KR100392470B1 - Method for manufacturing microporous poly(vinylchloride) membrane and microporous poly(vinylchloride) manufactured thereby - Google Patents

Method for manufacturing microporous poly(vinylchloride) membrane and microporous poly(vinylchloride) manufactured thereby Download PDF

Info

Publication number
KR100392470B1
KR100392470B1 KR10-2000-0044447A KR20000044447A KR100392470B1 KR 100392470 B1 KR100392470 B1 KR 100392470B1 KR 20000044447 A KR20000044447 A KR 20000044447A KR 100392470 B1 KR100392470 B1 KR 100392470B1
Authority
KR
South Korea
Prior art keywords
membrane
polyvinyl chloride
solvent
microporous
chlorinated polyvinyl
Prior art date
Application number
KR10-2000-0044447A
Other languages
Korean (ko)
Other versions
KR20020011057A (en
Inventor
이영무
강종석
Original Assignee
학교법인 한양학원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 한양학원 filed Critical 학교법인 한양학원
Priority to KR10-2000-0044447A priority Critical patent/KR100392470B1/en
Publication of KR20020011057A publication Critical patent/KR20020011057A/en
Application granted granted Critical
Publication of KR100392470B1 publication Critical patent/KR100392470B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/301Polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0095Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02833Pore size more than 10 and up to 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02834Pore size more than 0.1 and up to 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range

Abstract

본 발명은 고분자, 용매 및 첨가제로 이루어진 혼합 용액을 폴리에스테르 부직포에 함침 도포 후, 일정한 습도에 의해 상분리를 유도하여 이를 건조시킨 막의 제조 공정에 있어서,In the present invention, after impregnating and applying a mixed solution consisting of a polymer, a solvent and an additive to a polyester nonwoven fabric, the phase separation is induced by a constant humidity and dried in the manufacturing process of the membrane,

염소화 폴리염화비닐을 테트라하이드로퓨란(THF)에 용해시킨 용액에 용매와는 잘 혼합되고 고분자에 대해서는 비용매로 작용하는 1-30중량%의 알코올을 첨가하여 고분자 용액을 형성하고, 이 고분자 용액을 폴리에스테르 부직포에 함침 도포한 후, 상대습도(온도 25℃기준)가 45-90%인 분위기 하에서 상온건조시켜 얻게 되는 것을 특징으로 하는 미세 다공성 염소화 폴리염화비닐 막의 제조 방법을 제공한다.To a solution of chlorinated polyvinyl chloride in tetrahydrofuran (THF), a polymer solution is formed by adding 1-30% by weight of alcohol, which is well mixed with a solvent and acts as a nonsolvent for a polymer. Provided is a method for producing a microporous chlorinated polyvinyl chloride membrane, which is obtained by impregnating and applying a polyester nonwoven fabric, followed by drying at room temperature in an atmosphere having a relative humidity (based on a temperature of 25 ° C.) of 45-90%.

이와 같이 제조된 다공성 고분자 막은 기공의 크기가 0.01-0.5㎛이고 다공도가 25 - 87%이며, 막의 순수투과유속이 13-8000 LMH에 해당하는 등 투과성능이 우수하여 정밀여과 등에 응용이 가능하다.The porous polymer membrane thus prepared has a pore size of 0.01-0.5 μm, porosity of 25-87%, and a pure permeation flux of 13-8000 LMH.

Description

미세다공성 염소화 폴리염화비닐 막 및 그 제조방법{Method for manufacturing microporous poly(vinylchloride) membrane and microporous poly(vinylchloride) manufactured thereby}Microporous chlorinated polyvinyl chloride membrane and method for manufacturing the same {Method for manufacturing microporous poly (vinylchloride) membrane and microporous poly (vinylchloride) manufactured thereby}

본 발명은 여과등에 이용되는 다공성 막의 제조 방법에 관한 것이다. 더욱 구체적으로는, 본 발명은 상분리법을 이용한 다공성 막의 제조에 있어서 순수 물의 투과성능을 향상시키면서도 적절한 막의 다공도 및 기공의 크기를 가질 수 있도록 조절된 다공성 막의 제조방법에 관한 것이다.The present invention relates to a method for producing a porous membrane used for filtration and the like. More specifically, the present invention relates to a method for producing a porous membrane that is adjusted to have a porosity and pore size of the membrane suitable for improving the permeability of pure water in the preparation of a porous membrane using a phase separation method.

다공성 막의 제조를 위한 공정법의 종류에는 열유도 상분리 공정, 비용매 유도 상분리 공정 및 건습법에 따른 상분리 공정 등이 있다.상기 각각 공정에 따른 막 형성 기구는 고분자 용액의 열역학적 관점에서 보면 바이노달 과 스피노달 사이에 위치하는 준안정 영역에서의 기핵-성장 (NG)기구와 스피노달 안쪽의 불안정 영역에서의 상분리 (SD)기구로 요약된다.(P.van de Witte et al., Journal of Membrane Science,117(1996) 1-31)일반적으로 유체의 투과성능을 개선하기 위해서는 기공의 크기 및 기공 상호간의 연결성이 매우 중요하다. 준안정 영역에서의 기핵-성장 (NG)기구에 의해 제조된 막의 기공은 폐쇄된 기공을 나타냄과 동시에 투과성능이 우수하지 못하나, 불안정 영역에서의 상분리 (SD)기구에 따른 막의 기공은 높은 기공연결성을 가져 투과성능이 매우 우수하다(S.W.Song et al.,Journal of Membrane Science,98(1995) 209-222). 따라서 비용매를 적절히 첨가하여 용액의 열역학적 조성을 불안정 영역 내에 쉽게 위치할 수 있도록 유도하면 막 내부의 기공들이 상호 연결된 구조를 갖게 되므로 투과성능이 개선될 수 있다.한편, 상대습도도 기공 성장에 영향을 미친다. 상대습도가 높을수록 상분리를 유도할 수 있는 활성도가 높아지고 고분자 용액의 표면에 수분 등이 빠르게 흡착되므로 상분리 속도를 빠르게 하는 기구로 작용하며, 이러한 작용은 전반적으로 기공의 크기를 작게 하는 요인으로 작용하여 투과감소를 유발한다.이 때, 투과도가 높은 것이 단위시간당 처리될 수 있는 용량이 커지므로 우수한 막의 특징이라고 할 수 있지만, 문제는 기공의 크기가 무조건 커지면서 투과성능이 좋은 것은 그만큼 선택성이 감소하기 때문에 기술적 가치가 낮은 것이며, 가능한 한 기공의 크기가 작으면서도 투과성능이 우수한 것이 기술적 가치를 높이는 방향이며, 또한 기공의 크기 분포가 좁은 것이 안정된 선택성을 가지기 때문에 좋은 물성을 가진 것이라고 볼 수 있다.종래에 알려진 다공성 막의 제작기술로서, Iso-프로필 알코올을 비용매로 사용하고 부직포의 구조를 조절하여 제조된 폴리염화비닐 막 (JP 58-88011)이 보고된 바 있고, 에틸알코올을 비용매로 하고 폴리염화비닐을 이용하여 다공성 막을 제작 (JP 47-029266)한 결과 역시 보고된 바 있다.The process methods for the preparation of the porous membrane include a thermally induced phase separation process, a non-solvent induced phase separation process, and a phase separation process according to a wet and dry process. The nucleus-growth (NG) mechanism in the metastable region located between the spinodals and the phase separation (SD) mechanism in the unstable region inside the spinodal are summarized (P. van de Witte et al., Journal of Membrane Science). , 117 (1996) 1-31) In general, the pore size and the interconnection of the pores are very important for improving the permeability of the fluid. The pores of the membrane prepared by the nucleus-growth (NG) mechanism in the metastable region exhibit closed pores and poor permeability, but the pores of the membrane due to the phase separation (SD) mechanism in the unstable region have high pore connectivity. It has a very good permeability (SWSong et al., Journal of Membrane Science, 98 (1995) 209-222). Therefore, if the non-solvent is added properly to induce the thermodynamic composition of the solution to be easily located in the unstable region, the permeation performance can be improved because the pores inside the membrane are interconnected. Meanwhile, the relative humidity may affect the pore growth. Crazy The higher the relative humidity, the higher the activity that can induce phase separation and the faster the adsorption of water on the surface of the polymer solution, which acts as a mechanism to speed up the phase separation. In this case, the high permeability is a characteristic of the membrane because the capacity to be processed per unit time increases, but the problem is that the permeability is good and the permeability is good so the selectivity decreases accordingly. The lower the technical value, the smaller the pore size and the excellent permeability, the higher the technical value, and the narrower the pore size distribution, which has a stable selectivity. Iso-propyl, a known technique for making porous membranes A polyvinyl chloride membrane (JP 58-88011) prepared by using alcohol as a non-solvent and controlling the structure of a nonwoven fabric has been reported, and a porous membrane is prepared by using non-solvent of ethyl alcohol and polyvinyl chloride (JP 47). The results have also been reported.

본 발명은 염소화 폴리염화비닐을 용매인 테트라하이드로퓨란(THF)에 완전히 녹여 제조된 용액에, 물 또는 알코올을 첨가하여 혼합용액을 제조하고 이를 부직포에 함침, 도포한 후, 상대습도 45-90%(온도 25℃ 기준)의 분위기 하에서 고분자의 상분리를 유도하여 최종 막을 제조한다.이때 고분자 용액 내에 첨가되는 첨가제의 선택은 사용하는 용매와 고분자의 종류에 따라 열역학적 특성의 제한 때문에 그 선택이 한정적이다.첨가된 알콜은 비용매로 작용하기 때문에 고분자 사슬들의 엉킴을 증가시켜 고분자 농도가 높은 영역과 낮은 영역으로 분리가 쉽게 일어난다. 이때 이들 두 영역은 그들 자체의 표면장력을 낮추기 위해 각각 응집 현상이 발생하여 고분자 농도가 높은 영역에서는 형성된 막의 골격을 이루고 농도가 낮은 영역은 막 내부의 기공으로 성장한다.따라서 끓는 점이 낮은 비용매 첨가제는 용액 내에서 쉽게 제거가 일어나 용액 내의 고분자의 함량 분율을 증가시켜 점도 상승의 요인이 되고 농도 분극이 다른 두 상의 형성을 방해하므로 기공의 형성 및 투과성능을 저해하는 요인이 되기도 한다. 그러나 끓는점이 상대적으로 높은 비용매가 첨가된 용액은 상기 여러 문제점을 극복할 수 있음을 알아 본 발명에 이르게 되었다.In the present invention, a solution prepared by completely dissolving chlorinated polyvinyl chloride in a solvent, tetrahydrofuran (THF), by adding water or alcohol to prepare a mixed solution and impregnating and applying it to a nonwoven fabric, a relative humidity of 45-90% The final membrane is prepared by inducing phase separation of the polymer under an atmosphere of (at 25 ° C. temperature). At this time, the choice of additives added in the polymer solution is limited due to the limitation of thermodynamic properties depending on the type of solvent and the polymer used. Since the added alcohol acts as a non-solvent, it increases the entanglement of the polymer chains, so that separation easily occurs in the high and low polymer concentration regions. At these two regions, agglomeration occurs in order to lower their own surface tension, so that in the region of high polymer concentration, they form a skeleton of the formed membrane, and the region of low concentration grows into pores inside the membrane. It is easily removed in the solution to increase the content fraction of the polymer in the solution to cause a viscosity increase and concentration polarization interferes with the formation of the other two phases may also be a factor that inhibits the formation of pores and permeability. However, the present inventors have found that a solution having a relatively high boiling point added to a nonsolvent can overcome the above problems.

상기한 바와 같이, 비용매가 첨가된 고분자 용액의 일정한 습도 하에서 건조 방식에 따라 다공성 막을 제조할 때, 첨가된 비용매의 끓는점에 따른 동력학·열역학적인 상분리 기구의 원활한 조절이 가능하여 기공의 크기가 조절되고 또한 기공도가 높은 다공성 구조의 막을 얻을 수 있다.As described above, when the porous membrane is manufactured according to the drying method under a constant humidity of the non-solvent-added polymer solution, the pore size is controlled by smoothly controlling the dynamic and thermodynamic phase separation mechanism according to the boiling point of the added non-solvent. It is also possible to obtain a membrane having a porous structure with high porosity.

이와 같이 본 발명은 염소화 폴리염화비닐을 테트라하이드로퓨란(THF)에 용해시킨 용액에 용매와는 잘 혼합되고 고분자에 대해서는 비용매로 작용하는 1-30중량%의 알코올을 첨가하여 고분자 용액을 형성하고, 이 고분자 용액을 폴리에스테르 부직포에 함침 도포한 후, 상대습도 45-90%(온도 25℃ 기준), 분위기 하에서 건조시켜 얻게 되는 것을 특징으로 하는 미세 다공성 염소화 폴리염화비닐 막의 제조 방법 및 상기 미세 다공성 막의 제조방법에 있어서 끓는점이 50-150℃이고, 고분자에 대해서 비용매로 작용하는 첨가제를 선택함으로써 다공성 고분자 막의 기공의 크기가 0.01-0.5㎛이고 다공도가 25-87%인 것을 특징으로 하는 미세 다공성 염소화 폴리염화비닐 고분자 막을 얻고, 다공성 고분자 막의 순수투과유속이 13 내지 8000LMH임을 특징으로 하는 염소화 폴리염화비닐 고분자 막에 관한 것으로, 미세 다공성 막의 제조방법 및 이로부터 제조된 기공의 크기가 조절되고, 순수 물의 투과 유량이 개선된 다공성 염소화 폴리염화비닐 막에 관한 것이며, 본 발명에 따른 방법으로 제조된 막은 투과성능이 우수하여 정밀여과 등에 응용이 가능하다.Thus, the present invention forms a polymer solution by adding 1-30% by weight of alcohol, which is well mixed with a solvent and acts as a non-solvent for a polymer, to a solution of chlorinated polyvinyl chloride in tetrahydrofuran (THF). And impregnating and applying the polymer solution to a polyester nonwoven fabric, and then drying the product under an ambient humidity of 45-90% (based on a temperature of 25 ° C.) and atmosphere to obtain a microporous chlorinated polyvinyl chloride membrane. In the method of producing the membrane, the boiling point is 50-150 ° C., and by selecting an additive which acts as a non-solvent for the polymer, the porosity of the porous polymer membrane is 0.01-0.5 μm and the porosity is 25-87%. Chlorinated polyvinyl chloride polymer membrane, chlorination characterized in that the pure permeate flow rate of the porous polymer membrane is 13 to 8000LMH The present invention relates to a polyvinyl chloride polymer membrane, and to a method for preparing a microporous membrane, and a porous chlorinated polyvinyl chloride membrane having a controlled pore size and improved permeation flow rate of pure water, prepared by the method according to the present invention. The membrane has excellent permeability and can be applied to precision filtration.

이하, 실시 예를 참조하여 본 발명을 보다 상세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예 1-5Example 1-5

9.47중량% 염소화 폴리염화비닐을 90.53중량%의 THF에 완전히 용해시키고, 그 용액에 5.26중량%의 알코올을 첨가하여 최종 9중량% 염소화 폴리염화비닐/5중량% 비용매(알코올 또는 물)/86중량% THF의 조성을 갖는 혼합용액을 제조하였다. 이 용액을 폴리에스테르 부직포에 함침 도포한 후, 온도 25℃, 상대습도 70%의 분위기 하에서 상분리를 유도하여 최종 막을 각각 제조하여 기공의 크기, 기공도 및 물 투과량을 측정하여 그 결과를 표1에 나타내었다.9.47 wt% chlorinated polyvinyl chloride completely dissolved in 90.53 wt% THF and 5.26 wt% alcohol was added to the solution to give a final 9 wt% chlorinated polyvinyl chloride / 5 wt% nonsolvent (alcohol or water) / 86 A mixed solution having a composition of wt% THF was prepared. After impregnating and applying this solution to a polyester nonwoven fabric, the phase separation was induced in an atmosphere of a temperature of 25 ° C. and a relative humidity of 70% to prepare a final membrane, and the pore size, porosity, and water permeability were measured. Indicated.

[표 1]TABLE 1

*** :평균 기공의 지름으로 전자주사현미경 관찰에 의해 측정한 값***: Value measured by electron scanning microscope observation with mean pore diameter

** :Pr(기공도)=(1-ρ v/ρ p) ×100 (ρ v:25℃에서 고분자 밀도,ρ p:막의 밀도)**: Pr (porosity) = (1- ρ v / ρ p ) × 100 ( ρ v : polymer density at 25 ℃, ρ p : membrane density)

* :순수물 투과량 (LMH : 1/m2hr)의 평균값*: Average value of pure water permeation amount (LMH: 1 / m 2 hr)

비교예 1의 결과와 비교해 보면, 5중량%의 비용매를 첨가하면 기공도가 증가하며 반면 기공의 크기에는 큰 영향을 미치지 않았다. 또한 사용하는 비용매의 끓는점이 상승하면 대체로 투과도가 향상되었다.Compared with the results of Comparative Example 1, the addition of 5% by weight of non-solvent increases the porosity, while not significantly affecting the pore size. In addition, as the boiling point of the non-solvent used increased, permeability was generally improved.

실시예 6-10Example 6-10

9.47중량%의 염소화 폴리염화비닐을 90.53중량%의 THF에 완전히 용해시키고, 그 용액에 5.26중량%의 알코올을 첨가하여 최종 9중량% 염소화 폴리염화비닐/5중량% 알코올/61중량% THF의 조성을 갖는 혼합용액을 제조하였다. 이 용액을 폴리에스테르 부직포에 함침, 도포한 후, 상온, 상대습도 90%의 분위기(25℃ 기준) 하에서 상분리를 유도하여 최종 막을 제조하고 기공의 크기, 기공도 및 물 투과량을 측정하여 그 결과를 표 2에 나타내었다.9.47% by weight of chlorinated polyvinyl chloride was completely dissolved in 90.53% by weight of THF, and 5.26% by weight of alcohol was added to the solution to form a final composition of 9% by weight of chlorinated polyvinyl chloride / 5% by weight of alcohol / 61% by weight of THF. The mixed solution having was prepared. After impregnating and applying the solution to the polyester nonwoven fabric, the final membrane was prepared by inducing phase separation under an ambient temperature of 90% (at 25 ° C) at room temperature and relative humidity, and measuring the pore size, porosity and water permeability. Table 2 shows.

[표 2]TABLE 2

*** :평균 기공의 지름으로 전자주사현미경 관찰에 의해 측정한 값***: Value measured by electron scanning microscope observation with mean pore diameter

** :Pr(기공도)=(1-ρ v/ρ p) ×100 (ρ v:25℃에서 고분자 밀도,ρ p:막의 밀도)**: Pr (porosity) = (1- ρ v / ρ p ) × 100 ( ρ v : polymer density at 25 ℃, ρ p : membrane density)

* :순수물 투과량 (LMH : 1/m2hr)의 평균값*: Average value of pure water permeation amount (LMH: 1 / m 2 hr)

앞의 실시예 1-5와 비교예 1의 결과와 마찬가지로 상대습도가 90%인 조건하에서도 첨가제를 넣으면 기공의 크기에는 영향을 크게 미치지 않으나 물 투과량은 크게 상승하는 것을 알 수 있다. 그러나 첨가제를 넣지 않은 경우는 비교예 1과 비교예 2에서의 결과에서 보듯이 상대습도가 높은 조건하에서 얻게 된 막은 기공이 작아짐을 알 수 있다.결과적으로 비용매가 들어가지 않은 막의 제조에서 상대습도가 높아지면 기공의 크기는 다소 작아지고 막 내의 기공도는 증가하지만 반드시 투과도의 상승 요인으로 작용하지는 않는다.그러나 비용매를 첨가제로 막제조 과정에 넣으면 비용매의 끓는점에 따라 기공의 연결성에 주요한 인자로 작용하여 특히 끓는점이 가장 높은 실시예 8과 10에서 가장 우수한 투과성능을 나타낼 수 있다.Similar to the results of Example 1-5 and Comparative Example 1, it can be seen that the addition of the additive under the condition of 90% relative humidity does not significantly affect the pore size, but the water permeation rate is greatly increased. However, when the additive is not added, as shown in the results of Comparative Example 1 and Comparative Example 2, it can be seen that the membrane obtained under the condition of high relative humidity has a small pore. As it increases, the pore size decreases slightly and the porosity in the membrane increases, but it does not necessarily increase the permeability.However, when the nonsolvent is added as an additive to the membrane manufacturing process, the boiling point of the nonsolvent is a major factor in the pore connectivity. In particular, it can exhibit the best permeability, especially in Examples 8 and 10 with the highest boiling point.

실시예 11-18Example 11-18

위의 실시예 1-10의 결과에서 알 수 있듯이 첨가제로 사용된 비용매(알코올)의 끓는점이 높을수록 순수물의 투과량이 증가함을 알았다. 이로써 18중량%의 염소화 폴리염화비닐을 82중량 THF에 완전히 용해시키고, 그 용액에 60중량%의 알코올(n-프로필 알코올, n-부틸 알코올)과 40중량%의 THF로 이루어진 용액을 상호 교반 하에 혼합하여 최종적으로 9중량% 염소화 폴리염화비닐/30중량% 알코올/61중량% THF의 조성을 갖는 혼합용액을 제조하였다. 이 용액을 폴리에스테르 부직포에 함침, 도포하고 일정 온도 25℃에서 여러 상대습도의 분위기 하에서 상분리를 유도하여 최종 막을 제조하고 기공의 크기, 기공도 및 물 투과량을 측정하였다.그 결과를 표 3에 나타내었다.As can be seen from the results of Example 1-10, it was found that the higher the boiling point of the non-solvent (alcohol) used as the additive, the higher the permeation amount of pure water. This completely dissolves 18 wt% chlorinated polyvinyl chloride in 82 wt THF, and the solution of 60 wt% alcohol (n-propyl alcohol, n-butyl alcohol) and 40 wt% THF is dissolved in the solution under mutual stirring. Finally, a mixed solution having a composition of 9 wt% chlorinated polyvinyl chloride / 30 wt% alcohol / 61 wt% THF was prepared. The solution was impregnated and applied to a polyester nonwoven fabric, and the final membrane was prepared by inducing phase separation at a constant temperature of 25 ° C. under various relative humidity conditions, and the pore size, porosity and water permeation were measured. The results are shown in Table 3. It was.

[표 3]TABLE 3

*** :평균 기공의 지름으로 전자주사현미경 관찰에 의해 측정한 값***: Value measured by electron scanning microscope observation with mean pore diameter

** :Pr(기공도)=(1-ρ v/ρ p) ×100 (ρ v:25℃에서 고분자 밀도,ρ p:막의 밀도)**: Pr (porosity) = (1- ρ v / ρ p ) × 100 ( ρ v : polymer density at 25 ℃, ρ p : membrane density)

* :순수물 투과량 (LMH : 1/m2hr)의 평균값*: Average value of pure water permeation amount (LMH: 1 / m 2 hr)

실시예 1-10의 결과에 의해서 끓는점이 상대적으로 높은 n-부틸 알코올의 경우가 비용매 첨가제가 없는 경우나 메틸알코올, iso-프로필 알코올, n-프로필 알코올, 물 등을 비용매로 첨가해서 제조된 막의 경우보다 높은 투과성능을 나타냄을 알 수 있다. 또한 첨가제의 함량이 증가함에 따라 기공의 크기 및 분포에 의한 요인보다는 기공의 상호 연결에 의한 효과가 물 투과량에 더 큰 영향력을 나타냄을 알 수 있다.As a result of Example 1-10, n-butyl alcohol having a relatively high boiling point was prepared without a non-solvent additive or by adding methyl alcohol, iso-propyl alcohol, n-propyl alcohol, water, etc. as a non-solvent. It can be seen that the permeability is higher than that of the membrane. In addition, it can be seen that as the content of the additive increases, the effect of the interconnection of the pores has a greater influence on the water permeation amount than the factors due to the size and distribution of the pores.

비교예 1-2Comparative Example 1-2

9 중량%의 염소화 폴리염화비닐을 91중량%의 THF에 완전히 용해시켜, 비용매 첨가제가 혼합되지 않은 순수 고분자용액을 제조하였다. 이 용액을 폴리에스테르 부직포에 함침, 도포한 후, 상대습도 70%와 90%의 분위기 하에서 각각 상분리를 유도하여 최종 막을 제조하고 기공의 크기, 기공도 및 물 투과량을 측정하였다. 그 결과를 표 4에 나타내었다.9% by weight of chlorinated polyvinyl chloride was completely dissolved in 91% by weight of THF to prepare a pure polymer solution without mixing of the non-solvent additive. After impregnating and applying the solution to the polyester nonwoven fabric, the final membrane was prepared by inducing phase separation in an atmosphere of 70% and 90% relative humidity, respectively, and the pore size, porosity, and water permeability were measured. The results are shown in Table 4.

[표 4]TABLE 4

*** :평균 기공의 지름으로 전자주사현미경 관찰에 의해 측정한 값***: Value measured by electron scanning microscope observation with mean pore diameter

** :Pr(기공도)=(1-ρ v/ρ p) ×100 (ρ v:25℃에서 고분자 밀도,ρ p:막의 밀도)**: Pr (porosity) = (1- ρ v / ρ p ) × 100 ( ρ v : polymer density at 25 ℃, ρ p : membrane density)

* :순수물 투과량 (LMH : 1/m2hr)의 평균값*: Average value of pure water permeation amount (LMH: 1 / m 2 hr)

표 4에서 알 수 있듯이 첨가제가 혼합되지 않은 고분자 용액을 상대습도가 증가하면서 제막한 막의 기공의 크기는 작아지고 기공도는 증가하여 투과유량이 증가함을 알 수 있다. 즉 상대습도가 증가하면 작은 기공들이 서로 연결되어 기공도가 높아지고 결국 물의 투과를 촉진한 것으로 생각된다.As can be seen in Table 4, as the relative humidity of the polymer solution that is not mixed with the additive is increased, the size of the pores of the membrane formed is reduced and the porosity increases to increase the permeate flow rate. In other words, it is thought that as the relative humidity increases, the small pores are connected to each other to increase the porosity, thereby promoting water permeation.

이상에서 상술한 바와 같이 본 발명은, 비용매 첨가제가 함유된 염소화 폴리염화비닐 용액으로부터 다공성 막을 얻을 수 있고, 끓는점이 높은 비용매를 사용함과 동시에 상대습도를 조절함으로써 기공의 크기 및 기공도의 조절이 가능하고 기공사이의 상호연결성이 증가하여 투과성능이 우수한 다공성 막을 제조할 수 있어 정밀여과에 응용이 가능하다.As described above, in the present invention, a porous membrane can be obtained from a chlorinated polyvinyl chloride solution containing a nonsolvent additive, and a pore size and porosity can be controlled by using a non-solvent having a high boiling point and controlling relative humidity. It is possible to fabricate a porous membrane with excellent permeability by increasing the interconnectability of the pores, which makes it possible to apply to microfiltration.

Claims (8)

고분자, 용매 및 첨가제로 이루어진 혼합 용액을 폴리에스테르 부직포에 함침 도포 후, 일정한 습도에 의한 상분리를 유도하여 이를 건조시킨 막의 제조 공정에 있어서,In the manufacturing process of the membrane in which a mixed solution composed of a polymer, a solvent, and an additive is impregnated and applied to a polyester nonwoven fabric, and then induced phase separation by a constant humidity to dry it, 상기 공정은 폴리염화비닐을 테트라하이드로퓨란(THF)에 용해시킨 용액에 비용매로서 물 또는 알코올을 1-30중량%을 첨가하여 고분자 용액을 형성하고, 이 고분자 용액을 폴리에스테르 부직포에 함침 도포한 후, 소정의 상태습도의 분위기 하에서 건조하여 미세 다공성 염소화 폴리염화비닐 막을 제조하는 공정으로 이루어지고,In the above process, 1-30% by weight of water or alcohol is added as a non-solvent to a solution in which polyvinyl chloride is dissolved in tetrahydrofuran (THF) to form a polymer solution, and the polymer solution is impregnated and applied to a polyester nonwoven fabric. Thereafter, the step of drying under an atmosphere of a predetermined state humidity to form a microporous chlorinated polyvinyl chloride membrane, 상기 비용매의 끓는점을 50 - 150℃ 내, 상기 상대습도를 40-90% (25℃ 기준)의 범위 내로 선택함으로써, 기공크기가 0.01-0.5㎛ 다공도가 25-87%이며 순수 투과유속이 13-8000 LMH인 막을 생성하고,By selecting the boiling point of the non-solvent within 50-150 ° C. and the relative humidity within the range of 40-90% (based on 25 ° C.), the pore size is 0.01-0.5 μm with a porosity of 25-87% and a pure permeation flux of 13 Create a membrane that is -8000 LMH, 상기 범위 내에서 비용매의 끓는 점 및 상대습도의 값을 조절하여 기공크기가 작으면서도 투과유량이 높은 막을 제조하는 것을 특징으로 하는 미세 다공성 염소화 폴리염화비닐 막의 제조 방법.A method of producing a microporous chlorinated polyvinyl chloride membrane, characterized in that to produce a membrane having a small pore size and high permeate flow rate by adjusting the boiling point and relative humidity of the non-solvent within the above range. 삭제delete 제 1 항에 있어서, 상기 비용매로 작용하는 알콜은 메탄올, 에탄올, n-프로필 알콜, 이소프로필 알콜, n-부틸 알콜로 이루어진 그룹으로부터 선택된 어느 하나인 것을 특징으로 하는 미세 다공성 염소화 폴리염화비닐 막의 제조방법.The microporous chlorinated polyvinyl chloride membrane of claim 1, wherein the non-solvent alcohol is any one selected from the group consisting of methanol, ethanol, n-propyl alcohol, isopropyl alcohol, and n-butyl alcohol. Manufacturing method. 삭제delete 삭제delete 제 1 항에 있어서, 상기 상대습도가 70-90%인 것을 특징으로 하는 미세 다공성 염소화 폴리염화비닐막의 제조방법.The method of manufacturing a microporous chlorinated polyvinyl chloride film according to claim 1, wherein the relative humidity is 70-90%. 제 7 항에 있어서, 상기 비용매의 끓는 점이 90-150℃인 것을 특징으로 하는 미세 다공성 염소화 폴리염화비닐막의 제조방법.The method of producing a microporous chlorinated polyvinyl chloride film according to claim 7, wherein the boiling point of the non-solvent is 90-150 ° C. 제 1 항, 제 3 항, 제 7 항 및 제 8 항 중 어느 한 항에 기재된 방법에 의해 제조된 것을 특징으로 하는 미세 다공성 염소화 폴리염화비닐막.The microporous chlorinated polyvinyl chloride film produced by the method according to any one of claims 1, 3, 7, and 8.
KR10-2000-0044447A 2000-07-31 2000-07-31 Method for manufacturing microporous poly(vinylchloride) membrane and microporous poly(vinylchloride) manufactured thereby KR100392470B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0044447A KR100392470B1 (en) 2000-07-31 2000-07-31 Method for manufacturing microporous poly(vinylchloride) membrane and microporous poly(vinylchloride) manufactured thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0044447A KR100392470B1 (en) 2000-07-31 2000-07-31 Method for manufacturing microporous poly(vinylchloride) membrane and microporous poly(vinylchloride) manufactured thereby

Publications (2)

Publication Number Publication Date
KR20020011057A KR20020011057A (en) 2002-02-07
KR100392470B1 true KR100392470B1 (en) 2003-07-22

Family

ID=19681134

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0044447A KR100392470B1 (en) 2000-07-31 2000-07-31 Method for manufacturing microporous poly(vinylchloride) membrane and microporous poly(vinylchloride) manufactured thereby

Country Status (1)

Country Link
KR (1) KR100392470B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112090286A (en) * 2019-06-18 2020-12-18 杭州科百特过滤器材有限公司 Method for preparing hydrophobic polyvinyl chloride film and film prepared by method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522382A (en) * 1978-08-07 1980-02-18 Yuasa Battery Co Ltd Separator
JPS588504A (en) * 1981-07-08 1983-01-18 Toyobo Co Ltd Gas separation membrane comprising polysulfone hollow fiber
JPS5888011A (en) * 1981-11-19 1983-05-26 Yuasa Battery Co Ltd Asymmetric membrane
JPS6322802A (en) * 1987-03-31 1988-01-30 Toyo Jozo Co Ltd Production of novel aminated acrylonitrile polymer
KR920006833A (en) * 1990-09-25 1992-04-28 마이클 에이치.모리스 Method and apparatus for suppressing power transient in system bus
KR940000554A (en) * 1992-06-03 1994-01-03 이강인 Waste oil treatment unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522382A (en) * 1978-08-07 1980-02-18 Yuasa Battery Co Ltd Separator
JPS588504A (en) * 1981-07-08 1983-01-18 Toyobo Co Ltd Gas separation membrane comprising polysulfone hollow fiber
JPS5888011A (en) * 1981-11-19 1983-05-26 Yuasa Battery Co Ltd Asymmetric membrane
JPS6322802A (en) * 1987-03-31 1988-01-30 Toyo Jozo Co Ltd Production of novel aminated acrylonitrile polymer
KR920006833A (en) * 1990-09-25 1992-04-28 마이클 에이치.모리스 Method and apparatus for suppressing power transient in system bus
KR940000554A (en) * 1992-06-03 1994-01-03 이강인 Waste oil treatment unit

Also Published As

Publication number Publication date
KR20020011057A (en) 2002-02-07

Similar Documents

Publication Publication Date Title
Albrecht et al. Formation of hollow fiber membranes from poly (ether imide) at wet phase inversion using binary mixtures of solvents for the preparation of the dope
US5049276A (en) Hollow fiber membrane
US11235288B2 (en) Polystyrene-b-polyethylene oxide block copolymer membranes, methods of making, and methods of use
Shekarian et al. Polyacrylonitrile (PAN)/IGEPAL blend asymmetric membranes: preparation, morphology, and performance
KR100375459B1 (en) microporous chlorinated polychlorovinyl film and method therefor
KR101096536B1 (en) Microfilter and method for preparing the same
KR100392470B1 (en) Method for manufacturing microporous poly(vinylchloride) membrane and microporous poly(vinylchloride) manufactured thereby
Chen et al. Effect of nonsolvents on the mechanism of wet-casting membrane formation from EVAL copolymers
KR100291632B1 (en) Method for Producing an Asymmetric Support Membrane Through the Physical Gelation and the Resultant Membranes
CN1124175C (en) Preparation method of dry type polyacrylointrile ultrafiltration membrane
KR20110076333A (en) Method for manufacturing microfiltration membrane and high flux microfiltration membrane manufactured therefrom
Md Fadilah et al. Preparation, Characterization and Performance Studies of Active PVDF Ultrafiltration-Surfactants Membranes Containing PVP as Additive
Fadilah et al. Preparation, characterization and performance studies of active pvdf ultrafiltration-surfactants membranes containing PVP as additive
JP2713294B2 (en) Method for producing polysulfone-based resin semipermeable membrane
JPH05184887A (en) Production of high performance asymmetrical membrane
JP2882658B2 (en) Method for producing polysulfone-based semipermeable membrane
JP2505428B2 (en) Low-temperature dissolving stock solution and method for producing the same
KR950007323B1 (en) Manufacturing mehtod of hollow fiber membrane
KR100418859B1 (en) Composition for producing polyethersulfone membrane and method for preparing microfilteration membrane using the same
KR0183458B1 (en) Asymmetric hollow fiber and its manufacturing method
JP2868558B2 (en) Manufacturing method of high-strength, high-flux polysulfone hollow fiber membrane
KR100426328B1 (en) Method for manufacturing microporous chlorinated poly(vinyl chloride) membrane using poly(vinyl pyrrolidone) and microporous chlorinated poly(vinyl chloride) membrane manufactured thereby
KR100406362B1 (en) A method for producing asymmetric supporting membranes for composite membranes and asymmetric supporting membranes having improved permeation and mechanical strength produced therefrom
KR20220077413A (en) Porous microfiltration membrane and its manufacturing method
KR0159175B1 (en) Method for preparing polyestersulfone capillary membrane

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070626

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee