429387B1 - 적외선 감지소자 제조방법 - Google Patents

적외선 감지소자 제조방법 Download PDF

Info

Publication number
KR100429387B1
KR100429387B1 KR10-2002-0003706A KR20020003706A KR100429387B1 KR 100429387 B1 KR100429387 B1 KR 100429387B1 KR 20020003706 A KR20020003706 A KR 20020003706A KR 100429387 B1 KR100429387 B1 KR 100429387B1
Authority
KR
South Korea
Prior art keywords
low concentration
layer
type hgcdte
hgcdte layer
type
Prior art date
Application number
KR10-2002-0003706A
Other languages
English (en)
Other versions
KR20030063540A (ko
Inventor
이희철
양기동
Original Assignee
국방과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국방과학연구소 filed Critical 국방과학연구소
Priority to KR10-2002-0003706A priority Critical patent/KR100429387B1/ko
Priority to US10/342,864 priority patent/US6815250B1/en
Publication of KR20030063540A publication Critical patent/KR20030063540A/ko
Application granted granted Critical
Publication of KR100429387B1 publication Critical patent/KR100429387B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1832Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising ternary compounds, e.g. Hg Cd Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • H01L31/1032Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type the devices comprising active layers formed only by AIIBVI compounds, e.g. HgCdTe IR photodiodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

본 발명은 적외선 감지소자 제조방법에 관한 것으로, 투명기판의 상부에 저농도 p형 HgCdTe층을 형성하는 단계와; 상기 저농도 p형 HgCdTe층의 상부일부를 노출시키는 확산방지층을 형성하는 단계와; 수소 플라즈마를 이용하여 수소 이온 및 수소 원자를 상기 노출된 저농도 p형 HgCdTe층으로 확산시켜 저농도 n형 HgCdTe층을 형성하여, p-n접합을 형성하는 단계와; 상기 확산방지층을 제거하고, 상기 저농도 p형 HgCdTe층과 저농도 n형 HgCdTe층의 상부전면에 절연층을 형성하는 단계와; 상기 절연층에 콘택홀을 형성하여 상기 저농도 p형 HgCdTe층과 저농도 n형 HgCdTe층의 상부일부를 노출시키는 단계와; 상기 콘택홀 내에서 상기 저농도 p형 HgCdTe층과 저농도 n형 HgCdTe층의 상부에 각각 접하는 플러그를 형성하는 단계와; 상기 구조의 상부전면에 금속층을 증착하고, 패터닝하여 상기 플러그 각각에 접하며, 상기 절연층의 상부일부에 소정면적으로 위치하는 패드를 형성하는 단계로 구성되어 수소 플라즈마를 사용하여 저농도 p형 HgCdTe층의 일부에 선택적으로 수소 이온 또는 원자를 소정의 깊이로 확산시켜, 저농도 n형 HgCdTe층을 형성함으로써, 그 p-n접합의 계면이 손상되는 것을 방지하여, 누설전류의 발생을 방지하는 효과와 아울러 단순한 공정을 사용하여 제조단가의 상승을 방지함과 아울러 수율을 증가시키는 효과가 있다.

Description

적외선 감지소자 제조방법{MANUFACTURING METHOD FOR INFRARED DETECTOR}
본 발명은 적외선 감지소자 제조방법에 관한 것으로, 특히 수소 플라즈마를 이용한 확산법을 사용하여 손상없이 HgCdTe 기판에 p-n 접합을 구현하여 광전압형 적외선 감지소자를 제조하는데 적당하도록 한 적외선 감지소자 제조방법에 관한 것이다.
일반적으로, 적외선을 감지하는 소자는 적외선의 조사에 따른 전류의 변화를 감지하는 전류형 적외선 감지소자와, 적외선의 인가에 따른 전압의 변화를 감지하는 전압형 적외선 감지소자로 분류할 수 있다.
상기 전압형 적외선 감지소자는 HgCdTe의 p-n접합을 형성하여, 그 접합부분에 걸린 전기장을 통해 빛에 의해 발생하는 전하를 분리하여, 적외선을 감지하게 된다.
상기 언급한 Hg1-xCdxTe는 현재 알려진 물질중 적외선에 대한 감지도가 가장 높은 것이며, 상기 조성비(x)를 변화시켜 원하는 파장의 적외선을 선택적으로 감지할 수 있다.
종래 전압형 적외선 감지소자를 제조하는 방법은 HgCdTe기판을 성장시키는 과정에서 p-n접합을 형성하는 방법 또는 플라즈마의 이온가속을 사용하여 접합을 형성하는 방법, 이온주입을 사용하는 방법이 이용되고 있다.
이하, 상기와 같은 종래 적외선 감지소자 제조방법을 좀 더 상세히 설명한다.
먼저, HgCdTe 기판의 성장과 함께 p-n 접합을 형성하는 방법은 투명기판의 상부에 HgCdTe를 성장시키는 과정에서, 운반자 농도를 조절하여 p형의 HgCdTe 기판내에 위치하는 n형의 HgCdTe영역을 형성한다.
상기와 같이 HgCdTe의 성장과정에서 불순물 농도를 조절하여 서로다른 도전형의 접합영역을 형성하기 위해서는 유기금속 화학 증착법(MOCVD, MATAL ORGANIC CHEMICAL VAPOR DEPOSITION) 또는 분자선성장법(MBE, MOLECULAR BEAM EPITAXY)을 사용하여 운반자 농도를 조절하여 웨이퍼의 전면에 접합을 형성하는 방법이다.
이와 같은 방법은 저농도 p형 HgCdTe 기판의 상부전면에 저농도 n형의 HgCdTe층을 형성하는 것으로, 제작 후에는 단위소자별로 절단하여 사용한다.
상기의 방법은 누설전류가 발생하지 않는 안정된 p-n접합을 형성할 수 있으나, 단위소자별로 분리하는 공정등 공정단계가 복잡하며, 증착법 자체의 비용이 증가하여 제작단가가 비싼 문제점이 있다.
또한, 상기의 방법은 평면 구조의 구현이 어려워 이차원 초점면 배열 형태의 적외선 검출소자의 구현이 용이하지 않은 문제점을 가지고 있다.
그리고, HgCdTe 기판에 접합을 형성하는 두번째 방법은 HgCdTe를 식각할때 사용하는 메탄(CH4)가스와 수소가스를 혼합하여 플라즈마를 형성하고, 그 플라즈마를 이용하여 접합을 형성하는 방법이다.
상기 메탄가스와 수소가스를 혼합한 후, 플라즈마를 형성하여 이온을 가속한 후, 그 가속된 이온을 p형의 HgCdTe기판이 일부에 손상을 주도록 한다.
상기 가속된 이온에 의해 HgCdTe 기판이 손상되면서, 수소이온이 주입되어 n형의 영역이 형성된다.
이와 같은 방법은 기판을 손상시키는 것으로, 소자의 제작 후 누설전류의 발생원인이 된다.
마지막으로, HgCdTe 기판에 접합을 형성하는 방법은 반도체 공정에서 사용하는 이온주입공정을 들 수 있다.
상기 이온주입공정을 이용한 방법은 p형의 HgCdTe 기판을 형성한 후, 마스크로 특정한 영역의 HgCdTe 기판을 노출시키고, 그 노출영역에 n형 불순물 이온을 주입하여 도전형을 변경시킨다.
이와 같은 이온주입법은 평면구조의 적외선 감지소자의 배역을 쉽게 제작할 수 있으나, 이온주입후 행해지는 후처리공정인 열처리공정은 주입된 이온의 확산시켜 균일한 소자를 형성할 수 없게 된다.
또한, 상기 플라즈마의 이온 가속에 의한 방법과 같이 HgCdTe 기판에 손상을 주어 누설전류 발생의 원인이 된다.
상기한 바와 같이 종래 적외선 감지소자 제조방법은 제조단가가 비싸거나, p-n접합을 형성하면서, HgCdTe 기판에 손상을 주어 적외선 감지소자의 구동시 누설전류가 발생하여 그 특성이 열화되는 문제점이 있었다.
이와 같은 문제점을 감안한 본 발명은 광전압형 적외선 감지소자의 HgCdTe 기판에 손상을 주지않고, 낮은 제조비용을 들여 제조할 수 있는 적외선 감지소자제조방법을 제공함에 그 목적이 있다.
도1a 내지 도1f는 본 발명 적외선 감지소자 제조공정 수순단면도.
도2는 본 발명에서 사용하는 플라즈마 챔버의 구성도.
도3은 본 발명에 의해 형성된 p-n접합의 깊이에 따른 농도 분포 그래프.
*도면의 주요 부분에 대한 부호의 설명*
1:투명기판 2:저농도 p형 HgCdTe층
3:보호층 4:저농도 n형 HgCdTe층
5:절연층 6:금속층
7:패드
상기와 같은 목적은 투명기판의 상부에 저농도 p형 HgCdTe층을 형성하는 단계와; 상기 저농도 p형 HgCdTe층의 상부일부를 노출시키는 확산방지층을 형성하는 단계와; 수소 플라즈마를 이용하여 수소 이온 및 수소 원자를 상기 노출된 저농도 p형 HgCdTe층으로 확산시켜 저농도 n형 HgCdTe층을 형성하여, p-n접합을 형성하는 단계와; 상기 확산방지층을 제거하고, 상기 저농도 p형 HgCdTe층과 저농도 n형 HgCdTe층의 상부전면에 절연층을 형성하는 단계와; 상기 절연층에 콘택홀을 형성하여 상기 저농도 p형 HgCdTe층과 저농도 n형 HgCdTe층의 상부일부를 노출시키는 단계와; 상기 콘택홀 내에서 상기 저농도 p형 HgCdTe층과 저농도 n형 HgCdTe층의 상부에 각각 접하는 플러그를 형성하는 단계와; 상기 구조의 상부전면에 금속층을 증착하고, 패터닝하여 상기 플러그 각각에 접하며, 상기 절연층의 상부일부에 소정면적으로 위치하는 패드를 형성하는 단계로 구성함으로써 달성되는 것으로, 이와 같은 본 발명을 첨부한 도면을 참조하여 상세히 설명하면 다음과 같다.
도1a 내지 도1f는 본 발명 적외선 감지소자의 제조공정 수순단면도로서, 이에 도시한 바와 같이 투명기판(1)의 상부에 저농도 p형 HgCdTe층(2)을 형성하고, 그 저농도 p형 HgCdTe층(2)의 상부전면에 보호층(3)을 형성하는 단계(도1a)와; 상기 보호층(3)의 일부를 제거하여, 그 하부의 저농도 p형 HgCdTe층(2)의 상부일부를 노출시키는 단계(도1b)와; 플라즈마에의해 형성된 수소이온을 상기 노출된 저농도 p형 HgCdTe층(2)으로 확산시켜 저농도 n형 HgCdTe층(4)을 형성하여, p-n접합을 형성하는 단계(도1c)와; 상기 보호층(3)을 제거하고, 상기 저농도 p형 및 저농도 n형 HgCdTe층(2, 4)의 상부전면에 절연층(5)을 형성하는 단계(도1d)와; 상기 절연층(5)의 일부를 제거하여 상기 저농도 p형 및 저농도 n형 HgCdTe층(2, 4)의 접합이 형성된 HgCdTe층(2)의 상부일부를 노출시키고, 그 노출면에 금속층(6)을 형성하는 단계(도1e)와; 상기 구조의 상부전면에 금속을 증착하고, 패터닝하여 상기 금속층(6)에 각각 접하는 패드(7)를 형성하는 단계(도1f)로 구성된다.
이하, 상기와 같이 구성된 본 발명 적외선 감지소자 제조방법을 좀 더 상세히 설명한다.
먼저, 도1a에 도시한 바와 같이 투명기판(1)의 상부에 저농도 p형 HgCdTe층(2)을 증착한다.
상기 투명기판(1)은 CdZnTe 또는 CdTe이다.
그 다음, 상기 저농도 p형 HgCdTe층(2)의 상부전면에 ZnS를 열증착법으로 증착하여 보호층(3)을 형성한다.
그 다음, 도1b에 도시한 바와 같이 사진식각공정을 사용하여 상기 보호층(3)의 일부를 식각한다.
상기와 같은 식각공정에 의해 상기 저농도 p형 HgCdTe층(2)의 상부일부가 노출되어진다.
상기 보호층(3)의 실시예로 ZnS를 사용하였으나, 하부의 저농도 p형 HgCdTe층(2)과는 접착성이 우수하며, 선택적 식각공정에 의해 용이하게 제거할 수 있고, 수소 이온 또는 원자의 확산을 방지할 수 있는 조건을 갖춘 박막이면 사용이 가능하다.
상기 보호층(3)의 다른 예로는 CdTe 또는 CdZnTe를 사용할 수 있다.
그 다음, 도1c에 도시한 바와 같이 수소 플라즈마를 이용하여, 수소 이온 또는 수소 원자를 상기 노출된 저농도 p형 HgCdTe층(2)의 내부로 확산시켜, 저농도 n형 HgCdTe층(4)을 형성하여, p-n접합을 이룬다.
상기 수소 원자를 확산 시키는 방법을 좀 더 상세히 설명한다.
먼저, 도2는 본 발명에서 사용하는 유도 결합 플라즈마 발생장치의 구성도로서, 이에 도시한 바와 같이 챔버(21)의 내부 중앙하부에는 샘플을 고정시키는 샘플홀더(22)가 위치하며, 그 챔버(21) 자체는 접지되어 있다.
또한, 상기 챔버(21)는 상하부 측으로 코일(23)이 감겨져 있으며, 상기 코일(23)에는 RF전력 공급원(24)으로 부터 RF전력이 공급되어진다.
상기와 같은 상태에서 수소 가스를 챔버(21)에 주입한 후, 상기 코일(23)에 RF전력을 공급하면, 상기 수소 가스는 플라즈마(25) 상태가된다.
상기 도1b에 도시한 상태의 샘플이 상기 샘플 홀더(22)에 의해 고정되어 있으며, 그 샘플 홀더(22)에는 직류전압이 인가되지 않는다.
이는 강제적으로 플라즈마를 샘플로 이동시킬 경우, 상기 노출된 저농도 p형 HgCdTe층(2)이 손상되는 것을 방지하며, 적당한 시간동안 상기 상태를 유지하여 상기 플라즈마(25) 내의 수소 이온 또는 원자가 상기 노출된 저농도 p형 HgCdTe층(2)에 소정의 깊이로 확산되도록 한다.
도3은 상기 수소 이온 또는 원자의 확산에 의해 형성되는 저농도 n형 HgCdTe층(4)과 그 하부의 저농도 p형 HgCdTe층(2)의 깊이에 따른 도전형 및 농도의 그래프로서, 이에 도시한 바와 같이 상기 노출된 저농도 p형 HgCdTe(2)에 수소 이온 또는 원자가 확산되는 깊이는 7㎛ 정도이며, 그 이상의 깊이에서는 저농도 p형의 도전형을 나타낸다.
상기 수소 이온 또는 원자가 확산되어 형성되는 저농도 n형 HgCdTe층(4)은 깊이가 깊어질수록 그 n형 농도는 낮아지게 된다.
상기 그래프에서는 저농도 n형 HgCdTe층(4)의 표면은 n형의 농도가 1017cm-3의 농도를 나타낸다.
이는 1cm3의 체적당 1017개의 수소 이온이 있는 것으로, 그 농도는 깊이가 깊어짐에 따라 줄어들게 되어 상기 저농도 p형 HgCdTe층(2)과 근접하는 부분의 농도는 1016cm-3이하의 농도를 나타난다.
상기의 결과는 표면 부분에서의 n형 불순물의 농도가 높은 편이지만, 실질적으로 작용하는 p-n접합의 경계부분에서는 낮은 농도를 유지하며, 그 접합의 경계부분은 확산에 의한 손상이 없는 것을 알 수 있다.
상기의 경계부분에서의 낮은 농도 분포 기울기에 의해 터널링 및 확산에 의해 의한 누설전류의 발생을 줄일 수 있으며, 이온의 확산에 의해 p-n접합을 형성하기 때문에 후처리공정인 열처리공정을 수행하지 않아도 되므로, 균일한 p-n접합을 얻을 수 있게 된다.
또한, 상기 RF파워와 공정시간등을 조절하여 상기 저농도 n형 HgCdTe층(4)의깊이를 제어할 수 있게 된다.
상기와 같이 본 발명은 p-n접합을 형성하기 위해 이온을 주입하는 방법이 아닌, 수소 이온 또는 원자의 확산을 이용하여 상기 저농도 p형 HgCdTe층(2)에 손상을 주는 것을 방지하여, 누설전류가 발생되는 것을 방지할 수 있게 된다.
상기 노출된 저농도 p형 HgCdTe층(2)에 수소 이온 또는 원자가 확산되어지는 메커니즘은, 받게 원자로 작용하는 Hg의 빈자리에 수소이온이 들어가 채워주고, 잔류하는 원자들이 주게 원자로 작용하는 것으로, 이를 반응식으로 나타내면 아래의 반응식1로 표현된다.
2HHg⇔ VHg+ 2HI
또한, 장파장용 HgCdTe 기판의 경우에는 중파장용 HgCdTe 기판의 경우와는 다르게 기판의 금지 대역이 0.1eV로 매우 작은 값을 나타내기 때문에 종래와 같이 이온주입에 의해 저농도 n형 HgCdTe층(4)을 형성하면 기판의 소수 운반자 수명, 확산거리 또는 터널링 특성등과 같은 기판의 특성이 열화되는 문제점이 중파장용 HgCdTe 기판에 비하여 더 크게 나타난다.
본 발명과 같이 확산법을 사용하여 저농도 n형 HgCdTe층(4)을 형성하면 신호대 잡음비(S/N RATIO)가 향상되고 적외선 감지소자의 성능을 측정하는 RoA 값이 크게 향상된다.
그 다음, 도1d에 도시한 바와 같이 상기 보호층(3)을 선택적으로 식각하여 제거한다.
그 다음, 상기 보호층(3)의 제거로 노출되는 저농도 n형 HgCdTe층(4)과 저농도 p형 HgCdTe층(2)의 상부전면에 절연층(5)을 증착한다.
상기 절연층(5)은 ZnS를 열증착하여 형성한다.
그 다음, 도1e에 도시한 바와 같이 사진식각공정을 이용하여 상기 절연층(5)에 콘택홀을 형성하여, 상기 저농도 p형 HgCdTe층(2)의 상부일부와 고농도 n형 HgCdTe층(4)의 상부일부를 노출시킨다.
그 다음, 상기 구조의 상부전면에 금속을 증착하고, 평탄화하는 공정을 2회 반복적으로 수행하여 저농도 n형 HgCdTe층(4)과 저농도 p형 HgCdTe층(2)의 상부에 접하며, 각각의 물성이 다르며, 상기 절연층(5)과 동일 수준의 플러그인 금속층(6)을 형성한다.
상기 금속층(6)의 성분은 저농도 n형 HgCdTe층(4)에 접하는 금속층은 인듐(In)이며, 상기 저농도 p형 HgCdTe층(2)에 접하는 금속층은 금(Au)이다.
그 다음, 도1f에 도시한 바와 같이 상기 구조의 상부전면에 다층의 금속층을 증착하고, 패터닝하여 상기 금속층(6)에 각각 접하는 패드(7)를 형성한다.
상기 다층의 금속층은 니켈(Ni)과 인듐(In)의 적층구조 또는 니켈(Ni)과 금(Au)의 적층구조로 한다.
상기와 같은 구조의 저농도 p-n접합은 포토다이오드를 이루어 적외선의 조사에 따라 발생되는 전하를 검출하여 그 전류의 변화를 이용하여 적외선을 검출할 수 있게 된다.
상기한 바와 같이 본 발명 적외선 검출소자 제조방법은 HgCdTe의 p-n접합을 형성하기 위하여 수소 플라즈마를 사용하여 저농도 p형 HgCdTe층의 일부에 선택적으로 수소 이온 또는 원자를 소정의 깊이로 확산시켜, 저농도 n형 HgCdTe층을 형성함으로써, 그 p-n접합의 계면이 손상되는 것을 방지하여, 누설전류의 발생을 방지하는 효과와 아울러 단순한 공정을 사용하여 제조단가의 상승을 방지함과 아울러 수율을 증가시키는 효과가 있다.

Claims (7)

  1. 투명기판의 상부에 저농도 p형 HgCdTe층을 형성하는 단계와; 상기 저농도 p형 HgCdTe층의 상부일부를 노출시키는 확산방지층을 형성하는 단계와; 수소 플라즈마를 이용하여 수소 이온 및 수소 원자를 상기 노출된 저농도 p형 HgCdTe층으로 확산시켜 저농도 n형 HgCdTe층을 형성하여, p-n접합을 형성하는 단계와; 상기 확산방지층을 제거하고, 상기 저농도 p형 HgCdTe층과 저농도 n형 HgCdTe층의 상부전면에 절연층을 형성하는 단계와; 상기 절연층에 콘택홀을 형성하여 상기 저농도 p형 HgCdTe층과 저농도 n형 HgCdTe층의 상부일부를 노출시키는 단계와; 상기 콘택홀 내에서 상기 저농도 p형 HgCdTe층과 저농도 n형 HgCdTe층의 상부에 각각 접하는 플러그를 형성하는 단계와; 상기 구조의 상부전면에 금속층을 증착하고, 패터닝하여 상기 플러그 각각에 접하며, 상기 절연층의 상부일부에 소정면적으로 위치하는 패드를 형성하는 단계로 이루어진 것을 특징으로 하는 적외선 감지소자 제조방법.
  2. 제 1항에 있어서, 상기 수소 플라즈마를 이용하여 수소 이온 및 수소 원자를 저농도 p형 HgCdTe층으로 확산시키는 단계는 플라즈마 발생장치에 소스가스로 수소 가스만을 사용하여, 라디오 주파수(RF) 전력을 코일에 인가하여 수소 플라즈마를 생성하는 단계와; 상기 플라즈마 발생장치 내에 확산방지층으로 마스킹된 저농도 p형 HgCdTe층을 소정시간 노출시켜, 그 노출된 저농도 p형 HgCdTe층에 수소 이온 및 원자가 확산되도록 하는 단계로 이루어진 것을 특징으로 하는 적외선 감지소자 제조방법.
  3. 제 2항에 있어서, 상기 플라즈마 발생장치는 유도 결합 플라즈마 장치를 사용하는 것을 특징으로 하는 적외선 감지소자 제조방법.
  4. 제 1항에 있어서, 상기 확산방지층은 저농도 p형 HgCdTe층과 접착성이 우수하며, 선택적 식각으로 완전한 제거가 가능한 ZnS, CdTe 또는 CdZnTe 중 선택된 하나를 사용하는 것을 특징으로 하는 적외선 감지소자 제조방법.
  5. 제 1항에 있어서, 상기 저농도 p형 HgCdTe층은 수소 이온 및 수소 원자의 확산이 용이하도록 Hg 빈자리 도핑된 것을 특징으로 하는 적외선 감지소자 제조방법.
  6. 제 1항에 있어서, 상기 저농도 p형 HgCdTe층에 접하는 플러그는 Au이며, 상기 저농도 n형 HgCdTe층에 접하는 플러그는 In인 것을 특징으로 하는 적외선 감지소자 제조방법.
  7. 제 1항에 있어서, 상기 패드는 Ni과 In의 적층구조 또는 Ni과 Au의 적층구조를 사용하는 것을 특징으로 하는 적외선 감지소자 제조방법.
KR10-2002-0003706A 2002-01-22 2002-01-22 적외선 감지소자 제조방법 KR100429387B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR10-2002-0003706A KR100429387B1 (ko) 2002-01-22 2002-01-22 적외선 감지소자 제조방법
US10/342,864 US6815250B1 (en) 2002-01-22 2003-01-15 Method for manufacturing infrared detector using diffusion of hydrogen plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0003706A KR100429387B1 (ko) 2002-01-22 2002-01-22 적외선 감지소자 제조방법

Publications (2)

Publication Number Publication Date
KR20030063540A KR20030063540A (ko) 2003-07-31
KR100429387B1 true KR100429387B1 (ko) 2004-04-29

Family

ID=32218909

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0003706A KR100429387B1 (ko) 2002-01-22 2002-01-22 적외선 감지소자 제조방법

Country Status (2)

Country Link
US (1) US6815250B1 (ko)
KR (1) KR100429387B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101958331A (zh) * 2010-07-23 2011-01-26 中国科学院上海技术物理研究所 一种集成等离子体氢浸镀层的碲镉汞中波光伏探测芯片

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116482150B (zh) * 2023-06-25 2023-09-12 浙江珏芯微电子有限公司 一种碲镉汞掺杂激活率评估方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04352370A (ja) * 1991-05-29 1992-12-07 Ricoh Co Ltd 赤外線センサ
JPH06334161A (ja) * 1993-05-19 1994-12-02 Fujitsu Ltd 画素分離溝の形成方法
JPH07249786A (ja) * 1994-03-10 1995-09-26 Fujitsu Ltd 半導体装置の製造方法
JPH1056197A (ja) * 1996-08-08 1998-02-24 Fujitsu Ltd HgCdTe半導体装置及びその製造方法
JP2000091620A (ja) * 1998-09-09 2000-03-31 Fujitsu Ltd Hg系II−VI族化合物半導体装置及びその製造方法
JP2000357814A (ja) * 1999-06-16 2000-12-26 Fujitsu Ltd 半導体基板の前処理方法及び赤外線検出器の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5318666A (en) * 1993-04-19 1994-06-07 Texas Instruments Incorporated Method for via formation and type conversion in group II and group VI materials
US5851906A (en) * 1995-08-10 1998-12-22 Matsushita Electric Industrial Co., Ltd. Impurity doping method
US5646426A (en) * 1995-12-12 1997-07-08 Santa Barbara Research Center Contact metal diffusion barrier for semiconductor devices
US6465860B2 (en) * 1998-09-01 2002-10-15 Kabushiki Kaisha Toshiba Multi-wavelength semiconductor image sensor and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04352370A (ja) * 1991-05-29 1992-12-07 Ricoh Co Ltd 赤外線センサ
JPH06334161A (ja) * 1993-05-19 1994-12-02 Fujitsu Ltd 画素分離溝の形成方法
JPH07249786A (ja) * 1994-03-10 1995-09-26 Fujitsu Ltd 半導体装置の製造方法
JPH1056197A (ja) * 1996-08-08 1998-02-24 Fujitsu Ltd HgCdTe半導体装置及びその製造方法
JP2000091620A (ja) * 1998-09-09 2000-03-31 Fujitsu Ltd Hg系II−VI族化合物半導体装置及びその製造方法
JP2000357814A (ja) * 1999-06-16 2000-12-26 Fujitsu Ltd 半導体基板の前処理方法及び赤外線検出器の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101958331A (zh) * 2010-07-23 2011-01-26 中国科学院上海技术物理研究所 一种集成等离子体氢浸镀层的碲镉汞中波光伏探测芯片

Also Published As

Publication number Publication date
US6815250B1 (en) 2004-11-09
KR20030063540A (ko) 2003-07-31

Similar Documents

Publication Publication Date Title
US9236519B2 (en) Geiger-mode avalanche photodiode with high signal-to-noise ratio, and corresponding manufacturing process
US7560784B2 (en) Fin PIN diode
KR102068845B1 (ko) 태양 전지의 제조를 위한 공정 및 구조물
US9214588B2 (en) Wavelength sensitive sensor photodiodes
KR20150097613A (ko) 산질화규소 유전체 층을 가진 태양 전지
US5318666A (en) Method for via formation and type conversion in group II and group VI materials
JPH09298308A (ja) 受光素子及びその製造方法
US7838330B1 (en) Method of field-controlled diffusion and devices formed thereby
US4968634A (en) Fabrication process for photodiodes responsive to blue light
KR100429387B1 (ko) 적외선 감지소자 제조방법
CA1078948A (en) Method of fabricating silicon photodiodes
KR100366353B1 (ko) 태양전지용 접합층 형성방법
US11476380B2 (en) Photodetection device having a lateral cadmium concentration gradient in the space charge zone
US4914495A (en) Photodetector with player covered by N layer
FR3113781A1 (fr) PROCÉDÉ DE FABRICATION D’UN DISPOSITIF DE PHOTODÉTECTION À FAIBLE BRUIT DANS UN SUBSTRAT EN CdHgTe.
US20030222272A1 (en) Semiconductor devices using minority carrier controlling substances
KR102081393B1 (ko) 광 전지용 콘택 형성 방법
US11967664B2 (en) Photodiodes with serpentine shaped electrical junction
US5004698A (en) Method of making photodetector with P layer covered by N layer
EP4133532B1 (fr) Procédé de fabrication d'un dispositif de photodétection à faible bruit dans un substrat en cdhgte
KR20230124289A (ko) 광대역 포토다이오드 및 그 제조방법
JPS61252660A (ja) 光電変換装置
JPH09232617A (ja) 赤外線検知素子及びその製造方法
JP2007129033A (ja) アバランシェフォトダイオードおよびその製造方法
Smith et al. A simplified fabrication process for HgCdTe photoconductive detectors using CH4/H2 reactive-ion-etching-induced blocking contacts

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment
FPAY Annual fee payment
LAPS Lapse due to unpaid annual fee