KR100408527B1 - Solar cell and method for manufacturing thereof - Google Patents

Solar cell and method for manufacturing thereof Download PDF

Info

Publication number
KR100408527B1
KR100408527B1 KR1019960037207A KR19960037207A KR100408527B1 KR 100408527 B1 KR100408527 B1 KR 100408527B1 KR 1019960037207 A KR1019960037207 A KR 1019960037207A KR 19960037207 A KR19960037207 A KR 19960037207A KR 100408527 B1 KR100408527 B1 KR 100408527B1
Authority
KR
South Korea
Prior art keywords
solar cell
electrode
silicon
inverted pyramid
substrate
Prior art date
Application number
KR1019960037207A
Other languages
Korean (ko)
Other versions
KR19980017427A (en
Inventor
지일환
조영현
김동섭
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1019960037207A priority Critical patent/KR100408527B1/en
Publication of KR19980017427A publication Critical patent/KR19980017427A/en
Application granted granted Critical
Publication of KR100408527B1 publication Critical patent/KR100408527B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: A solar cell and a manufacturing method thereof are provided to be capable of reducing the stress of the top and bottom portion of a reverse pyramid type structure. CONSTITUTION: A reverse pyramid type structure is formed at one surface of a silicon substrate(21) by carrying out a photolithography process. A pn junction is formed on the resultant structure. Then, a front and rear electrode(24,25) are formed at the upper and lower portion of the resultant structure, respectively. A top and bottom portion of the reverse pyramid type structure is roundly formed by carrying out an etching process using a sodium hydroxide or potassium hydroxide solution of 10-40 weight% before the pn junction forming step. Preferably, the silicon substrate is made of single or polycrystalline silicon.

Description

태양전지 및 그 제조방법{Solar cell and method for manufacturing thereof}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell,

본 발명은 태양전지 및 그 제조방법에 관한 것으로서, 기판 표면에 형성된역피라미드(inverted pyramid)의 꼭지 부분과 바닥 부분을 곡선처리하여 그 부분에서의 응력을 감소시킴으로써 전지의 성능이 향상된 태양전지 및 그 제조방법에 관한 것이다.The present invention relates to a solar cell and a method of manufacturing the same. More particularly, the present invention relates to a solar cell having improved performance of a cell by curving a stem portion and a bottom portion of an inverted pyramid formed on a substrate surface, And a manufacturing method thereof.

태양전지는 반도체의 광 기전력 효과를 이용한 것으로서, p형 반도체와 n형 반도체를 조합하여 만든다. p형 반도체와 n형 반도체가 접한 부분(pn 접합부)에 빛이 들어오면, 빛 에너지에 의하여 반도체 내부에서 마이너스의 전하(전자)와 플러스의 전하(정공)가 발생한다.Solar cells are based on the photovoltaic effect of semiconductors and are made by combining p-type and n-type semiconductors. When light enters a portion where the p-type semiconductor and the n-type semiconductor are in contact (pn junction), negative charges (electrons) and positive charges (holes) are generated inside the semiconductor due to the light energy.

일반적으로 반도체에 밴드 갭 에너지 이하의 빛이 들어가면 반도체내의 전자들과 약하게 상호작용하고, 밴드 갭이상의 빛이 들어가면 공유결합내의 전자를 여기시켜 캐리어(carrier)(전자 또는 정공)를 쌍생성한다.Generally, when light below a band gap energy enters a semiconductor, it weakly interacts with electrons in the semiconductor. When light having a band gap or more enters, electrons in the covalent bond are excited to form a pair of carriers (electrons or holes).

쌍생성율 G는Pair generation rate G

G=αNe-αxG =? Ne-? X

여기에서, N은 광자의 유속(photons/unit area/sec), α는 흡수계수이고, x는 반도체내에서 빛이 흡수되기까지의 거리이다.Where N is the photon's flow rate (photons / unit area / sec), a is the absorption coefficient, and x is the distance from the semiconductor to the absorption of light.

빛에 의하여 형성된 캐리어들은 재결합과정을 통하여 정상상태로 돌아온다. 캐리어들이 생성된 후 정상상태로 돌아오는데 소요되는 시간을 캐리어 수명(carrier lifetime)이라고 하는데, 실리콘은 약 1μm의 캐리어 수명을 가진다. 그리고 캐리어들이 재결합하기까지의 확산거리(diffusion length)는 100내지 300μm이다.The carriers formed by the light return to their normal state through the recombination process. The time it takes to return to the steady state after the carriers are created is called the carrier lifetime, and silicon has a carrier lifetime of about 1 m. The diffusion length until the carriers recombine is 100 to 300 mu m.

빛에너지에 의해 발생된 전자와 정공은 내부의 전계에 의하여 각각 n형 반도체측과 p형 반도체측으로 이동하여 양쪽의 전극부에 모아진다. 이러한 두 개의 전극을 도선으로 연결하면 전류가 흐르고 외부에서 전력으로 이용할 수 있게 된다.The electrons and holes generated by the light energy move to the n-type semiconductor side and the p-type semiconductor side by the internal electric field, respectively, and are collected in both electrode portions. When these two electrodes are connected by a lead wire, current flows and can be used as an external power source.

태양전지의 특성을 저하시키는 요소에는 태양전지 표면에서의 광학적 손실, 캐리어를 수집하는 전극부분에서의 저항에 따른 손실, 캐리어 재결합에 의한 손실 등이 있다. 이 중에서도 태양전지 표면에서의 입사광 반사에 의한 광학적 손실이 태양전지의 특성 저하에 가장 큰 비중을 차지하고 있다.Factors that degrade the characteristics of the solar cell include optical loss at the surface of the solar cell, loss due to resistance at the electrode portion collecting the carrier, and loss due to carrier recombination. Among them, the optical loss due to the reflection of incident light on the surface of the solar cell occupies the largest portion in deterioration of the characteristics of the solar cell.

이러한 입사광의 반사에 의한 광학적 손실을 감소시키는 방법으로서, 대부분의 태양전지에서 많이 사용되는 반사방지막 형성 방법이 있다.As a method for reducing the optical loss due to the reflection of the incident light, there is a method of forming an antireflection film which is widely used in most solar cells.

다른 방법으로서, 전극의 면적을 최대한 작게 함으로써 입사광의 반사를 줄이는 방법이 있다. 그러나, 이 방법에 따르면 전극 면적의 감소로 저항이 증가하여 전지의 성능이 저하된다.As another method, there is a method of reducing the reflection of incident light by making the area of the electrode as small as possible. However, according to this method, the resistance is increased due to the reduction of the electrode area, and the performance of the battery is deteriorated.

또 다른 방법으로서, 결정계 실리콘 태양전지에서 주로 사용하는 텍스처링(texturing) 방법이 있다. 이 방법에는 통상적인 이방성 화학에칭을 실시하여 결정계 실리콘 기판에 피라미드를 형성하는 방법과 포토리소그래피 공정을 이용하여 결정계 실리콘 기판에 역피라미드를 형성하는 방법이 있다. 여기에서 실리콘 기판상에 피라미드 및 역피라미드 구조를 형성함으로써 입사광의 반사가 감소될 뿐만 아니라 스넬 법칙에 따라 입사광이 실리콘 내부로 들어가는 부수적인 효과도 얻을 수 있게 된다. 이러한 피라미드 및 역피라미드 구조는 후면 전극이 형성되는 실리콘 기판 표면에도 형성되는데, 이로 인하여 반사되는 빛의 광경로가 길어져 실리콘 내부로 재흡수될 기회를 더 많이 가지게 된다.As another method, there is a texturing method mainly used in a crystal silicon solar cell. In this method, there is a method of forming a pyramid on a crystalline silicon substrate by performing an ordinary anisotropic chemical etching and a method of forming an inverted pyramid on a crystalline silicon substrate by using a photolithography process. By forming the pyramid and the inverted pyramid structure on the silicon substrate, not only the reflection of the incident light is reduced, but also incidental effect that the incident light enters into the silicon according to the Snell's law can be obtained. These pyramids and inverted pyramid structures are also formed on the surface of the silicon substrate on which the back electrode is formed, which increases the chance of re-absorption into the silicon due to the longer optical path of the reflected light.

도 1은 종래의 PERL 태양전지의 구조를 나타낸 사시도이다.1 is a perspective view showing the structure of a conventional PERL solar cell.

이를 참조하면, 역피라미드가 형성된 p형 반도체 기판 (11)의 전면에는 n+ 반도체층 (12), 산화막 (13) 및 전면전극 (14)가 순차적으로 형성되어 있다. 반도체 기판 (11) 후면에는 산화막 (13'), 후면전극 (15)이 차례로 형성되어 있고, 그 기판 후면내로 부분 확산 p+ 반도체층 (16)이 형성되어 있다.An n + semiconductor layer 12, an oxide film 13, and a front electrode 14 are sequentially formed on a front surface of a p-type semiconductor substrate 11 having an inverted pyramid formed thereon. An oxide film 13 'and a back electrode 15 are sequentially formed on the back surface of the semiconductor substrate 11 and a partial diffusion p + semiconductor layer 16 is formed in the rear surface of the substrate.

상기 반도체 기판상의 역피라미드는 전술한 바와 같이 일반적인 포토리소그래피 공정을 이용하여 형성시킨다. 따라서 피라미드의 경우보다 균일한 크기의 역피라미드를 얻을 수 있으며, 이로 인하여 후속막 형성이 용이해진다.The reverse pyramid on the semiconductor substrate is formed using a general photolithography process as described above. Therefore, a reverse pyramid having a uniform size can be obtained in the case of a pyramid, which makes it easy to form a subsequent film.

그런데, 상기 역피라미드 구조는 입사광의 흡수를 증진시키기는 하지만, 태양전지 제조시 입사광을 흡수하여 캐리아를 발생시키는 전도성 소자의 성능을 저하시키는 요소를 가지고 있다. 즉 역피라미드의 반사방지막 형성공정에서 역피라미드 꼭지 부분과 바닥 부분이 역피라미드 측면부분보다 강한 응력을 받게 된다. 이로 말미암아 반사방지막의 특성이 저하되며, 반사방지막 형성후, 에칭시 역피라미드 꼭지 부분과 바닥 부분이 노출되는 경우가 많아지게 되어 노출된 역피라미드에 전극이 형성됨으로써 전지의 성능이 저하된다.However, the inverted pyramid structure enhances the absorption of incident light, but has a factor that degrades the performance of a conductive device that absorbs incident light during the manufacture of a solar cell to generate carriers. In other words, in the antireflection film forming process of the inverted pyramid, the inverted pyramid nipple and the bottom portion are subjected to a stronger stress than the inverted pyramid side portion. Therefore, the characteristics of the antireflection film are deteriorated, and when the antireflection film is formed, the reverse pyramid nip and the bottom part are often exposed at the time of etching, and the electrode is formed in the exposed reverse pyramid, thereby deteriorating the performance of the cell.

본 발명의 첫번째 과제는 상기 문제점을 해결하여 역피라미드 꼭지 부분과 바닥 부분에서의 응력을 감소시킴으로써 전지의 성능을 저하시키지 않으면서 광흡수를 증진시킬 수 있는 태양전지를 제공하는 것이다.A first object of the present invention is to solve the above problems and to provide a solar cell capable of improving light absorption without reducing the performance of the cell by reducing the stress at the inverse pyramid nipple and bottom part.

본 발명의 두번째 과제는 상기 태양전지의 제조방법을 제공하는 것이다.A second object of the present invention is to provide a method for manufacturing the solar cell.

도 1은 종래의 비활성화 에미터 후면 부분확산(Passivated Emitter, Rear Locally diffused: PERL) 태양전지의 구조를 나타낸 사시도이고,FIG. 1 is a perspective view showing a structure of a conventional passive emitter (PERL) solar cell,

도 2는 본 발명의 일실시예에 따른 함몰전극형 태양전지의 단면구조를 개략적으로 나타낸 단면도이다.2 is a cross-sectional view schematically showing a cross-sectional structure of a depression electrode type solar cell according to an embodiment of the present invention.

<도면의 주요 부분에 대한 부호의 설명>Description of the Related Art

11, 21. p형 반도체 기판11, 21. A p-type semiconductor substrate

12, 22. n+ 반도체층12, 22. n + semiconductor layer

13, 13', 23, 23'. 산화막13, 13 ', 23, 23'. Oxide film

14, 24. 전면전극14, 24. Front electrode

15, 25. 후면전극15, 25. Rear electrode

16, 26. 부분 확산 p+ 반도체층16, 26. Partially diffused p + semiconductor layer

상기 첫번째 과제를 이루기 위하여 본 발명에서는 기판과 그 기판 상부에 형성된 전극을 포함하는 태양전지에 있어서, 상기 기판의 적어도 일측면이 꼭지 부분과 바닥 부분이 곡선처리된 역피라미드 구조로 되어 있는 것을 특징으로 하는 태양전지를 제공한다.According to an aspect of the present invention, there is provided a solar cell including a substrate and an electrode formed on the substrate, wherein at least one side of the substrate has an inverted pyramid structure in which a tip portion and a bottom portion are curved, And the like.

본 발명의 두번째 과제는 반도체 기판 표면에 포토리소그래피 공정을 이용하여 역피라미드 구조를 형성한 다음, pn 접합을 형성하고, 산화막 및 전극을 형성하는 단계를 포함하는 태양전지의 제조방법에 있어서, pn 접합을 형성하는 단계 이전에 상기 기판에 형성되어 있는 역피라미드의 꼭지 부분과 바닥 부분을 곡선처리하는 단계를 더 포함하는 것을 특징으로 하는 태양전지의 제조방법에 의해서 달성된다.A second object of the present invention is to provide a method of manufacturing a solar cell including forming an inverted pyramid structure on a surface of a semiconductor substrate using a photolithography process, forming a pn junction, and forming an oxide film and an electrode, And a step of curving the bottom portion and the bottom portion of the inverted pyramid formed on the substrate prior to the step of forming the inverted pyramid.

상기 역피라미드의 꼭지 부분과 바닥 부분은 10∼40중량%의 수산화나트륨 용액을 이용한 등방성 에칭(isotropic etching)으로 곡선처리된다.The stem and bottom portions of the inverted pyramid are curved by isotropic etching using 10 to 40 wt% sodium hydroxide solution.

상기 산화막은 막특성 조절에 의해 절연막과 반사방지막으로서의 역할을 동시에 수행한다. 이 산화막은 산화규소막 또는 불화마그네슘(MgF2)/황화아연(ZnS)의 이층막 중에서 선택되며, 습식 또는 건식 확산법, 증착법, 스퍼터링법 등의 방법을 이용하여 형성시킨다.The oxide film simultaneously acts as an insulating film and an antireflection film by controlling the film characteristics. This oxide film is selected from a silicon oxide film or a two-layer film of magnesium fluoride (MgF2) / zinc sulfide (ZnS), and is formed by a wet or dry diffusion method, a vapor deposition method, a sputtering method or the like.

상기 전극은 함몰전극형 전극 또는 프린팅형 전극 모두가 가능하다.The electrode may be a depressed electrode or a printing electrode.

본 발명은 포토리소그래피 공정을 실시하여 우선적으로 반도체 기판의 적어도 일측면에 역피라미드 구조를 형성한 다음, 등방성 화학에칭을 실시하여 역피라미드 구조의 꼭지 부분과 바닥 부분에서의 응력을 최소화시키는 데 그 특징을 두고 있다. 여기에서 등방성 화학 에칭이란 에칭속도가 실리콘의 결정축 방향과 관계없이 거의 일정하며, 10∼40중량%의 수산화칼륨이나 수산화나트륨 용액과 같은 강알칼리 용액을 이용하여 반도체 기판 표면을 에칭하는 방법이다.The present invention is characterized in that a photolithography process is first performed to form an inverted pyramid structure on at least one side of a semiconductor substrate and then an isotropic chemical etching is performed to minimize the stress at the apex portion and the bottom portion of the inverted pyramid structure, Respectively. Here, the isotropic chemical etching is a method of etching the surface of the semiconductor substrate by using a strong alkali solution such as potassium hydroxide or sodium hydroxide solution of 10 to 40 wt%, which is almost constant regardless of the crystal axis direction of silicon.

이하, 본 발명에 따른 태양전지의 제조방법을 살펴보면 다음과 같다.Hereinafter, a method of manufacturing a solar cell according to the present invention will be described.

포토리소그래피 공정을 이용하여 p형 반도체 기판의 적어도 일측면에 역피라미드 구조를 형성한다. 그 후 이 실리콘 기판을 10∼40중량%, 바람직하기로는 약 30중량%의 수산화나트륨 또는 수산화칼륨 수용액에 10 내지 30초동안 함침시켜서 역피라미드 구조의 꼭지 부분과 바닥 부분을 곡선처리한다.An inverted pyramid structure is formed on at least one side of the p-type semiconductor substrate by using a photolithography process. The silicon substrate is then impregnated with 10 to 40 wt.%, Preferably about 30 wt.%, Of sodium hydroxide or potassium hydroxide solution for 10 to 30 seconds to curve the faeces and bottom of the inverted pyramidal structure.

상기 반도체 기판 전면에 n형 불순물을 확산시켜 pn 접합을 형성한다. 이어서 산화막 및 전도성 금속으로 된 전면전극을 형성한다.An n-type impurity is diffused over the entire surface of the semiconductor substrate to form a pn junction. Next, a front electrode made of an oxide film and a conductive metal is formed.

반도체 기판 후면에 산화막을 형성하고, 그 위에 전도성 금속으로 된 후면전극을 형성하여 본 발명의 태양전지를 완성한다. 이 때 전면전극은 레이저 또는 기계적 가공법을 사용하여 홈을 형성한 후 이 홈내로 전극을 형성하는 함몰전극이나 스크린 프린팅법 또는 순간열처리법으로 형성된 전극 모두가 가능하다.An oxide film is formed on the back surface of the semiconductor substrate and a rear electrode made of a conductive metal is formed thereon to complete the solar cell of the present invention. In this case, the front electrode can be formed by a depression electrode forming a groove by using a laser or a mechanical processing method, forming the electrode into the groove, or an electrode formed by a screen printing method or an instantaneous heat treatment method.

도 2는 본 발명의 일실시예에 따른 함몰전극형 실리콘 태양전지의 단면 구조를 개략적으로 나타낸 도면이다. 여기에서 (21)은 p형 실리콘 기판, (22)는 n+ 반도체층, (23) 및 (23')은 산화막, (24)는 전면전극, (25)는 후면전극, (26)은 부분 확산 p+ 반도체층을 나타낸다.2 is a schematic view showing a cross-sectional structure of a sinking electrode type silicon solar cell according to an embodiment of the present invention. In the figure, reference numeral 21 denotes a p-type silicon substrate, 22 denotes an n + semiconductor layer, 23 denotes an oxide film, 23 denotes a front electrode, 25 denotes a rear electrode, and a p + semiconductor layer.

이하, 본 발명을 실시예를 들어 상세히 설명하기로 하되, 본 발명이 반드시이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not necessarily limited thereto.

<실시예><Examples>

포토레지스트 공정을 실시하여 p형 실리콘 기판 전면상에 역피라미드 구조를 형성하였다. 이어서, 이 실리콘 기판을 약 30중량%의 수산화나트륨 용액에 약 30초동안 담가 에칭하였다.A photoresist process was performed to form an inverted pyramid structure on the entire surface of the p-type silicon substrate. The silicon substrate was then immersed in about 30 wt% sodium hydroxide solution for about 30 seconds.

역피라미드의 꼭지 부분과 바닥 부분이 에칭된 상기 실리콘 기판에 인을 확산시킨 다음, 산화막을 형성하였다. 레이저를 이용하여 홈을 만들고 전극과 기판과의 접촉저항을 낮추기 위하여 이 홈내부로 인을 깊게 확산시킨 다음, 니켈, 구리 및 은을 순차적으로 도금하여 전면전극을 형성하였다.Phosphorus was diffused into the silicon substrate on which the stem and bottom portions of the inverted pyramid were etched, and then an oxide film was formed. In order to reduce the contact resistance between the electrode and the substrate, the groove was deeply diffused into the groove, and nickel, copper, and silver were sequentially plated to form a front electrode.

산화막이 형성되어 있는 평탄화된 p형 실리콘 기판상에 부분확산창이 있는 금속 마스크를 이용하여 알루미늄을 부분적으로 증착, 소결하여 실리콘 기판 후면내에 부분확산 p+층을 형성하였다. 그 후, 실리콘 기판 전면에 알루미늄을 증착시켜 후면전극을 형성하였다.Aluminum was partially deposited and sintered on a planarized p-type silicon substrate on which an oxide film was formed using a metal mask having a partial diffusion window to form a partial diffusion p + layer in the rear surface of the silicon substrate. Thereafter, aluminum was deposited on the entire surface of the silicon substrate to form a rear electrode.

<비교예><Comparative Example>

역피라미드의 꼭지 부분과 바닥 부분이 에칭처리되지 않은 것을 제외하고는, 실시예와 동일한 방법으로 실리콘 태양전지를 제조하였다.A silicon solar cell was produced in the same manner as in Example except that the bottom portion and the bottom portion of the inverted pyramid were not etched.

상기 실시예에 따라 제조된 실리콘 태양전지에서는 비교에에 따라 제조된 실리콘 태양전지보다 피라미드 꼭지 부분과 바닥 부분에서의 응력이 감소되어 후속으로 형성되는 반사방지막 두께가 균일하였으며, 전극과 반사방지막 사이의 접촉저항이 감소하였다. 또한 상기 실시예 및 비교예에 따라 제조된 실리콘 태양전지의 변환효율을 측정한 결과, 실시예에 따라 제조된 실리콘 태양전지의 변환효율이 보다 높았으며, 전지의 신뢰성도 보다 양호하였다.In the silicon solar cell manufactured according to the above example, the stress at the pyramid root portion and the bottom portion was lower than that of the silicon solar cell manufactured according to the comparative example, and the thickness of the subsequently formed anti-reflection film was uniform. Contact resistance decreased. As a result of measuring the conversion efficiency of the silicon solar cell manufactured according to the above Examples and Comparative Examples, the conversion efficiency of the silicon solar cell manufactured according to the Example was higher and the reliability of the cell was better.

본 발명에 따르면, 역피라미드의 꼭지 부분과 바닥 부분에서의 응력 감소로 이후 형성되는 반사방지막의 두께가 균일화된다. 또한 역피라미드의 꼭지 부분과 바닥 부분에 형성된 산화막의 안정으로 그 부분에 전극이 형성되는 것을 방지함으로써 전지의 성능을 향상시킬 수 있다.According to the present invention, the thickness of the antireflection film to be formed later is equalized by reducing the stress at the vertex portion and the bottom portion of the inverted pyramid. Also, it is possible to improve the performance of the battery by preventing the oxide film formed on the bottom portion and the bottom portion of the inverted pyramid from being stably formed.

Claims (2)

실리콘 기판의 일측 표면에 포토리소그래피 공정을 이용하여 역피라미드 구조를 형성한 다음, pn 접합을 형성하고 산화막 및 전극을 형성하는 단계를 포함하는 실리콘 태양전지의 제조방법에 있어서,A method of manufacturing a silicon solar cell, comprising: forming an inverted pyramid structure on a surface of a silicon substrate using a photolithography process, forming a pn junction, and forming an oxide film and an electrode, pn 접합을 형성하는 단계 이전에, 상기 기판에 형성되어 있는 역피라미드의 꼭지 부분과 바닥 부분을 10∼40중량%의 수산화나트륨 용액 또는 수산화칼륨 용액을 이용한 에칭방법으로 곡선처리하는 단계를 더 포함하는 것을 특징으로 하는 실리콘 태양전지의 제조방법.further comprising the step of curving the stem portion and the bottom portion of the inverted pyramid formed on the substrate by an etching method using 10 to 40 wt% of sodium hydroxide solution or potassium hydroxide solution before the step of forming the pn junction &Lt; / RTI &gt; 제1항에 있어서, 상기 실리콘 기판이 단결정 또는 다결정 실리콘으로 이루어져 있는 것을 특징으로 하는 실리콘 태양전지의 제조방법.The method of manufacturing a silicon solar cell according to claim 1, wherein the silicon substrate is made of single crystal or polycrystalline silicon.
KR1019960037207A 1996-08-30 1996-08-30 Solar cell and method for manufacturing thereof KR100408527B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960037207A KR100408527B1 (en) 1996-08-30 1996-08-30 Solar cell and method for manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960037207A KR100408527B1 (en) 1996-08-30 1996-08-30 Solar cell and method for manufacturing thereof

Publications (2)

Publication Number Publication Date
KR19980017427A KR19980017427A (en) 1998-06-05
KR100408527B1 true KR100408527B1 (en) 2004-01-24

Family

ID=37422822

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960037207A KR100408527B1 (en) 1996-08-30 1996-08-30 Solar cell and method for manufacturing thereof

Country Status (1)

Country Link
KR (1) KR100408527B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101039918B1 (en) 2010-03-30 2011-06-09 엘지이노텍 주식회사 Solar cell and method of fabricating the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100416741B1 (en) * 1997-03-31 2004-05-17 삼성전자주식회사 Rear locally sintered silicon solar cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100351065B1 (en) * 1995-12-09 2002-12-12 삼성전자 주식회사 Silicon solar cell and fabricating method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100351065B1 (en) * 1995-12-09 2002-12-12 삼성전자 주식회사 Silicon solar cell and fabricating method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101039918B1 (en) 2010-03-30 2011-06-09 엘지이노텍 주식회사 Solar cell and method of fabricating the same

Also Published As

Publication number Publication date
KR19980017427A (en) 1998-06-05

Similar Documents

Publication Publication Date Title
US10424685B2 (en) Method for manufacturing solar cell having electrodes including metal seed layer and conductive layer
JP4727607B2 (en) Solar cell
EP2371010B1 (en) Solar cell and method of manufacturing the same
KR100976454B1 (en) Solar cell and manufacturing method of the same
US9209342B2 (en) Methods of manufacturing light to current converter devices
EP2219222A2 (en) Solar cell and method for manufacturing the same
JP2006523025A (en) Metal contact structure for solar cell and manufacturing method
JP2016523452A (en) Crystalline silicon solar cell having local aluminum back surface electric field which is translucent on both sides and manufacturing method thereof
JP2004266023A (en) Solar battery and method of manufacturing the same
JP2008181965A (en) Laminated optoelectric converter and its fabrication process
JP2003069061A (en) Laminated photovoltaic transducer device
KR20130050721A (en) Solar cell
EP2538447B1 (en) Solar cell and method for manufacturing the same
KR101878397B1 (en) Solar cell and method for fabricating the same
KR101985835B1 (en) Photovoltaic device
KR20080032866A (en) Mentalization wrap through type solar cell
KR20090075421A (en) Solar cell
JPWO2009157053A1 (en) Photovoltaic device and manufacturing method thereof
JP2001203376A (en) Solar cell
KR100408527B1 (en) Solar cell and method for manufacturing thereof
TW201701490A (en) Metallization of solar cells with differentiated P-type and N-type region architectures
WO2012090650A1 (en) Solar cell
JP3448098B2 (en) Crystalline silicon solar cells
KR100351065B1 (en) Silicon solar cell and fabricating method thereof
JPH11266029A (en) Solar cell, manufacture and connection thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20091113

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee