KR100420285B1 - 이산화티타늄 나노입자의 멸균코팅막의 제조방법 - Google Patents

이산화티타늄 나노입자의 멸균코팅막의 제조방법 Download PDF

Info

Publication number
KR100420285B1
KR100420285B1 KR10-2001-0022244A KR20010022244A KR100420285B1 KR 100420285 B1 KR100420285 B1 KR 100420285B1 KR 20010022244 A KR20010022244 A KR 20010022244A KR 100420285 B1 KR100420285 B1 KR 100420285B1
Authority
KR
South Korea
Prior art keywords
titanium dioxide
substrate
distilled water
nanoparticles
coating film
Prior art date
Application number
KR10-2001-0022244A
Other languages
English (en)
Other versions
KR20020082625A (ko
Inventor
손병혁
김태현
김현수
Original Assignee
손병혁
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 손병혁 filed Critical 손병혁
Priority to KR10-2001-0022244A priority Critical patent/KR100420285B1/ko
Publication of KR20020082625A publication Critical patent/KR20020082625A/ko
Application granted granted Critical
Publication of KR100420285B1 publication Critical patent/KR100420285B1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/002Pretreatement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2201/00Polymeric substrate or laminate
    • B05D2201/02Polymeric substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2203/00Other substrates
    • B05D2203/30Other inorganic substrates, e.g. ceramics, silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2601/00Inorganic fillers
    • B05D2601/20Inorganic fillers used for non-pigmentation effect
    • B05D2601/24Titanium dioxide, e.g. rutile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Abstract

본 발명은 이온간 인력에 의한 자기조립법을 이용하여 세라믹, 유리, 금속과 같은 무기재료 뿐만 아니라 고분자 재료에까지 이산화티타늄 나노입자의 멸균코팅막을 형성시키는 방법에 관한 것으로서, (A) 박막이 형성될 기판을 준비하는 단계와, (B) A단계의 기판을 고분자양이온 수용액에 일정시간 침지한 후 증류수로 세척하여 건조시키는 단계와, (C) B단계의 기판을 고분자음이온 수용액에 일정시간 침지한 후 증류수로 세척하여 건조시키는 단계와, (D) C단계의 기판을 나노입자의 이산화티타늄 용액에 일정시간 침지하여 표면에 흡착시킨 후 증류수로 세척 및 건조시키는 단계와, (E) D단계의 기판을 상기의 C단계 공정, B단계 공정, C단계 공정을 순차적으로 수행한 후에 D단계 공정을 수행하는 단계와, (F) 상기의 E단계 공정을 반복하는 단계를 포함하는 멸균 코팅막의 제조방법을 제공함으로써, 코팅될 기질의 크기와 형태에 대한 제약이 거의 없으며, 코팅될 기질의 원색과 투명도를 그대로 유지시키면서 멸균코팅이 가능할 뿐만 아니라 플라스틱과 같은 범용 고분자 재료에까지 확대시킬 수 있어 병원과 같은 공중시설 환경에서 사용되는 많은 고분자 제품에 유용하게 사용될 수 있다.

Description

이산화티타늄 나노입자의 멸균코팅막의 제조방법{Bactericidal thin film coating with Titanium dioxide nanoparticles}
본 발명은 이산화티타늄(TiO2) 나노입자의 멸균코팅막의 제조방법에 관한 것으로서, 특히 이온간 인력에 의한 자기조립법을 이용하여 세라믹, 유리, 금속과 같은 무기재료 뿐만 아니라 고분자 재료에 이산화티타늄 나노입자의 멸균코팅막을 형성시키는 방법에 관한 것이다.
일반적으로 이산화티타늄은 태양빛 뿐만 아니라 실내등 하에서도 환경을 오염시키는 유기물질을 분해시키고 박테리아와 바이러스를 죽일 수 있는 강력한 광촉매로서, 이산화티타늄을 박막화하여 코팅재로 응용하고자 하는 연구가 많이 진행되고 있다.
이산화티타늄 박막을 제조하기 위한 종래의 방법으로 화학기상증착(Chemical Vapor Deposition ; CVD)법, 졸-겔(sol-gel)법 등이 있다. 화학기상증착법은 이산화티타늄 전구체를 기화시킨 다음 기판 위에서 다른 기체, 증기 또는 액체와 반응시키면 기화되지 않은 고체생성물이 얻어지고, 이것을 기판에 증착하여 박막을 형성시키는 방법이며, 졸-겔법은 이산화티타늄 알콕사이드 용액의 가수분해와 생성된 겔의 소성을 통해 기판 위에 이산화티타늄 박막을 형성시키는 방법이다.
그러나 상기의 화학기상증착법은 증착속도와 박막두께조절이 어렵고, 박막형성과정에서 나타나는 스트레스나 박막과 기판 사이의 열팽창계수의 차이로 인해 박막이 변형되는 문제점이 있으며, 졸-겔법은 기판과의 강한 흡착력 및 이산화티타늄의 결정화를 위해서 500℃의 고온 열처리가 필요하기 때문에 고분자와 같이 내열성이 약한 재료에는 적용하기 어려운 문제점이 있다.
본 발명은 상기한 종래 기술의 문제점을 해결하기 위해 제안된 것으로써, 본 발명의 목적은 수용액상에서 양전하를 띠는 이산화티타늄 나노입자와 함께 음이온 고분자와 양이온 고분자를 교대로 적층하기 위하여, 상온에서 각 수용액에 기질을 차례대로 침지(dipping)하는 공정을 이용함으로써 무기 기질 뿐만 아니라 고분자기질에도 적용이 가능한 이산화티타늄 나노입자의 멸균코팅막을 제조하는 방법을 제공하는 것이다.
도 1은 본 발명에 따른 이산화티타늄 나노입자에 의한 멸균코팅막의 제조방법을 나타내는 공정도.
도 2는 실시예 1-6의 이산화티타늄층에서의 표면을 주사전자현미경 (Field Emission Scanning Electron Microscopy)을 이용하여 측정한 사진.
도 3은 실시예 1-2의 멸균코팅막을 형성시킨 기판에 대하여 자외선 조사시간에 따른 대장균의 생존율을 나타낸 그래프.
도 4는 실시예 2의 멸균코팅막을 형성시키기 전후의 투명도를 비교한 사진.
상기한 목적을 달성하기 위해 본 발명은 (A) 박막이 형성될 기판을 준비하는 단계와, (B) A단계의 기판을 고분자양이온 수용액에 일정시간 침지한 후 증류수로 세척하여 건조시키는 단계와, (C) B단계의 기판을 고분자음이온 수용액에 일정시간 침지한 후 증류수로 세척하여 건조시키는 단계와, (D) C단계의 기판을 나노입자의 이산화티타늄 용액에 일정시간 침지하여 표면에 흡착시킨 후 증류수로 세척 및 건조시키는 단계와, (E) D단계의 기판을 상기의 C단계 공정, B단계 공정, C단계 공정을 순차적으로 수행한 후에 D단계 공정을 수행하는 단계와, (F) 상기의 E단계 공정을 반복하는 단계를 포함하여 이루어짐을 특징으로 하는 이산화티타늄 나노입자의 멸균코팅막의 제조방법을 제공한다.
이하, 첨부한 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세하게 설명하면 다음과 같은 바, 본 발명이 실시예에 한정되는 것은 아니다.
<제조예 1> 이산화티타늄 나노입자
1.25mL의 에틸알코올과 25mL의 티타늄테트라이소프로폭사이드의 혼합액(Ti[OCH(CH3)2]4/EtOH)을 질산으로 조절된 pH 1.5의 증류수 250mL에 방울방울 떨어뜨리면서 강하게 교반한 다음 12시간 정도 숙성한 후 증발건조기(evaporator)로 35℃에서 건조시킴으로서 아나타제(anatase) 이산화티타늄 나노입자를 제조한다.
<실시예 1>
유리 또는 실리콘웨이퍼(Si wafer)를 먼저 피라나 수용액(H2SO4:H2O2=7:3)에 1시간 동안 침지한 다음 증류수로 충분히 세척한 후 H2O/H2O2/NH3(5:1:1) 수용액에 30분 동안 다시 침지하여 증류수로 충분히 세척한다. 세척된 기판을 여과된 압축공기로 불어내고 오븐에서 90℃로 건조시킨다.
제조예 1의 이산화티타늄 나노입자의 분말을 0.05중량%가 되도록 증류수(Millipore deionized water, 저항 17.7MΩ)에 녹인 후, 염산(HCl)으로 pH 2.5가 되도록 조절하여 수용액상에서 양전하를 띠는 이산화티타늄 수용액을 준비한다.
폴리알릴아민 하이드로클로라이드(poly(allylamine hydrochloride), Mw=70,000, PAH), 폴리아크릴산(poly(acrylic acid), Mw=240,000, PAA)을 고분자전해질로 사용하고, 각각 증류수에 용해시켜 0.01M의 수용액을 만들고 HCl로 pH 2.5가 되도록 조절함으로써 수용액상에서 양전하(PAH) 및 음전하(PAA)를 띠는 고분자전해질 수용액을 준비한다.
준비된 기판을 상기의 고분자양이온(PAH)수용액에 먼저 15분간 침지하여 증류수로 세척한 다음 질소 또는 여과된 압축공기로 건조한다(①). 다음으로 상기의 고분자음이온(PAA)수용액에 15분간 침지하여 다시 증류수로 세척한 다음 질소 또는 여과된 압축공기로 건조한다(②). 상기 양이온의 이산화티타늄 용액에 기판을15분 정도 침지하여 표면에 흡착시킨 다음 증류수로 세척하고 질소 또는 여과된 압축공기로 건조한다.(③) (-), (+)전하 순으로 상기의 과정 ②, ①, ②, ③ 을 순차적으로 반복한다. 최종 코팅된 박막은 기판/PAH/PAA/TiO2[/PAA/PAH/PAA/TiO2]n의 조성을 갖는다.
도 1에 본 발명에 따른 이산화티타늄 나노입자에 의한 멸균코팅막의 제조방법을 나타내었다.
<실시예 2>
폴리염화비닐(poly(vinyl chloride), Mw=120,000, PVC)를 테트라하이드로퓨란(THF)에 녹여 3중량%로 만든 후 THF 용매를 증발시켜 기판을 준비한 다음, 실시예 1과 동일한 방법으로 제조한다.
<실시예 3>
폴리메틸메타아크릴레이트(poly(methyl methacrylate, Mw=101,000, PMMA)를 테트라하이드로퓨란(THF)에 녹여 3중량%로 만든 후 실리콘 웨이퍼위에 스핀-코팅하여 기판을 준비한 다음, 실시예 1과 동일한 방법으로 제조한다.
<실시예 4>
폴리에틸렌(Aldrich)를 핫프레스(Hot Press)를 이용하여 130℃에서 압착하여 필름화하여 기판을 준비한 다음 실시예 1과 동일한 방법으로 제조한다.
<실시예 5>
폴리에틸렌테레프탈레이트(Aldrich)를 핫프레스(Hot Press)를 이용하여 230℃에서 압착하여 필름화하여 기판을 준비한 다음 실시예 1과 동일한 방법으로 제조한다.
<실시예 6>
코로나 처리된 폴리스티렌(VWR 62407-363, Nalge Nulc International사) 기판을 준비한 다음 실시예 1과 동일한 방법으로 제조한다.
<실험예 1>
실시예 1-6의 기판 위에 이산화티타늄 나노입자가 흡착되었는지의 여부를 알아보기 위해 멸균코팅 후 이산화티타늄 층에서의 표면을 주사전자현미경(Field Emission Scanning Electron Microscopy; FE-SEM)을 이용하여 측정한다.
기판/PAH/PAA/TiO2[/PAA/PAH/PAA/TiO2]4or7표면을 히다찌(Hitachi) S-4200 FE-SEM을 사용하여 관찰한 사진(50만배 확대)을 도 2에 나타내었다. 도 2a, 도 2b, 도 2c, 도 2d, 도 2e, 도 2f는 각각 실시예 1, 실시예 2, 실시에 3, 실시예 4, 실시예 5, 실시예 6에 해당하는 사진이다. 사진의 밝은 부분이 이산화티타늄 나노입자이다.
<실험예 2>
멸균코팅한 기판 위에서의 대장균(Escherichia coli)을 이용한 멸균실험
E. coli 셀(JM 109, Promega)은 배양액 (Luria-Bertani (LB) medium) 내에서 35℃에서 약 12시간 배양한다. 상기 배양액은 박토-트립톤(Bacto-trypton, DIFCO) 1.0%, 이스트 추출물(Yeast extract, MERCK) 0.5%, 염화나트륨(NaCl ,MERCK) 1.0%를 멸균수 내에서 섞어 준비한다.(모든 단위는 w/v)
셀을 7000rpm으로 2~3분 동안 원심분리한 후 멸균수로써 셀의 수가 ~9×103(colony forming units, CFU)/50㎕ (1.8×105CFU/mL)가 되도록 희석시킨다. E. coli 셀의 희석은 분광기(UV-vis spectrophotometer, UV-2401 PC, SHIMADZU)로써 흡광도를 측정하여 결정한다. 멸균실험 후의 셀을 배양하기 위한 배양액(nutrient agar medium, plate 용)은 박토-트립톤(Bacto-trypton, DIFCO) 1.0%, 이스트 추출물(Yeast extract, MERCK) 0.5%, 염화나트륨(NaCl, MERCK) 1.0%, 아가(agar granulated, DIFCO) 1.5%를 멸균수 내에 섞어 준비한다.(모든 단위는 w/v)
[PAH/PAA/TiO2] 다층박막의 멸균효과 테스트를 위한 기판으로는 [PAH/PAA/TiO2]3다층박막이 코팅된 실시예 1과 실시예 2의 기판을 사용한다. 사용되는 시편과 모든 도구들은 고압멸균기(autoclave)에서 120℃, 1.0kg/cm2의 조건 하에서 15~20분 살균한다
상기의 각 기판 내에 2mL 정도의 E. coli 분산액을 넣은 후 자외선(115 Volts, 60 Hz, 0.2 Amps, 365 nm) (Spectroline, ENF-240C)을 조사한다. 기판 표면에서의 빛의 세기는 약 260 mW/cm2이다. 실시예 1의 유리(glass dish) 기판을 사용하는 경우는 아래로부터 조사하고, 실시예 2의 PVC 코팅이 되어있는 유리 기판의 경우에는 위로부터 조사한다.
빛을 조사한 후에는 시간에 따라 50㎕씩 채취하여 배양액(nutrient agar medium) 내에서 44시간(±4시간) 동안 35℃의 인큐베이터에서 배양한다. 배양한 E. coli를 콜로니(colony) 단위로 세어 시간에 따른 E. coli 셀의 생존률을 계산한다. 상기의 결과를 이산화티타늄이 코팅되지 않은 경우와 비교하여 도 3에 나타내었으며, 도 2로부터 자외선(UV)을 조사하는 경우, 실시예 1 및 실시예 2의 경우에는 약 2시간 후 E. coli가 거의 소멸하는 것을 확인할 수 있다.
<실험예 3>
PVC 필름 위에 이산화티타늄 멸균코팅 전후의 투명도 비교
실시예 2의 PVC/PAH/PAA/TiO2[/PAA/PAH/PAA/TiO2]4의 멸균코팅된 PVC 필름의 투명도를 디지털카메라 이용하여 비교하였으며 이 결과를 도 3에 나타내었다.
상기의 실험예 1-3의 결과로부터 유리나 실리콘 웨이퍼와 같은 세라믹 재료 뿐만 아니라 고분자 위에도 이산화티타늄 멸균코팅이 가능하였으며 상당히 높은 멸균효과를 나타냄을 알 수 있다. 또한 멸균코팅 전후의 투명도는 도 4에 나타낸 바와 같이 투명하거나 원색에 변화를 주지 않는 코팅이 가능하였다.
상술한 바와 같이, 본 발명은 코팅될 기질의 크기와 형태에 대한 제약이 거의 없으며, 이산화티타늄 나노입자를 사용하는 박막이어서 투명하므로 코팅될 기질의 원색과 투명도를 그대로 유지시키면서 멸균코팅이 가능하다. 또한 본 발명은 기본적으로 수용액을 이용하기 때문에 환경 친화적인 기술이다. 종래의 이산화티타늄코팅 기술이 유리, 타일 등의 세라믹과 금속재료에 한정되어 있는 것에 반하여 본 발명은 플라스틱과 같은 범용 고분자 재료에까지 확대시킬 수 있으며 병원과 같은 공중시설 환경에서 사용되는 많은 고분자 제품에 유용하게 적용될 수 있다.

Claims (6)

  1. (A) 세라믹 재료, 금속 재료, 고분자 재료 중 어느 하나의 재료로 구성되며, 그 표면에 박막이 형성될 기판을 준비하는 단계와, (B) 폴리알릴아민 하이드로클로라이드를 증류수에 용해시킨 후 pH 2.5 정도의 강산성이 되도록 조절하여 제조된 고분자양이온 수용액에 A단계의 기판을 일정시간 침지한 후 증류수로 세척하여 건조시키는 단계와, (C) 폴리아크릴산을 증류수에 용해시킨 후 pH 2.5 정도의 강산성이 되도록 조절하여 제조된 고분자음이온 수용액에 B단계의 기판을 일정시간 침지한 후 증류수로 세척하여 건조시키는 단계와, (D) C단계의 기판을 나노입자의 이산화티타늄 용액에 일정시간 침지하여 표면에 흡착시킨 후 증류수로 세척 및 건조시키는 단계와, (E) D단계의 기판을 상기의 C단계 공정, B단계 공정, C단계 공정을 순차적으로 수행한 후에 D단계 공정을 수행하는 단계와, (F) 상기의 E단계 공정을 반복하는 단계를 포함하여 이루어짐을 특징으로 하는 이산화티타늄 나노입자의 멸균코팅막의 제조방법.
  2. 제 1 항에 있어서,
    상기 나노입자의 이산화티타늄 용액은 나노입자의 이산화티타늄 분말을 증류수에 용해시킨 후 pH 2.5가 되도록 조절하여 제조되는 것을 특징으로 하는 이산화티타늄 나노입자의 멸균코팅막의 제조방법.
  3. 제 2 항에 있어서,
    상기의 이산화티타늄 분말은 에틸알코올과 티타늄테트라이소프로폭사이드의 혼합액을 pH 1.5의 수용액에 적하하면서 강하게 교반한 다음 12시간 정도 숙성한 후 건조시켜 제조되는 것을 특징으로 하는 이산화티타늄 나노입자의 멸균코팅막의제조방법.
  4. 삭제
  5. 삭제
  6. 삭제
KR10-2001-0022244A 2001-04-25 2001-04-25 이산화티타늄 나노입자의 멸균코팅막의 제조방법 KR100420285B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0022244A KR100420285B1 (ko) 2001-04-25 2001-04-25 이산화티타늄 나노입자의 멸균코팅막의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0022244A KR100420285B1 (ko) 2001-04-25 2001-04-25 이산화티타늄 나노입자의 멸균코팅막의 제조방법

Publications (2)

Publication Number Publication Date
KR20020082625A KR20020082625A (ko) 2002-10-31
KR100420285B1 true KR100420285B1 (ko) 2004-03-02

Family

ID=27702459

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0022244A KR100420285B1 (ko) 2001-04-25 2001-04-25 이산화티타늄 나노입자의 멸균코팅막의 제조방법

Country Status (1)

Country Link
KR (1) KR100420285B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100646421B1 (ko) * 2003-10-02 2006-11-17 윤영주 고분자막의 표면개질방법
BRPI1107204A2 (pt) * 2011-12-22 2013-10-15 Tecnoquisa Ind E Com Ltda Processo de geração de nanocerâmicas para tratamento de superficies metálicas utilizando óxidos metálicos e moléculas auto organizáveis

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990015314A (ko) * 1997-08-05 1999-03-05 이해규 적외선 차단용 코팅 박막
JP2000176281A (ja) * 1998-12-11 2000-06-27 Ricoh Elemex Corp 酸化チタン膜コーティング製品
JP2000189888A (ja) * 1998-12-25 2000-07-11 Mitsuaki Ito 酸化チタンの光触媒作用を利用した現場塗装工法
JP2000280397A (ja) * 1999-01-28 2000-10-10 Asahi Chem Ind Co Ltd 過酸化チタン含有酸化チタン膜を有する多層体
KR20020039819A (ko) * 2000-11-22 2002-05-30 이병철 자외선 차단 복합분체의 제조방법
KR20020045856A (ko) * 2000-12-11 2002-06-20 윤영진 상온 경화형 광촉매 코팅용 졸 및 이의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990015314A (ko) * 1997-08-05 1999-03-05 이해규 적외선 차단용 코팅 박막
JP2000176281A (ja) * 1998-12-11 2000-06-27 Ricoh Elemex Corp 酸化チタン膜コーティング製品
JP2000189888A (ja) * 1998-12-25 2000-07-11 Mitsuaki Ito 酸化チタンの光触媒作用を利用した現場塗装工法
JP2000280397A (ja) * 1999-01-28 2000-10-10 Asahi Chem Ind Co Ltd 過酸化チタン含有酸化チタン膜を有する多層体
KR20020039819A (ko) * 2000-11-22 2002-05-30 이병철 자외선 차단 복합분체의 제조방법
KR20020045856A (ko) * 2000-12-11 2002-06-20 윤영진 상온 경화형 광촉매 코팅용 졸 및 이의 제조방법

Also Published As

Publication number Publication date
KR20020082625A (ko) 2002-10-31

Similar Documents

Publication Publication Date Title
Kaviyarasu et al. Photocatalytic performance and antimicrobial activities of HAp-TiO2 nanocomposite thin films by sol-gel method
Sayılkan et al. Photocatalytic antibacterial performance of Sn4+-doped TiO2 thin films on glass substrate
TW201318656A (zh) 抗微生物複合材料
CN106102466B (zh) 表面涂层
TWI789332B (zh) 抗菌化學強化玻璃及其最佳化製造方法
Irie et al. Interfacial structure dependence of layered TiO2/WO3 thin films on the photoinduced hydrophilic property
Šlamborová et al. New type of protective hybrid and nanocomposite hybrid coatings containing silver and copper with an excellent antibacterial effect especially against MRSA
EP2145678A1 (en) TiO2-ZnO Nanocomposite film
Panda et al. Study of bactericidal efficiency of magnetron sputtered TiO2 films deposited at varying oxygen partial pressure
Ganji et al. Photocatalytic effect of nano-TiO 2 loaded cement on dye decolorization and Escherichia coli inactivation under UV irradiation
KR100420285B1 (ko) 이산화티타늄 나노입자의 멸균코팅막의 제조방법
JP2001340757A (ja) 二酸化チタン光触媒担持体とその製造方法
González-Penguelly et al. New infrared-assisted method for sol-gel derived ZnO: Ag thin films: Structural and bacterial inhibition properties
CN104449698B (zh) 具有可见光响应的量子点/二氧化钛复合纳米点阵列及其制备方法
Ryabkova et al. Properties of poly (titanium oxide)-containing polymeric materials exhibiting UV-induced superhydrophilicity under simulated climate test conditions
US20030054207A1 (en) Metal oxide films
CN1442366A (zh) 一种氧化钛的制备方法及其应用
JP2000070728A (ja) 電子線を照射した光触媒材料とその塗料および塗膜
CN107500300B (zh) 一种有序介孔TiO2-SiO2纳米复合膜及其制备方法
Ling et al. Novel route to prepare TiO 2-coated ceramic and its photocatalytic function
RU2447190C2 (ru) Способ получения фотокаталитически активного покрытия
WO2015040558A1 (en) A dual action antimicrobial film
JP2003277056A (ja) シリカ−チタニア複合膜とその製造方法及び複合構造体
CN103713473A (zh) 一种利用受限光催化氧化改性ito的方法及其应用
CN109371385B (zh) 一种片状氧化镁或掺杂氧化镁阵列的制备方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090216

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee