CN116482150B - 一种碲镉汞掺杂激活率评估方法 - Google Patents

一种碲镉汞掺杂激活率评估方法 Download PDF

Info

Publication number
CN116482150B
CN116482150B CN202310744040.6A CN202310744040A CN116482150B CN 116482150 B CN116482150 B CN 116482150B CN 202310744040 A CN202310744040 A CN 202310744040A CN 116482150 B CN116482150 B CN 116482150B
Authority
CN
China
Prior art keywords
layer
mercury
hall
stripping
activation rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310744040.6A
Other languages
English (en)
Other versions
CN116482150A (zh
Inventor
彭成盼
张国杰
王旭杰
周进
郑晶晶
杜宇
刘文龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Core Microelectronics Co ltd
Original Assignee
Zhejiang Core Microelectronics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Core Microelectronics Co ltd filed Critical Zhejiang Core Microelectronics Co ltd
Priority to CN202310744040.6A priority Critical patent/CN116482150B/zh
Publication of CN116482150A publication Critical patent/CN116482150A/zh
Application granted granted Critical
Publication of CN116482150B publication Critical patent/CN116482150B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2255Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident ion beams, e.g. proton beams
    • G01N23/2258Measuring secondary ion emission, e.g. secondary ion mass spectrometry [SIMS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2202Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/041Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • Hall/Mr Elements (AREA)

Abstract

本发明公开了一种碲镉汞掺杂激活率评估方法,包括:步骤S1,对具有pn结外延层的碲镉汞材料层预处理,形成p型As掺杂的载流子外延层,且不存在n型层;步骤S2,对预处理后的材料层进行SIMS测试;步骤S3,对预处理后的材料层进行腐蚀剥层,去除部分外延层;步骤S4,对剥层后的材料层进行厚度测量;步骤S5,对剥层后的材料层进行霍尔测试;步骤S6,重复上述步骤S3至S5;步骤S7,结合霍尔测试的数据得到p型离子注入层载流子浓度,结合SIMS测试数据得到的As离子浓度,并计算出As离子激活率,优点在于只额外进行了一次较低温的热处理,工艺简单,成本低廉,准确高效。

Description

一种碲镉汞掺杂激活率评估方法
技术领域
本发明涉及红外探测器测试技术领域,尤其涉及一种碲镉汞掺杂激活率评估方法。
背景技术
碲镉汞具有禁带宽度可调、探测光谱范围由短波波段一直延伸到长波波段、光电探测效率高等优势,是红外探测器的重要材料。碲镉汞红外探测器的核心是利用了pn结的光电特性。As离子注入掺杂是碲镉汞红外探测器件制备的有效方法之一,可实现性能指标很好的中波、长波及甚长波碲镉汞红外探测器的制备。主流工艺通过汞饱和气氛下的高温激活热处理和较低温n型热处理实现p-on-n材料的制备,As注入激活率的评估是性能评估的难点之一,常规通过剥层后进行霍尔测试,得到载流子浓度、迁移率等参数,但常规的霍尔测试需要对样品进行正面涂胶、背减薄等加工,背减薄工艺需正面涂胶及磨抛加工等会带来损伤及应力,对薄膜的霍尔测试结果有极大影响,另外,由于n型层和p型层共存霍尔测试结果存在较大的波动,且无法准确判断是否激活并评估激活效率。
发明内容
为了解决以上技术问题,本发明提供了一种碲镉汞掺杂激活率评估方法。
本发明所解决的技术问题可以采用以下技术方案实现:
步骤S1,对具有pn结外延层的碲镉汞材料层预处理,形成p型As掺杂的载流子外延层,且不存在n型层;
步骤S2,对预处理后的材料层进行SIMS测试;
步骤S3,对预处理后的材料层进行腐蚀剥层,去除部分外延层;
步骤S4,对剥层后的材料层进行厚度测量;
步骤S5,对剥层后的材料层进行霍尔测试;
步骤S6,重复上述步骤S3至S5;
步骤S7,结合霍尔测试的数据得到p型离子注入层载流子浓度,结合SIMS测试数据得到的As离子浓度,并计算出As离子激活率。
本发明的方案实现,与现有技术相比,本发明的优点在于:
1.材料只额外进行了一次较低温的热处理,工艺简单,成本低廉。
2.避开了正面涂胶、背减薄等复杂工艺,减少了材料加工应力、损伤的影响。
3.可通过剥层霍尔与理论计算得到As注入层的载流子浓度,并结合SIMS测试结果评估As掺杂激活率,准确高效。
附图说明
图1为本发明的碲镉汞掺杂激活率评估方法流程图;
图2为本发明实施例的未腐蚀的样品SIMS测试结果。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。显然,本发明所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的较佳的实施例中,基于现有技术中存在的上述问题,现提供一种碲镉汞掺杂激活率评估方法,如图1所示,包括:
步骤S1,对具有pn结外延层的碲镉汞材料层预处理,形成As掺杂的载流子外延层,且不存在n型层。在本实施例中,预处理形成的p型As掺杂的载流子外延层包括外层p型高载流子浓度外延层和内层p型低载流子浓度外延层。
具体的,在本实施例中具有pn结的碲镉汞材料层可以用传统的方法获得,例如可以先分别提供碲锌镉衬底之后,在采用薄膜工艺,例如,外延生长工艺MBE、LPE工艺,在所述碲锌镉衬底的表面上形成一定厚度的外延层。外延层上形成一层阻挡层;对所述阻挡层进行光刻,以在所述阻挡层中形成离子注入开口,以所述阻挡层为掩膜,对所述外延层进行离子注入,以形成所述pn结。在本实施例中,pn结为As离子注入后通过常规的汞饱和第一次高温激活及第二次低温N型热处理获得。
然后,对具有pn结外延层的碲镉汞材料层预处理,即第三次弱P型退火,具体为,碲化汞粉末源热处理,将外延层进行p型热处理,采用45g碲化汞粉末作为汞源,在热处理过程中对碲镉汞样品提供汞蒸气和碲蒸气,在225℃左右热处理36h。将外延层内层As离子注入不到的部分从n型调整为p型,该部分载流子浓度调整至1~5E+15cm-3范围内,此时材料的外延层由外层高载流子浓度的p型As注入激活层和内层低载流子浓度的p型层构成,此材料中不存在n型层,适合霍尔测试。
步骤S2,对预处理后的材料层进行SIMS测试。
SIMS测试样品为处理后的霍尔测试样品制备时划切剩下的相邻位置未腐蚀边角料。通过SIMS测试,可知As元素分布,包括表层高浓度区,中间较平坦激活区。
SIMS测试要求测得距离外延层表面0~2微米的As元素浓度分布曲线,Te元素浓度分布为基准线。如图2所示为未腐蚀的样品进行SIMS测试得到As元素浓度,激活区平均浓度约为1.5E+18cm-3
步骤S3,对预处理后的材料层进行腐蚀剥层,去除部分外延层。
具体的,包括:
步骤S31:先腐蚀去除表面约0.3μm的高浓度注入无法激活区域。
步骤S32:再继续对外延层腐蚀剥层,在本实施例中采用0.2%~1%的溴甲醇溶液,例如,采用0.5%的溴甲醇溶液作为腐蚀液对材料进行腐蚀剥层,溴甲醇腐蚀次数为两次以上,腐蚀时间每次为3~6s,控制剥离层在As注入层范围内,例如腐蚀时间5s每次。
在本实施例中,在腐蚀剥离之前包括对材料样品进行厚度测试和霍尔测试的步骤。
步骤S4,对腐蚀后的材料层进行厚度测量。
在本实施例中使用傅里叶红外光谱仪。
步骤S5,对腐蚀后的材料层进行霍尔测试。
具体的,霍尔测试采用范德堡法,得到的霍尔数据包括:方块电阻、电阻率、霍尔系数、霍尔迁移率、导电类型,利用霍尔数据可以计算出载流子浓度。
步骤S6,重复上述步骤S32至步骤S5。
步骤S7,结合霍尔测试的数据得到p型离子注入层载流子浓度,结合SIMS测试数据得到的As元素浓度,并计算出As离子激活率。
具体的,结合霍尔测试的数据得到p型离子注入层载流子浓度。在本实施例中,将剥层霍尔测得的数据代入公式计算得到剥离层的载流子浓度。
对于一维非均匀材料,如将材料分割成N层薄片,并假定霍尔电压在每一层材料上呈相同分布,则根据里层材料的霍尔参数和表层材料的霍尔参数,可计算出两者叠加后材料的霍尔系数,叠加材料的霍尔系数和电导率计算公式如下:
其中R为霍尔系数为电导率,d为厚度,B为外加磁场强度。由此可见,若将剥层前的样品视为叠加后的材料,剥层后的材料则为里层材料,相应参量用下标j表示,代入数据求解上两式方程即可得到表层材料的霍尔系数及电阻率,相应参量用下标j+1表示,进而可推算出外层材料的载流子浓度。由一次剥层腐蚀前后的霍尔测试结果对腐蚀部分的载流子浓度进行计算,进而可推算出外层材料的载流子浓度。例如,在本实施例中,得到剥离层的载流子浓度为1.41E+18cm-3,剥层霍尔测试和计算结果以及未注入对比样数据参见下面表格所示的,剥层霍尔测试及计算结果:
接着,结合p型离子注入层载流子浓度和As元素浓度,并计算出As离子激活率。
具体的,通过理论计算得到As注入层,即p型注入层离子载流子浓度。载流子浓度和As元素浓度两者相除即可估算As激活率。结合剥层结果和SIMS测试结果估算As激活效率,结果显示激活率约为94%。
本发明的优点在于:
1.材料只额外进行了一次较低温的热处理,工艺简单,成本低廉。
2.避开了正面涂胶、背减薄等复杂工艺,减少了材料加工应力、损伤的影响。
3.可通过剥层霍尔与理论计算得到As注入层的载流子浓度,并结合SIMS测试结果评估As掺杂激活率,准确高效。
以上仅为本发明较佳的实施例,并非因此限制本发明的实施方式及保护范围,对于本领域技术人员而言,应当能够意识到凡运用本说明书及图示内容所作出的等同替换和显而易见的变化所得到的方案,均应当包含在本发明的保护范围内。

Claims (10)

1.一种碲镉汞掺杂激活率评估方法,其特征在于,包括:
步骤S1,对具有pn结外延层的碲镉汞材料层预处理,形成p型As掺杂的载流子外延层,且不存在n型层;
步骤S2,对预处理后的材料层进行SIMS测试;
步骤S21对预处理后的材料层进行腐蚀剥层,去除表面高浓度注入无法激活区域;
步骤S22,对剥层后的材料层进行厚度测量;
步骤S23,对剥层后的材料层进行霍尔测试;
步骤S3,对预处理后的材料层继续进行腐蚀剥层,去除部分外延层;
步骤S4,对剥层后的材料层进行厚度测量;
步骤S5,对剥层后的材料层进行霍尔测试;
步骤S6,重复上述步骤S3至S5;
步骤S7,结合霍尔测试的数据得到p型离子注入层载流子浓度,
叠加材料的霍尔系数和电导率计算公式如下:
其中R为霍尔系数,为电导率,d为厚度,B为外加磁场强度,若将剥层前的样品视为叠加后的材料,剥层后的材料则为里层材料,相应参量用下标j表示,代入数据求解上两式方程即可得到表层材料的霍尔系数及电阻率,表层材料的相应参量用下标j+1表示,进而可推算出外层材料的载流子浓度,由一次剥层腐蚀前后的霍尔测试结果对腐蚀部分的载流子浓度进行计算,进而可推算出外层材料的载流子浓度,
结合SIMS测试数据得到的As离子浓度,并计算出As离子激活率。
2.根据权利要求1所述的碲镉汞掺杂激活率评估方法,其特征在于,
步骤S1中,p型As掺杂的载流子外延层包括外层p型高载流子浓度外延层和内层p型低载流子浓度外延层。
3.根据权利要求1所述的碲镉汞掺杂激活率评估方法,其特征在于,所述步骤S1中,利用碲化汞粉末源热处理。
4.根据权利要求3所述的碲镉汞掺杂激活率评估方法,其特征在于,汞源采用40~50g碲化汞粉末,在225℃左右热处理36h。
5.根据权利要求1所述的碲镉汞掺杂激活率评估方法,其特征在于,将碲镉汞材料层未掺杂部分的材料层P型载流子浓度调整至1~5E+15cm-3范围内。
6.根据权利要求1所述的碲镉汞掺杂激活率评估方法,其特征在于,所述步骤S2中,SIMS测试要求测得距离外延层表面0~2微米的As元素浓度分布曲线,Te元素浓度分布为基准线。
7.根据权利要求1所述的碲镉汞掺杂激活率评估方法,其特征在于,所述步骤S3中,采用0.2%~1%的溴甲醇溶液腐蚀剥层。
8.根据权利要求7所述的碲镉汞掺杂激活率评估方法,其特征在于,溴甲醇腐蚀次数为两次以上,腐蚀时间每次为3~6s,控制剥离层在As注入层范围内。
9.根据权利要求1所述的碲镉汞掺杂激活率评估方法,其特征在于,所述高浓度注入无法激活区域为距离表面0.3μm厚度区域。
10.根据权利要求1所述的碲镉汞掺杂激活率评估方法,其特征在于,厚度测量使用傅里叶红外光谱仪,霍尔测试采用范德堡法,得到的霍尔数据包括:方块电阻、电阻率、霍尔系数、霍尔迁移率、导电类型。
CN202310744040.6A 2023-06-25 2023-06-25 一种碲镉汞掺杂激活率评估方法 Active CN116482150B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310744040.6A CN116482150B (zh) 2023-06-25 2023-06-25 一种碲镉汞掺杂激活率评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310744040.6A CN116482150B (zh) 2023-06-25 2023-06-25 一种碲镉汞掺杂激活率评估方法

Publications (2)

Publication Number Publication Date
CN116482150A CN116482150A (zh) 2023-07-25
CN116482150B true CN116482150B (zh) 2023-09-12

Family

ID=87218149

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310744040.6A Active CN116482150B (zh) 2023-06-25 2023-06-25 一种碲镉汞掺杂激活率评估方法

Country Status (1)

Country Link
CN (1) CN116482150B (zh)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306660A (en) * 1991-02-19 1994-04-26 Rockwell International Corporation Technique for doping mercury cadmium telluride MOCVD grown crystalline materials using free radical transport of elemental indium and apparatus therefor
US5394828A (en) * 1991-12-23 1995-03-07 Commissariat A L'energie Atomique Apparatus for the solidification of a doped electricity conducting material and the continuous checking of its dopant content
JPH07174525A (ja) * 1993-12-21 1995-07-14 Nec Corp HgCdTe結晶薄膜の膜厚測定方法および組成分析方 法
JPH08111539A (ja) * 1994-10-07 1996-04-30 Nec Corp 光起電力型HgCdTe赤外線検出器の製造方法
US5599733A (en) * 1993-10-15 1997-02-04 Texas Instruments Incorporated Method using cadmium-rich CdTe for lowering the metal vacancy concentrations of HgCdTe surfaces
US5608208A (en) * 1994-02-08 1997-03-04 Technion Research & Development Foundation Ltd. Single layer planar HgCdTe photovoltaic infrared detector with heterostructure passivation and p-on-n homojunction
US5725659A (en) * 1994-10-03 1998-03-10 Sepehry-Fard; Fareed Solid phase epitaxy reactor, the most cost effective GaAs epitaxial growth technology
WO1999064844A1 (en) * 1998-06-10 1999-12-16 Universiteit Gent Method of determining an impurity concentration in highly doped semiconductor materials
US6043141A (en) * 1997-11-06 2000-03-28 Hughes Electronics Corporation Method for in situ growth of p-type doped group II-VI semiconductor films
KR20030063540A (ko) * 2002-01-22 2003-07-31 국방과학연구소 적외선 감지소자 제조방법
CN1588620A (zh) * 2004-07-27 2005-03-02 中国科学院上海技术物理研究所 用于碲镉汞外延生长的数字合金复合衬底及制备方法
CN101383306A (zh) * 2008-10-22 2009-03-11 中国科学院上海技术物理研究所 一种测量碲镉汞材料pn结结深的方法
RU2602123C1 (ru) * 2015-12-30 2016-11-10 Акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности "Гиредмет" СПОСОБ ПОЛУЧЕНИЯ ЭПИТАКСИАЛЬНЫХ СЛОЁВ CdxHg(1-x)Te p-ТИПА ПРОВОДИМОСТИ
CN109116270A (zh) * 2018-06-27 2019-01-01 中国电子科技集团公司第十研究所 一种对碲镉汞pn结材料进行测试的方法
CN112582293A (zh) * 2020-12-09 2021-03-30 北京智创芯源科技有限公司 一种离子激活的检测方法
CN113782416A (zh) * 2021-09-13 2021-12-10 安徽光智科技有限公司 碲镉汞液相外延生长源衬底及其制备方法、碲镉汞液相外延生长方法
CN115787098A (zh) * 2022-11-28 2023-03-14 武汉高芯科技有限公司 一种碲镉汞外延材料的p型热处理方法
CN116163011A (zh) * 2023-02-28 2023-05-26 武汉高芯科技有限公司 一种碲镉汞外延材料霍尔测试样品的制备方法
CN116242862A (zh) * 2022-12-02 2023-06-09 浙江珏芯微电子有限公司 一种碲镉汞界面缺陷的分析方法

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306660A (en) * 1991-02-19 1994-04-26 Rockwell International Corporation Technique for doping mercury cadmium telluride MOCVD grown crystalline materials using free radical transport of elemental indium and apparatus therefor
US5394828A (en) * 1991-12-23 1995-03-07 Commissariat A L'energie Atomique Apparatus for the solidification of a doped electricity conducting material and the continuous checking of its dopant content
US5599733A (en) * 1993-10-15 1997-02-04 Texas Instruments Incorporated Method using cadmium-rich CdTe for lowering the metal vacancy concentrations of HgCdTe surfaces
JPH07174525A (ja) * 1993-12-21 1995-07-14 Nec Corp HgCdTe結晶薄膜の膜厚測定方法および組成分析方 法
US5608208A (en) * 1994-02-08 1997-03-04 Technion Research & Development Foundation Ltd. Single layer planar HgCdTe photovoltaic infrared detector with heterostructure passivation and p-on-n homojunction
US5725659A (en) * 1994-10-03 1998-03-10 Sepehry-Fard; Fareed Solid phase epitaxy reactor, the most cost effective GaAs epitaxial growth technology
JPH08111539A (ja) * 1994-10-07 1996-04-30 Nec Corp 光起電力型HgCdTe赤外線検出器の製造方法
US6043141A (en) * 1997-11-06 2000-03-28 Hughes Electronics Corporation Method for in situ growth of p-type doped group II-VI semiconductor films
WO1999064844A1 (en) * 1998-06-10 1999-12-16 Universiteit Gent Method of determining an impurity concentration in highly doped semiconductor materials
KR20030063540A (ko) * 2002-01-22 2003-07-31 국방과학연구소 적외선 감지소자 제조방법
CN1588620A (zh) * 2004-07-27 2005-03-02 中国科学院上海技术物理研究所 用于碲镉汞外延生长的数字合金复合衬底及制备方法
CN101383306A (zh) * 2008-10-22 2009-03-11 中国科学院上海技术物理研究所 一种测量碲镉汞材料pn结结深的方法
RU2602123C1 (ru) * 2015-12-30 2016-11-10 Акционерное общество "Государственный научно-исследовательский и проектный институт редкометаллической промышленности "Гиредмет" СПОСОБ ПОЛУЧЕНИЯ ЭПИТАКСИАЛЬНЫХ СЛОЁВ CdxHg(1-x)Te p-ТИПА ПРОВОДИМОСТИ
CN109116270A (zh) * 2018-06-27 2019-01-01 中国电子科技集团公司第十研究所 一种对碲镉汞pn结材料进行测试的方法
CN112582293A (zh) * 2020-12-09 2021-03-30 北京智创芯源科技有限公司 一种离子激活的检测方法
CN113782416A (zh) * 2021-09-13 2021-12-10 安徽光智科技有限公司 碲镉汞液相外延生长源衬底及其制备方法、碲镉汞液相外延生长方法
CN115787098A (zh) * 2022-11-28 2023-03-14 武汉高芯科技有限公司 一种碲镉汞外延材料的p型热处理方法
CN116242862A (zh) * 2022-12-02 2023-06-09 浙江珏芯微电子有限公司 一种碲镉汞界面缺陷的分析方法
CN116163011A (zh) * 2023-02-28 2023-05-26 武汉高芯科技有限公司 一种碲镉汞外延材料霍尔测试样品的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"MBE 生长碲镉汞的砷掺入与激活";赵真典 等;《红外与毫米波学报》;第36卷(第5期);575-580 *

Also Published As

Publication number Publication date
CN116482150A (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
Mayer et al. Ion implantation of silicon: II. electrical evaluation using hall-effect measurements
EP2697632B1 (fr) Procede de determination de la concentration en oxygene interstitiel
Bakhadyrkhanov et al. Silicon photovoltaic cells with clusters of nickel atoms
CN103534791A (zh) 半导体外延晶片的制造方法、半导体外延晶片及固体摄像元件的制造方法
Young et al. Interdigitated back passivated contact (IBPC) solar cells formed by ion implantation
Umana-Membreno et al. Depth profiling of electronic transport parameters in n-on-p boron-ion-implanted vacancy-doped HgCdTe
Wietler et al. High temperature annealing of ZnO: Al on passivating POLO junctions: Impact on transparency, conductivity, junction passivation, and interface stability
Hadj Belgacem et al. Theoretical models for anomalously high ideality factor in a Au/SnO 2-Si (n)/Al solar cell
Untila et al. Multi-wire metallization for solar cells: Contact resistivity of the interface between the wires and In2O3: Sn, In2O3: F, and ZnO: Al layers
CN116482150B (zh) 一种碲镉汞掺杂激活率评估方法
Morisset et al. Evolution of the surface passivation mechanism during the fabrication of ex-situ doped poly-Si (B)/SiOx passivating contacts for high-efficiency c-Si solar cells
Ernst et al. Macroporous silicon solar cells with an epitaxial emitter
Wenham et al. Defect passivation on cast-mono crystalline screen-printed cells
Asoka-Kumar et al. Distribution of point defects in Si (100)/Si grown by low-temperature molecular-beam epitaxy and solid-phase epitaxy
Duenow et al. Effects of back-contacting method and temperature on CdTe/CdS solar cells
CN113871509B (zh) 双沟槽型窄边缘耐高压硅pin辐射探测器及其制备
CN115831789A (zh) 一种电池片的制备方法
Yeh et al. Direct-current sputter epitaxy of Si and its application to fabricate n+-emitters for crystalline-Si solar cells
Karas et al. Electrical characterization of thermally-formed nickel silicide for nickel-copper plated solar cell contacts
Lillington et al. Cast polycrystalline silicon Schottky‐barrier solar cells
Kim et al. Laser-induced doping of aluminum into a cadmium telluride thin film: electrical and optical properties
Li et al. Vapour‐Phase and Solid‐Phase Epitaxy of Silicon on Solid‐Phase Crystallised Seed Layers for Solar Cells Application
Choe Distribution of electrically active Mg implants in GaAs
Nakamura et al. Passivation of silicon surfaces by heat treatment in liquid water at 110° C
Wegrzecka et al. Technology of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant