KR20020011057A - Method for manufacturing microporous poly(vinylchloride) membrane and microporous poly(vinylchloride) manufactured thereby - Google Patents

Method for manufacturing microporous poly(vinylchloride) membrane and microporous poly(vinylchloride) manufactured thereby Download PDF

Info

Publication number
KR20020011057A
KR20020011057A KR1020000044447A KR20000044447A KR20020011057A KR 20020011057 A KR20020011057 A KR 20020011057A KR 1020000044447 A KR1020000044447 A KR 1020000044447A KR 20000044447 A KR20000044447 A KR 20000044447A KR 20020011057 A KR20020011057 A KR 20020011057A
Authority
KR
South Korea
Prior art keywords
membrane
polyvinyl chloride
solvent
microporous
relative humidity
Prior art date
Application number
KR1020000044447A
Other languages
Korean (ko)
Other versions
KR100392470B1 (en
Inventor
이영무
강종석
Original Assignee
이영무
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이영무 filed Critical 이영무
Priority to KR10-2000-0044447A priority Critical patent/KR100392470B1/en
Publication of KR20020011057A publication Critical patent/KR20020011057A/en
Application granted granted Critical
Publication of KR100392470B1 publication Critical patent/KR100392470B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/301Polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0095Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02833Pore size more than 10 and up to 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02834Pore size more than 0.1 and up to 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE: A process for manufacturing a microporous polyvinylchloride membrane via solvent induced phase separation(SIPS) is provided to control pore morphology such as pore size and porosity to be suitable for microfiltration, where especially the flux of pure water is improved as nonsolvent concentration increase, and further in the case that the nonsolvent is either n-propyl alcohol or n-butyl alcohol, the flux of pure water is improved as relative humidity increase within relative humidity range 50 to 90%. CONSTITUTION: The process for microporous polyvinylchloride membrane includes: dissolution of polyvinylchloride into tetrahydrofuran(THF) solution; addition of 1-40wt.% of an alcohol selected from n-propyl alcohol or n-butyl alcohol, which is miscible with the tetrahydrofuran(THF) while acting as a nonsolvent to the polyvinylchloride; coating non-woven polyester fabric with a mixed solution obtained in 2nd step; drying at 25deg.C under the atmosphere of relative humidity of 50 to 90%. The microporous polyvinylchloride membrane has overall porosity of 25-80%, pore size distribution within range of 0.01 to 2μm and it has a net flux of 25 to 7000LMH.

Description

미세 다공성 폴리염화비닐 막의 제조방법 및 그에 의해 제조된 미세 다공성 폴리염화비닐 막{Method for manufacturing microporous poly(vinylchloride) membrane and microporous poly(vinylchloride) manufactured thereby}Method for manufacturing microporous polyvinyl chloride membrane and microporous polyvinyl chloride membrane produced by the same methodMethod for manufacturing microporous poly (vinylchloride) membrane and microporous poly (vinylchloride) manufactured according}

본 발명은 여과등에 이용되는 다공성 막의 제조 방법에 관한 것이다. 더욱 구체적으로는, 본 발명은 상분리법을 이용한 다공성 막의 제조에 있어서 고분자 용액 내에 비용매 첨가제의 도입으로 순수 물의 투과성능이 향상되고 막의 다공도 및 기공의 크기가 조절가능하며, 특히 사용된 비용매의 함량이 높을수록 그 효과가 커짐을 확인하고 또한 비용매인 n-프로필 알코올과 n-부틸 알코올의 경우 상대습도 50-90%의 범위에서 상대습도가 증가할수록 순수 물의 투과성능이 우수함을 알아 본 발명에 이르렀다.The present invention relates to a method for producing a porous membrane used for filtration and the like. More specifically, in the production of porous membranes using a phase separation method, the introduction of a non-solvent additive in a polymer solution improves the permeability of pure water, and the porosity and pore size of the membrane can be controlled. The higher the content, the greater the effect. Also, in the case of the non-solvent n-propyl alcohol and n-butyl alcohol, the relative humidity increased in the range of 50-90% relative humidity, the better the permeation performance of pure water. Reached.

다공성 막을 제조하는 공정은 비용매 유도 상분리 공정 그리고 건습법에 따른 상분리 공정이 있다. 하지만 위의 각각의 공정에 따른 막 형성기구는 고분자 용액의 열역학적 관점에서 보면 바이노달 과 스피노달 사이에 위치하는 준안정 영역에서의 기핵-성장 (NG)기구와 스피노달 안쪽의 불안정 영역에서의 상분리 (SD)기구로 요약 된다.(P.van de Witte et al., Journal of Membrane Science,117(1996) 1-31) 일반적으로 유체의 투과성능을 개선하기 위해서는 기공의 크기 및 기공 상호간의 연결성이 매우 중요하며, 준안정 영역에서의 기핵-성장 (NG)기구에 의해 제조된 막의 기공은 폐쇄된 기공을 나타냄과 동시에 투과성능은 우수하지 못하고 불안정 영역에서의 상분리 (SD)기구에 따른 막의 기공은 높은 기공연결성을 가져 투과성능이 매우 우수하다.(S.W.Song et al.,Journal of Membrane Science,98(1995) 209-222) 따라서 비용매의 적절한 첨가에 의해 용액의 열역학적 조성을 불안정 영역 내에 쉽게 위치할 수 있도록 유도함으로써 막 내부의 기공들이 상호 연결된 구조를 갖도록 하여 투과성능을 개선할 수 있다. 따라서 비용매인 물 또는 알코올을 바이노달의 경계까지 최대한으로 첨가하여 고분자 용액을 제조하여 다공성 막을 제조하면 투과성능이 개선된 막을 얻을 수 있다. 또한 상대습도에 따라 기공 성장에 영향을 미친다. 상대습도가 높을수록 상분리를 유도할 수 있는 활성도가 높고, 고분자 용액의 표면에 빠르게 흡착되므로 상분리 속도를 빠르게 하는 기구로 작용하며 전반적으로 기공의 크기를 작게 하는 요인으로 작용하여 투과감소를 유발한다. 따라서 일정한 상대습도 하에서 수증기의 활동도를 조절하는 기구는 비용매의 첨가 및 함량으로 고분자 용액의 조성을 변화시켜 조절이 가능하다. Iso-프로필 알코올을 비용매로 사용하고 부직포의 구조를 조절하여 제조된 폴리염화비닐 막 (JP 58-88011)은 보고된 바 있고, 에틸알코올을 비용매로 하고 폴리염화비닐을 이용하여 다공성 막을 제작 (JP 47-029266)한 결과 역시 보고된바 있다.The process for preparing a porous membrane includes a non-solvent induced phase separation process and a phase separation process according to a wet and dry method. However, from the thermodynamic viewpoint of the polymer solution, the membrane forming mechanisms according to the above processes are characterized in that the nucleus-growth (NG) mechanism in the metastable region located between the binodal and the spinodal and the phase separation in the unstable region inside the spinodal (P. van de Witte et al., Journal of Membrane Science, 117 (1996) 1-31) In general, in order to improve the permeability of fluids, pore size and interconnection between pores It is very important that the pores of membrane produced by the nucleus-growth (NG) mechanism in the metastable region show closed pores, while the permeability of the membrane due to phase separation (SD) mechanism in the unstable region is not good. It has a high porosity and excellent permeability (SWSong et al., Journal of Membrane Science, 98 (1995) 209-222). By inducing to make it easy to position the film inside the pores have a cross-linked structure it is possible to improve the transmission performance. Therefore, when the non-solvent water or alcohol is added to the boundary of the binodal to the maximum to prepare a polymer solution to prepare a porous membrane, a membrane having improved permeability can be obtained. Relative humidity also affects pore growth. The higher the relative humidity, the higher the activity that can induce phase separation, and the faster the adsorption on the surface of the polymer solution acts as a mechanism to speed up the phase separation, and the overall decrease in the size of the pores, causing permeation decrease. Therefore, the mechanism for controlling the activity of water vapor under a constant relative humidity can be controlled by changing the composition of the polymer solution by the addition and content of non-solvent. A polyvinyl chloride membrane (JP 58-88011) prepared by using iso-propyl alcohol as a nonsolvent and controlling the structure of a nonwoven fabric has been reported, and a porous membrane is prepared by using a non-solvent of ethyl alcohol and using polyvinyl chloride. (JP 47-029266) The results have also been reported.

본 발명은 폴리염화비닐을 용매인 테트라하이드로퓨란(THF)에 완전히 녹여제조된 용액에 용매와는 혼합이 잘 되고, 고분자에 대해서는 비용매로 작용하는 알코올을 첨가하여 혼합용액을 제조하고 이를 부직포에 함침, 도포한 후 온도 25℃, 상대습도 50-90%의 분위기 하에서 고분자의 상분리를 유도하여 최종 막을 제조한다. 이때 고분자 용액 내에 첨가되는 첨가제의 선택은 사용하는 용매와 고분자의 종류에 따라 열역학적 특성의 제한 때문에 그 선택이 한정적이다. 첨가된 알콜은 비용매로 작용하기 때문에 고분자 사슬들의 엉킴을 증가시켜 고분자 농도가 높은 영역과 낮은 영역으로 분리가 쉽게 일어난다. 이때 이들 두 영역은 그들 자체의 표면장력을 낮추기 위해 각각 응집 현상이 발생하여 고분자 농도가 높은 영역에서는 형성된 막의 골격을 이루고 농도가 낮은 영역은 막 내부의 기공으로 성장한다. 따라서 비용매 첨가제의 함량을 제어하면 상분리가 일어나지 않은 영역에서 고분자 용액 내의 고분자 사슬의 물리적인 엉김을 제어할 수 있고, 또한 비용매의 끓는점이 상대적으로 높은 비용매가 첨가된 용액일수록 그 현상이 현저함을 알아 본 발명에 이르게 되었다.In the present invention, polyvinyl chloride is completely dissolved in tetrahydrofuran (THF), which is a solvent, and is well mixed with a solvent, and a mixed solution is prepared by adding an alcohol which acts as a non-solvent for a polymer, and then, a nonwoven fabric After impregnation and coating, the final membrane is prepared by inducing phase separation of the polymer under an atmosphere of 25 ° C. and 50-90% relative humidity. At this time, the choice of additives added in the polymer solution is limited because of the limitation of thermodynamic properties depending on the solvent and the type of polymer used. Since the added alcohol acts as a non-solvent, it increases the entanglement of the polymer chains, so that separation easily occurs in the high and low polymer concentration regions. At this time, these two regions are aggregated in order to lower their own surface tension, forming a skeleton of the formed membrane in the region of high polymer concentration, and the regions of low concentration grow into pores inside the membrane. Therefore, by controlling the content of the non-solvent additive, it is possible to control the physical entanglement of the polymer chain in the polymer solution in the region where phase separation does not occur, and the phenomenon is more pronounced in the solution to which the non-solvent having a relatively high boiling point is added. The present invention has been found.

상기한 바와 같이, 비용매가 첨가된 고분자 용액의 일정한 습도 하에서 건조 방식에 따라 다공성 막을 제조할 때, 첨가된 비용매의 끓는점에 따른 동력학·열역학적인 상분리 기구의 원활한 조절이 가능하여 기공의 크기가 조절되고 또한 기공도가 높은 다공성 구조의 막을 얻을 수 있다.As described above, when the porous membrane is manufactured according to the drying method under a constant humidity of the non-solvent-added polymer solution, the pore size is controlled by smoothly controlling the dynamic and thermodynamic phase separation mechanism according to the boiling point of the added non-solvent. It is also possible to obtain a membrane having a porous structure with high porosity.

이와 같이 본 발명은 폴리염화비닐을 테트라하이드로퓨란(THF)에 용해시킨 용액에 용매와는 잘 혼합되고 고분자에 대해서는 비용매로 작용하는 1-40중량%의알코올을 첨가하여 고분자 용액을 형성하고, 이 고분자 용액을 폴리에스테르 부직포에 함침 도포한 후, 온도 25℃, 상대습도 50-90% 분위기 하에서 건조시켜 얻게 되는 것을 특징으로 하는 미세 다공성 폴리염화비닐 막의 제조 방법 및 상기 미세 다공성 막의 제조방법에 있어서 끓는점이 50-150℃이고, 고분자에 대해서 비용매로 작용하는 첨가제를 선택함으로써 다공성 고분자 막의 기공의 크기가 0.01-2㎛이고 다공도가 25-88%인 것을 특징으로 하는 미세 다공성 폴리염화비닐 고분자 막을 얻고, 다공성 고분자 막의 순수투과유속이 25내지 7000LMH임을 특징으로 하는 폴리염화비닐 고분자 막에 관한 것으로, 미세 다공성 막의 제조방법 및 이로부터 제조된 기공의 크기가 조절되고, 순수 물의 투과 유량이 개선된 다공성 폴리염화비닐 막에 관한 것이며, 본 발명에 따른 방법으로 제조된 막은 투과성능이 우수하여 정밀여과 등에 응용이 가능하다.Thus, the present invention forms a polymer solution by adding 1-40% by weight of alcohol, which is well mixed with a solvent and acts as a non-solvent for a polymer, to a solution in which polyvinyl chloride is dissolved in tetrahydrofuran (THF), In the method for producing a microporous polyvinyl chloride membrane and the method for producing the microporous membrane, the polymer solution is impregnated and applied to a polyester nonwoven fabric and then dried under an atmosphere of 25 ° C. and a relative humidity of 50-90%. By selecting an additive that has a boiling point of 50-150 ° C. and acts as a non-solvent for the polymer, the microporous polyvinyl chloride polymer membrane has a pore size of 0.01-2 μm and a porosity of 25-88%. It relates to a polyvinyl chloride polymer membrane, characterized in that the pure permeation flow rate of the porous polymer membrane is 25 to 7000LMH, The present invention relates to a porous polyvinyl chloride membrane having a method of preparing a microporous membrane and a pore size produced therefrom, and an improved flow rate of pure water, and a membrane prepared by the method according to the present invention has excellent permeability, and thus, Application is possible.

이하, 실시 예를 참조하여 본 발명을 보다 상세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예 1-6Example 1-6

7중량% 폴리염화비닐/30중량% 비용매(알코올 또는 물)/63중량% THF의 조성을 갖는 혼합용액을 제조하였다. 이 용액을 폴리에스테르 부직포에 함침 도포한 후, 온도 25℃, 상대습도 60,70,80%의 분위기 하에서 상분리를 유도하여 최종 막을 각각 제조하여 기공의 크기, 기공도 및 물 투과량을 측정하여 그 결과를 표1에 나타내었다.A mixed solution having a composition of 7 wt% polyvinyl chloride / 30 wt% nonsolvent (alcohol or water) / 63 wt% THF was prepared. After impregnating and applying this solution to a polyester nonwoven fabric, the phase separation was induced in an atmosphere of a temperature of 25 ° C. and a relative humidity of 60,70,80% to prepare a final membrane, and the pore size, porosity, and water permeability were measured. Is shown in Table 1.

[표 1]TABLE 1

*** :평균 기공의 지름으로 전자주사현미경 관찰에 의해 측정한 값***: Value measured by electron scanning microscope observation with mean pore diameter

** :Pr(기공도)=(1-ρ v/ρ p) ×100 (ρ v:25℃에서 고분자 밀도,ρ p:막의 밀도)**: Pr (porosity) = (1- ρ v / ρ p ) × 100 ( ρ v : polymer density at 25 ℃, ρ p : membrane density)

* :순수물 투과량 (LMH : 1/m2hr)의 평균값*: Average value of pure water permeation amount (LMH: 1 / m 2 hr)

비교예 1의 결과와 비교해 보면, 30중량%의 비용매를 첨가하면 기공도 및 기공의 크기가 증가하여 순수 물의 투과성능이 향상됨을 알 수 있다. 또한 사용하는 비용매의 끓는점이 상승하면 대체로 투과도가 향상되었다.Compared with the results of Comparative Example 1, it can be seen that the addition of 30% by weight of non-solvent increases the porosity and pore size, thereby improving the permeability of pure water. In addition, as the boiling point of the non-solvent used increased, permeability was generally improved.

실시예 7-12Example 7-12

7중량% 폴리염화비닐/32중량% 비용매(알코올 또는 물)/61중량% THF의 조성을 갖는 혼합용액을 제조하였다. 이 용액을 폴리에스테르 부직포에 함침 도포한 후, 온도 25℃, 상대습도 60, 70, 80%의 분위기 하에서 상분리를 유도하여 최종 막을 각각 제조하여 기공의 크기, 기공도 및 물 투과량을 측정하여 그 결과를 표2에 나타내었다.A mixed solution having a composition of 7 wt% polyvinyl chloride / 32 wt% nonsolvent (alcohol or water) / 61 wt% THF was prepared. After impregnating and applying this solution to a polyester nonwoven fabric, the resulting membranes were prepared by inducing phase separation under an atmosphere of a temperature of 25 ° C., a relative humidity of 60, 70, and 80%, respectively, to measure pore size, porosity, and water permeability. Is shown in Table 2.

[표 2]TABLE 2

*** :평균 기공의 지름으로 전자주사현미경 관찰에 의해 측정한 값***: Value measured by electron scanning microscope observation with mean pore diameter

** :Pr(기공도)=(1-ρ v/ρ p) ×100 (ρ v:25℃에서 고분자 밀도,ρ p:막의 밀도)**: Pr (porosity) = (1- ρ v / ρ p ) × 100 ( ρ v : polymer density at 25 ℃, ρ p : membrane density)

* :순수물 투과량 (LMH : 1/m2hr)의 평균값*: Average value of pure water permeation amount (LMH: 1 / m 2 hr)

앞의 실시예 1-6의 결과와 마찬가지로 비용매의 함량을 증가시킴과 동시에 상대습도가 높은 조건에서 제조된 막은 기공의 크기 및 기공도가 함께 증가하여 순수 물의 투과량이 크게 상승하는 것을 알 수 있다. 따라서 비용매가 첨가된 용액으로 제조된 다공성 막은 상대습도의 증가에 의해서 기공의 크기 및 기공도를 향상시킬 수 있다.As with the results of Example 1-6, it can be seen that the membrane prepared under conditions of high relative humidity while increasing the content of the non-solvent increases the pore size and porosity to increase the permeation rate of pure water. . Therefore, the porous membrane made of the non-solvent-added solution can improve the pore size and porosity by increasing the relative humidity.

실시예 13-18Example 13-18

7중량% 폴리염화비닐/35중량% 비용매(알코올 또는 물)/58중량% THF의 조성을 갖는 혼합용액을 제조하였다. 이 용액을 폴리에스테르 부직포에 함침 도포한 후,온도 25℃, 상대습도 60, 70, 80%의 분위기 하에서 상분리를 유도하여 최종 막을 제조하여 기공의 크기, 기공도 및 물 투과량을 측정하여 그 결과를 표3에 나타내었다.A mixed solution having a composition of 7 wt% polyvinyl chloride / 35 wt% nonsolvent (alcohol or water) / 58 wt% THF was prepared. After impregnating and applying this solution to a polyester nonwoven fabric, the resulting membrane was prepared by inducing phase separation under an atmosphere of temperature 25 ° C. and a relative humidity of 60, 70, 80% to measure pore size, porosity and water permeability. Table 3 shows.

[표 3]TABLE 3

*** :평균 기공의 지름으로 전자주사현미경 관찰에 의해 측정한 값***: Value measured by electron scanning microscope observation with mean pore diameter

** :Pr(기공도)=(1-ρ v/ρ p) ×100 (ρ v:25℃에서 고분자 밀도,ρ p:막의 밀도)**: Pr (porosity) = (1- ρ v / ρ p ) × 100 ( ρ v : polymer density at 25 ℃, ρ p : membrane density)

* :순수물 투과량 (LMH : 1/m2hr)의 평균값*: Average value of pure water permeation amount (LMH: 1 / m 2 hr)

앞의 실시예 1-12의 결과와 마찬가지로 비용매의 함량을 증가시킴과 동시에 상대습도가 높은 조건에서 제조된 막은 기공의 크기 및 기공도가 함께 증가하여 순수 물의 투과량이 크게 상승하는 것을 알 수 있다. 그러나 첨가제를 넣지 않은 경우는 비교예 1-3에서의 결과에서 보듯이 상대습도는 기공도에는 큰 영향이 없고, 기공의 크기를 증가시키는 요인으로 작용함을 알 수 있다. 결과적으로 비용매가 들어가지 않은 막의 제조에서 상대습도가 높아지면 기공의 크기는 다소 커지지만 기공도는 증가하지 않으며, 반면 비용매를 첨가제로 막제조 과정에 넣으면 상대습도에 큰 영향을 받아 기공도 및 기공의 크기에 주요한 인자로 작용하여 순수물의 투과성능이 향상되었다. 특히 끓는점이 상대적으로 높은 실시예 18에서 가장 우수한 투과성능을 나타냄을 알 수 있다.As with the results of the previous Examples 1-12, the membrane prepared under the conditions of high relative humidity at the same time increasing the content of the non-solvent can be seen that the pore size and porosity of the membrane increases so that the permeation rate of pure water increases significantly. . However, when the additive is not added, as shown in the results in Comparative Examples 1-3, the relative humidity does not have a great influence on the porosity, and it can be seen that it acts as a factor for increasing the pore size. As a result, when the relative humidity is increased in the preparation of the non-solvent-free membrane, the pore size becomes slightly larger, but the porosity does not increase.However, when the non-solvent is added as an additive to the membrane manufacturing process, the relative humidity is greatly influenced by the porosity and As a major factor in the pore size, the permeability of pure water was improved. In particular, it can be seen that the boiling point shows the best permeability in Example 18, which is relatively high.

비교예 1-3Comparative Example 1-3

7 중량%의 폴리염화비닐을 93중량%의 THF에 완전히 용해시켜, 비용매 첨가제가 혼합되지 않은 순수 고분자용액을 제조하였다. 이 용액을 폴리에스테르 부직포에 함침, 도포한 후, 온도 25℃ 상대습도 60, 70, 80% 분위기 하에서 상분리를 유도하여 최종 막을 각각 제조하고 기공의 크기, 기공도 및 물 투과량을 측정하였다. 그 결과를 표 4에 나타내었다.7% by weight of polyvinyl chloride was completely dissolved in 93% by weight of THF to prepare a pure polymer solution without mixing of the non-solvent additive. After impregnating and applying the solution to the polyester nonwoven fabric, the resulting membranes were induced by inducing phase separation under a temperature of 25 ° C. and a relative humidity of 60, 70, and 80%, respectively, and pore size, porosity, and water permeability were measured. The results are shown in Table 4.

[표 4]TABLE 4

*** :평균 기공의 지름으로 전자주사현미경 관찰에 의해 측정한 값***: Value measured by electron scanning microscope observation with mean pore diameter

** :Pr(기공도)=(1-ρ v/ρ p) ×100 (ρ v:25℃에서 고분자 밀도,ρ p:막의 밀도)**: Pr (porosity) = (1- ρ v / ρ p ) × 100 ( ρ v : polymer density at 25 ℃, ρ p : membrane density)

* :순수물 투과량 (LMH : 1/m2hr)의 평균값*: Average value of pure water permeation amount (LMH: 1 / m 2 hr)

표4에서 알 수 있듯이 첨가제가 혼합되지 않은 고분자 용액을 상대습도가 증가하면서 제조한 막의 기공도는 크게 변화가 없으나, 기공의 크기는 다소 증가하여 투과유량이 증가함을 알 수 있다. 즉 상대습도가 증가하면 기공의 크기가 증가하여 결국 순수물의 투과를 촉진한 것으로 생각된다.As can be seen from Table 4, the porosity of the membrane prepared as the relative humidity is increased in the polymer solution without the additive is not changed, but the pore size is slightly increased to increase the permeate flow rate. In other words, as the relative humidity increases, the pore size increases, which in turn promotes permeation of pure water.

이상에서 상술한 바와 같이 본 발명은, 비용매 첨가제가 함유된 폴리염화비닐 용액으로부터 다공성 막을 얻을 수 있고, 비용매의 함량을 증가시킴과 동시에 상대습도를 조절함으로써 기공의 크기 및 기공도의 조절이 가능하고 기공사이의 상호연결성이 증가하여 투과성능이 우수한 다공성 막을 제조할 수 있어 정밀여과에 응용이 가능하다.As described above, in the present invention, a porous membrane can be obtained from a polyvinyl chloride solution containing a nonsolvent additive, and the pore size and porosity can be controlled by increasing the content of the nonsolvent and controlling the relative humidity. It is possible to manufacture a porous membrane having excellent permeability by increasing the interconnectability of the pores, which makes it possible to apply to microfiltration.

Claims (5)

고분자, 용매 및 첨가제로 이루어진 혼합 용액을 폴리에스테르 부직포에 함침 도포 후, 일정한 습도에 의한 상분리를 유도하여 이를 건조시킨 막의 제조 공정에 있어서, 폴리염화비닐을 테트라하이드로퓨란(THF)에 용해시킨 용액에 용매와는 잘 혼합되고 고분자에 대해서는 비용매로 작용하는 1-40중량%의 알코올을 첨가하여 고분자 용액을 형성하고, 이 고분자 용액을 폴리에스테르 부직포에 함침 도포한 후, 온도 25℃, 상대습도 50-90% 분위기 하에서 건조시켜 얻게 되는 것을 특징으로 하는 미세 다공성 폴리염화비닐 막의 제조 방법After impregnating and applying a mixed solution composed of a polymer, a solvent, and an additive to a polyester nonwoven fabric, the polyvinyl chloride was dissolved in tetrahydrofuran (THF). 1-40% by weight of alcohol, which is well mixed with the solvent and acts as a non-solvent for the polymer, is added to form a polymer solution. The polymer solution is impregnated and applied to a polyester nonwoven fabric, and then the temperature is 25 ° C and a relative humidity of 50. Method for producing a microporous polyvinyl chloride membrane, characterized in that obtained by drying in -90% atmosphere 제 1 항에 있어서, 비용매로 작용하는 알코올은 n-프로필 알코올 및 n-부틸 알코올로 선택된 어느 하나의 것으로 특징으로 하는 미세 다공성 폴리염화비닐 막의 제조 방법The method of producing a microporous polyvinyl chloride membrane according to claim 1, wherein the non-solvent alcohol is any one selected from n-propyl alcohol and n-butyl alcohol. 제 1 항 내지 제 2 항 중 어느 한 항의 방법으로 제조된 미세 다공성 폴리염화비닐 막Microporous polyvinyl chloride membrane prepared by the method of any one of claims 1 to 2. 제 3 항에 있어서, 미세 다공성 폴리염화비닐 막의 기공의 크기가 0.01-2㎛이고 다공도가 25-88%인 것을 특징으로 하는 미세 다공성 폴리염화비닐 막4. The microporous polyvinyl chloride membrane according to claim 3, wherein the pore size of the microporous polyvinyl chloride membrane is 0.01-2 占 퐉 and the porosity is 25-88%. 제 4 항에 있어서, 미세 다공성 폴리염화비닐 막의 순수 투과유속이 25-7000LMH임을 특징으로 하는 미세 다공성 폴리염화비닐 막5. The microporous polyvinyl chloride membrane according to claim 4, wherein the pure permeation flow rate of the microporous polyvinyl chloride membrane is 25-7000 LMH.
KR10-2000-0044447A 2000-07-31 2000-07-31 Method for manufacturing microporous poly(vinylchloride) membrane and microporous poly(vinylchloride) manufactured thereby KR100392470B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0044447A KR100392470B1 (en) 2000-07-31 2000-07-31 Method for manufacturing microporous poly(vinylchloride) membrane and microporous poly(vinylchloride) manufactured thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0044447A KR100392470B1 (en) 2000-07-31 2000-07-31 Method for manufacturing microporous poly(vinylchloride) membrane and microporous poly(vinylchloride) manufactured thereby

Publications (2)

Publication Number Publication Date
KR20020011057A true KR20020011057A (en) 2002-02-07
KR100392470B1 KR100392470B1 (en) 2003-07-22

Family

ID=19681134

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0044447A KR100392470B1 (en) 2000-07-31 2000-07-31 Method for manufacturing microporous poly(vinylchloride) membrane and microporous poly(vinylchloride) manufactured thereby

Country Status (1)

Country Link
KR (1) KR100392470B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112090286A (en) * 2019-06-18 2020-12-18 杭州科百特过滤器材有限公司 Method for preparing hydrophobic polyvinyl chloride film and film prepared by method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038963B2 (en) * 1978-08-07 1985-09-04 株式会社ユアサコーポレーション Separation device
JPS588504A (en) * 1981-07-08 1983-01-18 Toyobo Co Ltd Gas separation membrane comprising polysulfone hollow fiber
JPS5888011A (en) * 1981-11-19 1983-05-26 Yuasa Battery Co Ltd Asymmetric membrane
JPS6322802A (en) * 1987-03-31 1988-01-30 Toyo Jozo Co Ltd Production of novel aminated acrylonitrile polymer
GB2248352A (en) * 1990-09-25 1992-04-01 Sun Microsystems Inc Suppressing power transients in a computer system bus
KR940000554A (en) * 1992-06-03 1994-01-03 이강인 Waste oil treatment unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112090286A (en) * 2019-06-18 2020-12-18 杭州科百特过滤器材有限公司 Method for preparing hydrophobic polyvinyl chloride film and film prepared by method

Also Published As

Publication number Publication date
KR100392470B1 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
US4279752A (en) Polyvinyl alcohol semi-permeable membrane and method for producing same
US5049276A (en) Hollow fiber membrane
JP4221154B2 (en) Method for producing highly porous polyvinylidene difluoride film
Shekarian et al. Polyacrylonitrile (PAN)/IGEPAL blend asymmetric membranes: preparation, morphology, and performance
Ge et al. Effect of surfactant on morphology and pore size of polysulfone membrane
CN113648853A (en) Composite forward osmosis membrane with electrospun nanofiber membrane as supporting layer and preparation method and application thereof
KR100291632B1 (en) Method for Producing an Asymmetric Support Membrane Through the Physical Gelation and the Resultant Membranes
KR20020011057A (en) Method for manufacturing microporous poly(vinylchloride) membrane and microporous poly(vinylchloride) manufactured thereby
KR100375459B1 (en) microporous chlorinated polychlorovinyl film and method therefor
CN1124175C (en) Preparation method of dry type polyacrylointrile ultrafiltration membrane
CN113996188B (en) Degradable Janus membrane material and preparation method and application thereof
KR20110076333A (en) Method for manufacturing microfiltration membrane and high flux microfiltration membrane manufactured therefrom
KR100418859B1 (en) Composition for producing polyethersulfone membrane and method for preparing microfilteration membrane using the same
KR100366762B1 (en) Method for manufacturing asymmetric polyacrylonitrile membrane having the sponge-type structure and asymmetric polyacrylonitrile membrane manufactured thereby
KR100426328B1 (en) Method for manufacturing microporous chlorinated poly(vinyl chloride) membrane using poly(vinyl pyrrolidone) and microporous chlorinated poly(vinyl chloride) membrane manufactured thereby
KR20040031921A (en) A method for preparing ionic liquid supported liquid membrane
JP2882658B2 (en) Method for producing polysulfone-based semipermeable membrane
JPS61402A (en) Semipermeable membrane for separation
KR950007323B1 (en) Manufacturing mehtod of hollow fiber membrane
CN111188128B (en) Preparation method of breathable film with micro-support
KR0183458B1 (en) Asymmetric hollow fiber and its manufacturing method
KR20220077413A (en) Porous microfiltration membrane and its manufacturing method
KR100204396B1 (en) Asymmetric membrane improving permeability and manufacturing methdo thereof
KR950004919B1 (en) Manufacturing method for polysulfone membrane
KR0159175B1 (en) Method for preparing polyestersulfone capillary membrane

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070626

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee