KR100426328B1 - Method for manufacturing microporous chlorinated poly(vinyl chloride) membrane using poly(vinyl pyrrolidone) and microporous chlorinated poly(vinyl chloride) membrane manufactured thereby - Google Patents

Method for manufacturing microporous chlorinated poly(vinyl chloride) membrane using poly(vinyl pyrrolidone) and microporous chlorinated poly(vinyl chloride) membrane manufactured thereby Download PDF

Info

Publication number
KR100426328B1
KR100426328B1 KR10-2001-0022190A KR20010022190A KR100426328B1 KR 100426328 B1 KR100426328 B1 KR 100426328B1 KR 20010022190 A KR20010022190 A KR 20010022190A KR 100426328 B1 KR100426328 B1 KR 100426328B1
Authority
KR
South Korea
Prior art keywords
membrane
microporous
polymer
polyvinyl chloride
chlorinated polyvinyl
Prior art date
Application number
KR10-2001-0022190A
Other languages
Korean (ko)
Other versions
KR20020082989A (en
Inventor
이영무
강종석
Original Assignee
학교법인 한양학원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 한양학원 filed Critical 학교법인 한양학원
Priority to KR10-2001-0022190A priority Critical patent/KR100426328B1/en
Publication of KR20020082989A publication Critical patent/KR20020082989A/en
Application granted granted Critical
Publication of KR100426328B1 publication Critical patent/KR100426328B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/22Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L27/24Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment halogenated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/22Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers modified by chemical after-treatment
    • C08J2327/24Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers modified by chemical after-treatment halogenated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2439/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • C08J2439/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08J2439/06Homopolymers or copolymers of N-vinyl-pyrrolidones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 발명은 열가소성 수지인 폴리염화비닐계의 열가소성 수지를 이용하여 양용매인 테트라하이드로퓨란(THF)에 녹인 용액에 용매와는 잘 혼합되고 고분자에 대해서는 비용매로 작용하는 10-35중량%의 alcohol을 첨가하여 고분자 용액을 형성하고, 이 고분자 용액을 지지체에 함침 도포한 후, 온도 20-25℃, 상대습도 45-90% 분위기 하에서 건조시켜 얻게 되는 것을 특징으로 하는 미세 다공성 열가소성 고분자막을 제조하는 방법에 있어서, 막의 제조 시 생성되는 기공의 크기와 분포 그리고 기공들 사이의 상호연결성(interconnectivity) 및 기공도(porosity)를 제어하고 나아가 막의 투과 성능을 향상시키기 위해 고분자 용액 내에 분자량이 10,000, 55,000, 1300,000인 폴리비닐피롤리돈을 첨가한 고분자 용액으로부터 제조된 막의 기공의 크기가 0.5-10㎛이고 다공도가 40-87%인 것을 특징으로 하는 미세 다공성 열가소성 고분자 막을 얻고, 다공성 고분자 막의 순수투과유속이 2000-8000LMH임을 특징으로 하는 열가소성 고분자 막에 관한 것이며, 고분자 용액 제조에 첨가된 폴리비닐피롤리돈의 분자량 및 함량의 변화에 따라 최종 막의 형태로 제조하는 과정으로 막의 표면에 기공의 분포 및 크기를 조절할 수 있는 방법을 포함하는 비대칭 막의 제조방법 및 이로부터 제조된 기공의 크기가 조절된 폴리염화비닐계의 열가소성 수지 막에 관한 것이다. 본 발명에 따른 방법으로 제조된 막은 고분자 첨가제인 폴리비닐피롤리돈을 사용하여 미세다공성 막의 제조 시 기공의 크기, 분포, 기공도 및 기공의 상호연결성을 제어할 수 있으며, 순수 물의 투과 유량이 개선된 다공성막의 제조에 관한 것으로, 본 발명에 따른 방법으로 제조된 막은 투과성능이 우수하여 정밀여과 등에 응용이 가능하다.The present invention is a 10-35% by weight alcohol which is mixed well with a solvent in a solution dissolved in a good solvent tetrahydrofuran (THF) using a polyvinyl chloride-based thermoplastic resin of thermoplastic resin and acts as a non-solvent for the polymer Adding to form a polymer solution, impregnating and applying the polymer solution to a support, and then drying it under a temperature of 20-25 ° C. and a relative humidity of 45-90% to obtain a method for producing a microporous thermoplastic polymer membrane. In order to control the size and distribution of the pores generated in the preparation of the membrane and the interconnectivity and porosity between the pores and further improve the permeation performance of the membrane, the molecular weight is 10,000, 55,000, 1300, The pore size of the membrane prepared from the polymer solution added with polyvinylpyrrolidone of 000 is 0.5-10 μm and the porosity is 40-87%. The present invention relates to a thermoplastic polymer membrane obtained by obtaining a microporous thermoplastic polymer membrane, and characterized in that the pure permeation flux of the porous polymer membrane is 2000 to 8000 lmH, and to a change in molecular weight and content of polyvinylpyrrolidone added to the preparation of the polymer solution. According to the manufacturing method of the final membrane in accordance with the method for producing an asymmetric membrane comprising a method for controlling the distribution and size of the pores on the surface of the membrane and the size of the prepared polyvinyl chloride-based thermoplastic resin membrane will be. The membrane prepared by the method according to the present invention can control the pore size, distribution, porosity and pore interconnectivity in the preparation of microporous membranes using polyvinylpyrrolidone as a polymer additive, and improve the permeation flow rate of pure water. The present invention relates to the preparation of porous membranes, and the membranes produced by the method according to the present invention are excellent in permeability and are applicable to precision filtration and the like.

Description

폴리비닐피롤리돈을 첨가제로 이용한 미세 다공성 염소화 폴리염화비닐 여과막의 제조방법 및 그에 의해 제조된 미세 다공성 염소화 폴리염화비닐 여과막.{Method for manufacturing microporous chlorinated poly(vinyl chloride) membrane using poly(vinyl pyrrolidone) and microporous chlorinated poly(vinyl chloride) membrane manufactured thereby}(Method for manufacturing microporous chlorinated poly (vinyl chloride) membrane using poly (vinyl pyrrolidone) for preparing a microporous chlorinated polyvinyl chloride filter membrane using polyvinylpyrrolidone as an additive) and microporous chlorinated poly (vinyl chloride) membrane manufactured thereby}

본 발명은 여과 등에 이용되는 다공성 막의 제조 방법에 관한 것이다. 더욱 구체적으로는, 본 발명은 열가소성 수지인 염소화 폴리염화비닐을 양용매인 테트라하이드로퓨란(THF)에 녹인 용액에 그 용매와 상용성이 있으며 또한 그 수지를 용해시키지 않는 비용매인 알코올을 혼합하여 만들어진 혼합용액을 합성 폴리에스테르 섬유로 이루어진 부직포에 함침 도포한후 건조하여 미세 기공체를 얻는 방법이 있다. 이로 인한 방법은 사용되는 알코올의 끓는점이 높은 물질을 사용하여 지지체 내에 고분자 상분리가 발생될 수 있는 시간적 여유를 제공하여 제조되는 막의 구조를 제어하는 방법이다(특허출원번호:10-2000-0027557). 또한 온도제어 상분리법(thermal induced phase separation)을 사용하여 고분자의 유리전이온도(Tg)이상에서 용융된 고분자를 저온으로 급냉 시키고, 기계적인 하중을 가하여 강제 기공을 만드는 방법이 있다. 이렇게 만들어진 미세 기공체를 가진 막은 기공의 크기제어 및 높은 기공도를 얻기가 힘들며 또한 평판형 막의 제조 시에 막의 크기가 커지면 이 방법을 사용할 수 없는 단점이 있다. 또한 수처리 용으로 사용되는 일반적인 막들은 사용전에 친수화 처리를 위해 압밀화 과정을 필요로 하나 본 발명으로부터 제조된 막은 첨가되는 폴리비닐피롤리돈의 우수한 친수성으로부터 압밀화 과정 없이도 우수한 수투과도를 나타냄을 확인하였다.The present invention relates to a method for producing a porous membrane used for filtration and the like. More specifically, the present invention is a mixture made by mixing a non-solvent alcohol, which is compatible with the solvent and does not dissolve the resin, in a solution obtained by dissolving chlorinated polyvinyl chloride as a thermoplastic resin in tetrahydrofuran (THF) as a good solvent. There is a method of impregnating and applying a solution to a nonwoven fabric made of synthetic polyester fibers and then drying to obtain a microporous body. This method is a method of controlling the structure of the membrane is prepared by using a material having a high boiling point of the alcohol used to provide a time allowance for the polymer phase separation in the support (Patent Application No.:10-2000-0027557). In addition, there is a method of quenching the molten polymer to a low temperature by using a thermal induced phase separation method (Tg) above the glass transition temperature (Tg) of the polymer to create a forced pore by applying a mechanical load. Membrane with the microporous body thus made is difficult to obtain the pore size control and high porosity, and there is a disadvantage that this method can not be used if the membrane size increases during the production of flat membrane. In addition, general membranes used for water treatment require a condensation process for hydrophilization treatment before use, but the membrane prepared from the present invention shows excellent water permeability without condensation from the good hydrophilicity of the added polyvinylpyrrolidone. Confirmed.

본 발명은 염소화 폴리염화비닐을 용매인 테트라하이드로퓨란(THF)에 완전히 녹여 제조된 용액에 용매와는 혼합이 잘 되고, 고분자에 대해서는 비용매로 작용하는 물 또는 알코올을 첨가하여 혼합용액을 제조한 후, 양용매와 비용매에 동시에 녹으며, 친수성이 강한 폴리비닐피롤리돈을 첨가하여 제조된 고분자 용액을 부직포에 함침, 도포한 후 온도 20-25℃, 상대습도 45-90%의 분위기 하에서 고분자의 상분리를 유도하여 최종 막을 제조한다. 이때 기체 상태의 비용매와 접촉함으로써 고분자 사슬들의 엉킴이 증가되어 고분자 농도가 높은 영역과 낮은 영역으로 분리가 쉽게 일어난다. 이때 이들 두 영역은 그들 자체의 표면장력을 낮추기 위해 각각 응집 현상이 발생하여 고분자 농도가 높은 영역에서는 형성된 막의 골격을 이루고 농도가 낮은 영역은 막 내부의 기공으로 성장한다. 이에 의해 생성된 막은 상분리가 되면서 첨가된 폴리비닐피롤리돈이 생성되는 기공의 크기와 분포 그리고 기공사이의 상호연결성(interconnectivity)이 쉽게 제어되고 수투과도가 향상됨을 알아 본 발명에 이르렀다. 일반적으로 폴리비닐피롤리돈이 첨가된 고분자 용액의 상분리 기구는 크게 초기 단계 및 후기 단계로 나누어 설명한다. 초기 단계에서는 비용매와 접촉시 이종 고분자 상호간에 분리가 일어나지 않고 동일한 상분리 기구를 따르다가 후기 단계에서 이종 고분자 상호간에 분리가 이루어지고 막의 구조가 고정된다고 알려져 있다. [I.M.Wienk, R.M.Boom, H.Strathmann, J. Memb. Sci., 113, 361, 1996]. 따라서 고분자 첨가제인 폴리비닐피롤리돈의 조성변화를 적절히 하면 후기 상분리 기구를 제어하여 비대칭 막의 표면에서 생성되는 기공의 분포와 크기를 조절할 수 있다.In the present invention, a solution prepared by dissolving chlorinated polyvinyl chloride completely in a solvent, tetrahydrofuran (THF), is well mixed with a solvent, and a mixed solution is prepared by adding water or alcohol, which acts as a nonsolvent for a polymer. After dissolving in good solvent and non-solvent at the same time, the polymer solution prepared by adding polyvinylpyrrolidone with strong hydrophilicity was impregnated and applied to the nonwoven fabric, and then applied under an atmosphere of temperature 20-25 ° C. and relative humidity 45-90%. Phase separation of the polymer is induced to produce the final membrane. In this case, the entanglement of the polymer chains is increased by contact with the gaseous nonsolvent, so that separation easily occurs in a region having a high polymer concentration and a low region. At this time, these two regions are aggregated in order to lower their own surface tension, forming a skeleton of the formed membrane in the region of high polymer concentration, and the regions of low concentration grow into pores inside the membrane. The membrane produced by the present invention has been found to be easily controlled and the water permeability of the pore size and distribution and the interconnectivity of the pores in which the added polyvinylpyrrolidone is produced as the phase separation is achieved. In general, the phase separation mechanism of the polymer solution to which polyvinylpyrrolidone is added is largely divided into an initial stage and a later stage. It is known that the initial phase does not separate the heteropolymers upon contact with the non-solvent, but follows the same phase separation mechanism, and the latter phase separates the heteropolymers and fixes the membrane structure. I. M. Wienk, R. M. Boom, H. Strathmann, J. Memb. Sci., 113, 361, 1996]. Therefore, if the composition change of the polymer additive polyvinylpyrrolidone is appropriately adjusted, the distribution and size of the pores generated on the surface of the asymmetric membrane can be controlled by controlling the late phase separation mechanism.

상기한 바와 같이, 고분자 첨가제인 폴리비닐피롤리돈이 첨가된 고분자 용액의 일정한 습도 하에서 건조 방식에 따라 다공성 막을 제조할 때, 비용매의 접촉에 따른 동력학ㆍ열역학적인 상분리 기구의 원활한 조절이 가능하여 기공의 크기가 조절되고 또한 기공도가 높은 다공성 구조의 막을 얻을 수 있다.As described above, when the porous membrane is manufactured according to the drying method under a constant humidity of the polymer solution to which the polymer additive polyvinylpyrrolidone is added, it is possible to smoothly control the dynamic and thermodynamic phase separation mechanism according to the contact of the non-solvent. It is possible to obtain a membrane having a porous structure in which the pore size is controlled and the porosity is high.

이와 같이 본 발명은 염소화 폴리염화비닐을 용매인 테트라하이드로 퓨란(THF)에 완전히 녹여 제조된 용액에 용매와는 혼합이 잘 되고, 고분자에 대해서는 비용매로 작용하는 물 또는 알코올을 첨가하여 혼합용액을 제조한 후, 양용매와 비용매에 동시에 녹으며, 친수성이 강한 폴리비닐피롤리돈을 첨가하고, 이를 부직포에 함침, 도포한 후 온도 20-25℃, 상대습도 45-90%의 분위기 하에서 고분자의 상분리를 유도하여 최종 막을 건조시켜 얻게 되는 것을 특징으로 하는 미세 다공성 염소화 폴리염화비닐 막의 제조방법 및 상기 미세 다공성 막의 제조방법에 있어서 고분자 첨가제인 폴리비닐피롤리돈이 사용되고, 사용되는 폴리비닐피롤리돈의 분자량이 수만에서 수십만인 첨가제를 선택함으로써 다공성 고분자 막의 기공의 크기가 0.5-10㎛이고 다공도가 40-87%인 것을 특징으로 하는 미세 다공성 염소화 폴리염화비닐 고분자 막을 얻고, 다공성 고분자 막의 순수투과유속이 2000내지 8000LMH임을 특징으로 하는 염소화 폴리염화비닐 고분자 막에 관한 것으로, 미세 다공성 막의 제조방법 및 이로부터 제조된 기공의 크기가 조절되고, 순수 물의 투과 유량이 개선된 다공성 염소화 폴리염화비닐 막에 관한 것이며, 본 발명에 따른 방법으로 제조된 막은 투과성능이 우수하여 정밀여과 등에 응용이 가능하다.Thus, in the present invention, a solution prepared by dissolving chlorinated polyvinyl chloride completely in a solvent, tetrahydrofuran (THF), is well mixed with a solvent, and water or alcohol acting as a non-solvent for a polymer is added to the mixed solution. After the preparation, the polyvinylpyrrolidone is dissolved in a good solvent and a non-solvent at the same time, and a hydrophilic polyvinylpyrrolidone is added, and the polymer is impregnated and applied to a nonwoven fabric, and then polymers are used under an atmosphere of 20-25 ° C. and 45-90% relative humidity Polyvinylpyrrolidone, which is a polymer additive, is used in the preparation method of the microporous chlorinated polyvinyl chloride membrane and the method of preparing the microporous membrane, which is obtained by inducing phase separation of the final membrane. By selecting an additive with a molecular weight of tens of thousands to hundreds of thousands of pores, the pore size of the porous polymer membrane is 0.5-10 μm and the porosity is 40- The present invention relates to a microporous chlorinated polyvinyl chloride polymer membrane, characterized in that 87%, and a pure permeation flux of the porous polymer membrane is 2000 to 8000 lmH. The present invention relates to a porous chlorinated polyvinyl chloride membrane having a controlled pore size and improved permeate flow rate of pure water. The membrane prepared by the method of the present invention has excellent permeability and is applicable to precision filtration and the like.

이하, 실시 예를 참조하여 본 발명을 보다 상세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예 1-5Example 1-5

9중량%의 염소화 폴리염화비닐, 63.7중량%의 THF, 그리고 27.3중량%의 n-butylalcohol로 이루어진 고분자 용액에 100part에 수용성 고분자 첨가제인 폴리비닐피롤리돈 (분자량 10000)을 0, 1, 1.5, 2, 2.5중량%를 각각 혼합하여 용액을 제조하였다. 이 용액을 부직포에 함침 도포한 후, 온도 25℃, 상대습도 80%의 분위기 하에서 상분리를 유도하여 최종 막을 제조하여 기공의 크기, 기공도 및 물 투과량을 측정하여 그 결과를 표1에 나타내었다.In a polymer solution consisting of 9% by weight of chlorinated polyvinyl chloride, 63.7% by weight of THF, and 27.3% by weight of n-butylalcohol, water-soluble polymer additive polyvinylpyrrolidone (molecular weight 10000) was added to 0, 1, 1.5, 2 and 2.5% by weight of each was mixed to prepare a solution. After impregnating and applying this solution to a nonwoven fabric, the final membrane was prepared by inducing phase separation under an atmosphere of 25 ° C. and a relative humidity of 80% to measure pore size, porosity, and water permeability. The results are shown in Table 1.

실시예 1-5를 비교예의 결과와 비교해 보면, 0.5-2.5중량%의 분자량 10000의 폴리비닐피롤리돈을 첨가하면 기공도가 35-70%에서 50-86%로 증가하며 또한 기공의 크기도 최고 2.2㎛으로 함께 증가함을 알 수 있다. 또한 사용하는 고분자 첨가제의 함량이 증가할수록 순수 물 투과도가 향상되었다.Comparing Example 1-5 with the results of the comparative example, the addition of 0.5-2.5% by weight of polyvinylpyrrolidone having a molecular weight of 10000 increases the porosity from 35-70% to 50-86% and also the pore size. It can be seen that the maximum increase together with 2.2㎛. In addition, as the amount of the polymer additive used increased, the pure water permeability improved.

실시예 6-10Example 6-10

9중량%의 염소화 폴리염화비닐, 63.7중량%의 THF, 그리고 27.3중량%의 n-butylalcohol로 이루어진 고분자 용액에 100part에 수용성 고분자 첨가제인 폴리비닐피롤리돈 (분자량 55000)을 0.5, 1, 1.5, 2, 2.5중량%를 각각 혼합하여 용액을 제조하였다. 이 용액을 부직포에 함침 도포한 후, 온도 25℃, 상대습도 80%의 분위기 하에서 상분리를 유도하여 최종 막을 제조하여 기공의 크기, 기공도 및 물 투과량을 측정하여 그 결과를 표2에 나타내었다.In 100 parts of a polymer solution consisting of 9% by weight of chlorinated polyvinyl chloride, 63.7% by weight of THF, and 27.3% by weight of n-butylalcohol, water-soluble polymer additive polyvinylpyrrolidone (molecular weight 55000) was 0.5, 1, 1.5, 2 and 2.5% by weight of each was mixed to prepare a solution. After impregnating and applying this solution to a nonwoven fabric, the final membrane was prepared by inducing phase separation under an atmosphere of temperature 25 ° C. and a relative humidity of 80%. The pore size, porosity, and water permeability were measured, and the results are shown in Table 2.

앞의 실시예 1-5와 비교예의 결과와 마찬가지로 분자량이 55000의 폴리비닐피롤리돈을 첨가제로 넣으면 기공의 크기가 비교예의 경우보다 커짐을 알수 있고 순수 물 투과도가 향상됨을 알 수 있으나, 실시예 1-5와 비교하여 다소 기공의 크기 및 기공도가 작았으며, 수투과도 역시 작은 값을 가짐을 알 수 있다. 이것은 분자량이 커짐과 동시에 발생하는 고분자 사슬간의 꼬임현상 (entanglement)의 증가로 상분리 시에 고분자 사슬의 충분한 유동성을 떨어뜨려 원활한 기공의 생성이 감소됨을 할 수 있다. 결과적으로 원하는 다공성 고분자 막의 구조를 제어하기 위해서는 사용되는 고분자 첨가제의 분자량이 최종 얻어지는 막의 구조에 큰 영향을 미치고 있음을 알 수 있다.In the same manner as in Example 1-5 and Comparative Example, when the polyvinylpyrrolidone having a molecular weight of 55000 was added as an additive, the pore size was larger than that of the comparative example, and the pure water permeability was improved. Compared with 1-5, the pore size and porosity were slightly smaller, and the water permeability was also smaller. This may be due to the increase in the entanglement between the polymer chains occurring at the same time as the molecular weight increases to reduce the sufficient fluidity of the polymer chains during phase separation, thereby reducing the formation of smooth pores. As a result, in order to control the structure of the desired porous polymer membrane, it can be seen that the molecular weight of the polymer additive used has a great influence on the structure of the finally obtained membrane.

실시예 11-15Example 11-15

9중량%의 염소화 폴리염화비닐, 63.7중량%의 THF, 그리고 27.3중량%의 n-butylalcohol로 이루어진 고분자 용액에 100part에 수용성 고분자 첨가제인 폴리비닐피롤리돈 (분자량 1300000)을 0.5, 1, 1.5, 2, 2.5중량%를 각각 혼합하여 용액을 제조하였다. 이 용액을 부직포에 함침 도포한 후, 온도 25℃, 상대습도 80%의 분위기 하에서 상분리를 유도하여 최종 막을 제조하여 기공의 크기, 기공도 및 물 투과량을 측정하여 그 결과를 표3에 나타내었다.In a polymer solution consisting of 9% by weight of chlorinated polyvinyl chloride, 63.7% by weight of THF, and 27.3% by weight of n-butylalcohol, polyvinylpyrrolidone (molecular weight: 1300000) as a water-soluble polymer additive in 100 parts was 0.5, 1, 1.5, 2 and 2.5% by weight of each was mixed to prepare a solution. After impregnating and applying this solution to a nonwoven fabric, the final membrane was prepared by inducing phase separation under an atmosphere of 25 ° C. and a relative humidity of 80%. The pore size, porosity, and water permeability were measured, and the results are shown in Table 3.

실시예 1-15의 결과와 같이 사용되는 고분자 첨가제인 폴리비닐피롤리돈의 분자량이 커짐에 따라 상대적으로 작은 기공의 크기와 순수 물의 투과도를 나타낸다. 따라서 사용되는 폴리비닐피롤리돈의 함량 및 분자량의 크기가 최종 제조되는 미세 다공성 염소화 폴리염화비닐 막의 구조에 큰 영향을 미치며, 이에 따라 투과 성능 역시 큰 변화를 보였다. 또한 첨가제의 함량이 증가함에 따라 기공의 크기 및 분포에 의한 요인에 의한 효과가 순수물 투과량에 더 큰 영향력을 나타냄을 알 수 있다. 따라서 본 발명의 효과는 사용되는 정밀여과의 용질의 특성에 따라 원하는염소화 폴리염화비닐 막의 기공의 크기를 단순한 고분자 첨가제의 분자량이나 용량에 의해 쉽게 제어 가능한 것이 가장 큰 특징이라고 말할 수 있다.As the molecular weight of the polyvinylpyrrolidone which is a polymer additive used as in the result of Example 1-15 increases, it shows a relatively small pore size and permeability of pure water. Therefore, the content of the polyvinylpyrrolidone used and the size of the molecular weight have a great influence on the structure of the final microporous chlorinated polyvinyl chloride membrane, and accordingly, the permeation performance also showed a great change. In addition, it can be seen that as the content of the additive increases, the effect of the factors due to the size and distribution of the pore has a greater influence on the pure water permeation amount. Therefore, the effect of the present invention can be said that the biggest feature is that the pore size of the desired chlorinated polyvinyl chloride membrane can be easily controlled by the molecular weight or capacity of a simple polymer additive according to the characteristics of the solute of the microfiltration used.

이상에서 상술한 바와 같이 본 발명은, 고분자첨가제인 폴리비닐피롤리돈을 사용하여 염소화 폴리염화비닐 용액으로부터 다공성 막을 얻을 수 있고, 사용한 폴리피롤리돈의 함량 및 분자량을 조절하여 온도 20-25℃, 상대습도 45-90%의 분위기 하에서 기공의 크기와 분포 및 기공도의 조절이 가능하고 기공사이의 상호연결성이 증가하여 투과성능이 우수한 다공성 막을 제조할 수 있어 정밀여과에 응용이 가능하다.As described above, the present invention can obtain a porous membrane from a chlorinated polyvinyl chloride solution using polyvinylpyrrolidone as a polymer additive, and adjust the content and molecular weight of the used polypyrrolidone at a temperature of 20-25 ° C, relative It is possible to control pore size, distribution and porosity in the atmosphere of 45-90% humidity, and it is possible to manufacture porous membranes with excellent permeability due to increased interconnection of pores.

Claims (6)

고분자, 용매 및 첨가제로 이루어진 혼합 용액을 지지체에 함침 도포후, 일정한 습도에 의한 상분리를 유도하여 이를 건조시킨 여과막의 제조 공정에 있어서,In the manufacturing process of the filter membrane in which a mixed solution consisting of a polymer, a solvent, and an additive is impregnated and applied to a support, followed by induction of phase separation by a constant humidity and drying it, 염소화 폴리염화비닐을 용매 테트라하이드로퓨란(THF)에 용해시킨 용액에,In a solution in which chlorinated polyvinyl chloride is dissolved in solvent tetrahydrofuran (THF), 비용매로 작용하는 알코올을 1 - 30중량% 첨가하고,Add 1-30% by weight of a non-solvent alcohol, 고분자 첨가제로써, 분자량이 10000 - 1300000인 폴리비닐피롤리돈을 전체 고분자 용액 중 0.5 - 2.5중량%의 함유량 범위로 첨가하여 고분자 용액을 제조하고,As the polymer additive, polyvinylpyrrolidone having a molecular weight of 10000-1300000 is added in the content range of 0.5-2.5% by weight in the total polymer solution to prepare a polymer solution, 이 고분자 용액을 부직포에 함침 도포한 후, 온도 20 - 25℃, 상대습도 45 - 90% 분위기 하에서 건조시켜 기공의 크기가 0.5 - 10㎛인 막을 얻는 것을 특징으로 하는 미세 다공성 염소화 폴리염화비닐 막의 제조 방법After impregnating and applying this polymer solution to a nonwoven fabric, a microporous chlorinated polyvinyl chloride membrane is produced, which is dried under an atmosphere of 20 to 25 ° C. and a relative humidity of 45 to 90% to obtain a membrane having a pore size of 0.5 to 10 μm. Way 삭제delete 삭제delete 제1항 기재의 방법으로 제조된 미세 다공성 염소화 폴리염화비닐 막Microporous chlorinated polyvinyl chloride membrane prepared by the method of claim 1 제4항에 있어서, 미세 다공성 염소화 폴리염화비닐 막의 다공도가 40 - 87%인 것을 특징으로 하는 미세 다공성 염소화 폴리염화비닐 막5. The microporous chlorinated polyvinyl chloride membrane according to claim 4, wherein the porosity of the microporous chlorinated polyvinyl chloride membrane is 40-87%. 제4항에 있어서, 미세 다공성 염소화 폴리염화비닐 막의 순수 투과유속이 2000 - 8000LMH임을 특징으로 하는 미세 다공성 염소화 폴리염화비닐 막5. The microporous chlorinated polyvinyl chloride membrane according to claim 4, wherein the pure permeation flow rate of the microporous chlorinated polyvinyl chloride membrane is 2000-8000 lmH.
KR10-2001-0022190A 2001-04-24 2001-04-24 Method for manufacturing microporous chlorinated poly(vinyl chloride) membrane using poly(vinyl pyrrolidone) and microporous chlorinated poly(vinyl chloride) membrane manufactured thereby KR100426328B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0022190A KR100426328B1 (en) 2001-04-24 2001-04-24 Method for manufacturing microporous chlorinated poly(vinyl chloride) membrane using poly(vinyl pyrrolidone) and microporous chlorinated poly(vinyl chloride) membrane manufactured thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0022190A KR100426328B1 (en) 2001-04-24 2001-04-24 Method for manufacturing microporous chlorinated poly(vinyl chloride) membrane using poly(vinyl pyrrolidone) and microporous chlorinated poly(vinyl chloride) membrane manufactured thereby

Publications (2)

Publication Number Publication Date
KR20020082989A KR20020082989A (en) 2002-11-01
KR100426328B1 true KR100426328B1 (en) 2004-04-08

Family

ID=27702425

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0022190A KR100426328B1 (en) 2001-04-24 2001-04-24 Method for manufacturing microporous chlorinated poly(vinyl chloride) membrane using poly(vinyl pyrrolidone) and microporous chlorinated poly(vinyl chloride) membrane manufactured thereby

Country Status (1)

Country Link
KR (1) KR100426328B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112447994B (en) * 2019-08-28 2022-03-08 中国科学院大连化学物理研究所 Application of ion-conducting membrane containing chlorinated polyvinyl chloride in flow battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522382A (en) * 1978-08-07 1980-02-18 Yuasa Battery Co Ltd Separator
JPH03258330A (en) * 1990-03-09 1991-11-18 Kuraray Co Ltd Porous hollow fiber membrane
KR100375459B1 (en) * 2000-05-22 2003-03-10 학교법인 한양학원 microporous chlorinated polychlorovinyl film and method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522382A (en) * 1978-08-07 1980-02-18 Yuasa Battery Co Ltd Separator
JPH03258330A (en) * 1990-03-09 1991-11-18 Kuraray Co Ltd Porous hollow fiber membrane
KR100375459B1 (en) * 2000-05-22 2003-03-10 학교법인 한양학원 microporous chlorinated polychlorovinyl film and method therefor

Also Published As

Publication number Publication date
KR20020082989A (en) 2002-11-01

Similar Documents

Publication Publication Date Title
CN110475602B (en) Homogeneous pore self-assembled block copolymer membrane containing high molecular weight hydrophilic additive and preparation method thereof
US5049276A (en) Hollow fiber membrane
KR101240953B1 (en) Method for manufacturing porous membrane and asymmetric porous membrane thereby
EP0241995A1 (en) Method for preparing a composite semi-permeable membrane
US5707522A (en) Permselective membrane of polyacrylonitrile copolymer and process for producing the same
KR100426328B1 (en) Method for manufacturing microporous chlorinated poly(vinyl chloride) membrane using poly(vinyl pyrrolidone) and microporous chlorinated poly(vinyl chloride) membrane manufactured thereby
KR101096536B1 (en) Microfilter and method for preparing the same
JPS6238205A (en) Semi-permeable membrane for separation
JPS6397202A (en) Polyether sulfone resin semipermeable membrane and its production
KR20110076333A (en) Method for manufacturing microfiltration membrane and high flux microfiltration membrane manufactured therefrom
KR100366762B1 (en) Method for manufacturing asymmetric polyacrylonitrile membrane having the sponge-type structure and asymmetric polyacrylonitrile membrane manufactured thereby
JP2713294B2 (en) Method for producing polysulfone-based resin semipermeable membrane
KR100418859B1 (en) Composition for producing polyethersulfone membrane and method for preparing microfilteration membrane using the same
JPH0376969B2 (en)
KR100375459B1 (en) microporous chlorinated polychlorovinyl film and method therefor
JP2882658B2 (en) Method for producing polysulfone-based semipermeable membrane
KR102022264B1 (en) Manufacturing Method of Hollow Fiber Membrane using Organic acids
KR100392470B1 (en) Method for manufacturing microporous poly(vinylchloride) membrane and microporous poly(vinylchloride) manufactured thereby
KR100426183B1 (en) A composition for producing microporous polyethersulfone membrane and a method for preparing microporous membrane using the same
KR100531118B1 (en) The Submerged Membrane System and preparation thereof
KR100406362B1 (en) A method for producing asymmetric supporting membranes for composite membranes and asymmetric supporting membranes having improved permeation and mechanical strength produced therefrom
EP1839730B1 (en) Process for the preparation of microporous membranes made of polyvinylidenefluoride (PVDF)
JPS6399325A (en) Hollow yarn membrane of polysulfone resin and production thereof
JPH03196823A (en) Production of hollow fiber membrane of polysulfone having high strength and high flux
KR950007323B1 (en) Manufacturing mehtod of hollow fiber membrane

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120116

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee