KR100351065B1 - Silicon solar cell and fabricating method thereof - Google Patents

Silicon solar cell and fabricating method thereof Download PDF

Info

Publication number
KR100351065B1
KR100351065B1 KR1019950048075A KR19950048075A KR100351065B1 KR 100351065 B1 KR100351065 B1 KR 100351065B1 KR 1019950048075 A KR1019950048075 A KR 1019950048075A KR 19950048075 A KR19950048075 A KR 19950048075A KR 100351065 B1 KR100351065 B1 KR 100351065B1
Authority
KR
South Korea
Prior art keywords
solar cell
silicon substrate
silicon
hydroxide solution
silicon solar
Prior art date
Application number
KR1019950048075A
Other languages
Korean (ko)
Other versions
KR970054575A (en
Inventor
지일환
조영현
김동섭
이수홍
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to KR1019950048075A priority Critical patent/KR100351065B1/en
Publication of KR970054575A publication Critical patent/KR970054575A/en
Application granted granted Critical
Publication of KR100351065B1 publication Critical patent/KR100351065B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: A silicon solar cell is provided to form an anti-reflecting coating(ARC) of a uniform thickness by reducing stress on a vertex and a bottom of a pyramid structure, and to prevent an electrode from being formed in the vertex and the bottom of the pyramid structure by stabilizing an oxide layer formed in the vertex and the bottom. CONSTITUTION: The silicon solar cell includes a silicon substrate(1) and an electrode formed on the silicon substrate. The surface of the silicon substrate is anisotropically etched by using a sodium hydroxide solution or potassium hydroxide solution of 1.5-3 weight percent to form a pyramid structure. The silicon substrate is isotropically etched by using a sodium hydroxide solution of 10-40 weight percent so that the bottom and the vertex of the silicon substrate is rounded.

Description

실리콘 태양전지 및 그 제조방법Silicon solar cell and its manufacturing method

본 발명은 실리콘 태양전지 및 그 제조방법에 관한 것으로서, 상세하기로는 실리콘 기판 표면에 형성시킨 피라미드의 꼭지 부분과 바닥 부분을 곡선처리함으로써 전지의 성능이 향상된 실리콘 태양전지 및 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon solar cell and a method of manufacturing the same, and more particularly, to a silicon solar cell and a method of manufacturing the same, which improve performance of a cell by curving the top and bottom portions of a pyramid formed on a silicon substrate surface.

태양전지는 반도체의 광 기전력 효과를 이용한 것으로서, p형 반도체와 n형 반도체를 조합하여 만든다. p형 반도체와 n형 반도체가 접한 부분(pn 접합부)에 빛이 들어오면, 빛 에너지에 의하여 반도체 내부에서 마이너스의 전하(전자)와 플러스의 전하(정공)가 발생한다.The solar cell uses the photovoltaic effect of the semiconductor and is made by combining a p-type semiconductor and an n-type semiconductor. When light enters a portion (pn junction) where the p-type semiconductor and the n-type semiconductor come into contact with each other, negative charges (electrons) and positive charges (holes) are generated within the semiconductor by the light energy.

일반적으로 반도체에 밴드 갭 에너지 이하의 빛이 들어가면 반도체내의 전자들과 약하게 상호작용하고, 밴드 갭이상의 빛이 들어가면 공유결합내의 전자를 여기시켜 캐리어(carrier)(전자 또는 정공)를 쌍생성한다.In general, when light below the band gap energy enters the semiconductor, the light interacts weakly with electrons in the semiconductor, and when light above the band gap enters the electrons in the covalent bond, the carriers (electrons or holes) are paired.

쌍생성율 G는Pair formation rate G is

G=αNe-αx G = αNe- αx

여기에서, N은 광자의 유속(photons/unit area/sec), α는 흡수계수이고, x는 반도체내에서 빛이 흡수되기까지의 거리이다.Where N is the photons / unit area / sec, α is the absorption coefficient, and x is the distance from which light is absorbed in the semiconductor.

빛에 의하여 형성된 캐리어들은 재결합과정을 통하여 정상상태로 돌아온다. 캐리어들이 생성된 후 정상상태로 돌아오는데 소요되는 시간을 캐리어 수명 (carrier lifetime)이라고 하는데, 실리콘은 약 1㎛의 캐리어 수명을 가진다. 그리고 캐리어들이 재결합하기까지의 확산거리(diffusion length)는 100내지 300㎛이다.Carriers formed by light return to their normal state through the recombination process. The time it takes to return to normal after the carriers are created is called carrier lifetime. Silicon has a carrier lifetime of about 1 μm. And the diffusion length until the carriers recombine is 100 to 300㎛.

빛에너지에 의해 발생된 전자와 정공은 내부의 전계에 의하여 각각 n형 반도체측과 p형 반도체측으로 이동하여 양쪽의 전극부에 모아진다. 이러한 두 개의 전극을 도선으로 연결하면 전류가 흐르고 외부에서 전력으로 이용할 수 있게 된다.The electrons and holes generated by the light energy move to the n-type semiconductor side and the p-type semiconductor side by the internal electric field, and are collected at both electrode portions. Connecting these two electrodes with wires allows the current to flow and can be used as power from the outside.

태양전지의 특성을 저하시키는 요소에는 태양전지 표면에서의 광학적 손실, 캐리어를 수집하는 전극부분에서의 저항에 따른 손실, 캐리어 재결합에 의한 손실 등이 있다. 이 중에서도 태양전지 표면에서의 입사광 반사에 의한 광학적 손실이 태양전지의 특성 저하에 가장 큰 비중을 차지하고 있다.Factors that degrade the characteristics of the solar cell include optical losses on the surface of the solar cell, losses due to resistance in the electrode portion collecting carriers, and losses due to carrier recombination. Among these, optical loss due to reflection of incident light on the surface of the solar cell accounts for the largest portion of deterioration of solar cell characteristics.

이러한 입사광의 반사에 의한 광학적 손실을 감소시키는 방법으로서, 대부분의 태양전지에서 많이 사용되는 반사방지막 형성방법이 있다.As a method of reducing the optical loss due to the reflection of the incident light, there is a method of forming an anti-reflection film that is commonly used in most solar cells.

다른 방법으로서, 전극의 면적을 최대한 작게 함으로써 입사광의 반사를 줄이는 방법이 있다. 그러나, 이 방법에 따르면 전극 면적의 감소로 저항이 증가하여 전지의 성능이 저하된다.Another method is to reduce the reflection of incident light by making the area of the electrode as small as possible. However, according to this method, the resistance is increased due to the reduction of the electrode area, which degrades the battery performance.

또 다른 방법으로서, 결정계 실리콘 태양전지에서 주로 사용하는 텍스처링 (texturing) 방법이 있는데, 이 방법은 결정계 실리콘 기판 표면을 에칭하여 피라미드를 형성하는 방법이다. 피라미드 구조는 입사광의 반사를 감소시킬 뿐만 아니라 스넬 법칙에 따라 입사광이 실리콘 내부로 들어가는 부수적인 효과도 얻을 수 있게 된다. 이러한 피라미드 구조는 후면 전극이 형성되는 실리콘 기판 표면에도 형성되는데, 이로 인하여 반사되는 빛의 광경로가 길어져 실리콘 내부로 재흡수될 기회를 더 많이 가지게 된다.Another method is a texturing method mainly used in crystalline silicon solar cells, which forms a pyramid by etching a surface of a crystalline silicon substrate. Not only does the pyramid structure reduce reflection of incident light, but also the side effects of incident light entering the silicon according to Snell's law. This pyramid structure is also formed on the surface of the silicon substrate on which the rear electrode is formed, which results in a longer light path of reflected light and more opportunity to be reabsorbed into the silicon.

제1도는 종래의 실리콘 태양전지에서 실리콘 기판 표면에 형성된 피라미드 구조를 나타낸 도면이다. 이 피라미드 구조는 일반적으로 실리콘 기판을 낮은 농도의 수산화칼륨, 수산화나트륨 수용액 등과 같은 알칼리 수용액을 이용하여 에칭함으로써 형성된다.1 is a diagram showing a pyramid structure formed on the surface of a silicon substrate in a conventional silicon solar cell. This pyramid structure is generally formed by etching a silicon substrate using an alkaline aqueous solution such as potassium hydroxide, aqueous sodium hydroxide solution or the like at a low concentration.

제2도는 종래의 피라미드 구조를 갖는 실리콘 태양전지의 구조도이다. 여기에서 (1)은 p형 또는 n형 실리콘 기판, (2)와 (2')는 n형 또는 p형 반도체층, (3)과 (3')은 확산법 등으로 형성한 산화막, (4)는 전면 전극, (5)는 후면전극을 나타낸다.2 is a structural diagram of a silicon solar cell having a conventional pyramid structure. Wherein (1) is a p-type or n-type silicon substrate, (2) and (2 ') is an n-type or p-type semiconductor layer, (3) and (3') is an oxide film formed by a diffusion method, and (4) Is a front electrode and 5 is a rear electrode.

상기 피라미드 구조는 입사광의 흡수를 증진시키기는 하지만 태양전지 제조시 입사광을 흡수하여 캐리어를 발생시키는 전도성 소자의 성능을 저하시키는 요소를 가지고 있다. 즉, 피라미드의 반사방지막 형성공정에서 피라미드 꼭지 부분과 바닥 부분이 피라미드 측면부분보다 강한 응력(stress)을 받게 되며, 특히 피라미드 구조를 형성하기 위해 실시하는 통상적인 이방성 화학 에칭(anisotropic chemical etching)후 남아있는 규산나트륨(sodium silicate)으로 인해 피라미드 꼭지 부분과 바닥부분이 상대적으로 강한 응력을 받게 된다. 이로 인하여 반사방지막의 특성이 저하되며, 반사방지막 형성후 에칭시 피라미드 꼭지 부분과 바닥 부분에서의 에칭속도가 빨라져 피라미드 꼭지와 바닥이 노출되는 경우가 많아지게 된다. 이로 인하여 노출된 피라미드에 전극이 형성됨으로써 태양전지의 성능이 저하된다.Although the pyramid structure enhances absorption of incident light, the pyramid structure absorbs incident light in solar cell manufacturing and has an element for degrading the performance of a conductive device generating a carrier. That is, in the anti-reflective film forming process of the pyramid, the pyramid tip and the bottom part are subjected to stronger stress than the pyramid side part, and remain after the conventional anisotropic chemical etching, in particular, to form the pyramid structure. Sodium silicate, which causes the pyramid tip and the bottom, is relatively stressed. As a result, the characteristics of the antireflection film are deteriorated. When etching after forming the antireflection film, the etching speed is increased at the pyramid tip and the bottom part so that the pyramid tip and the bottom are often exposed. As a result, an electrode is formed in the exposed pyramid, thereby degrading the performance of the solar cell.

그러므로 상기 문제점을 해결하기 위하여 본 발명의 목적은 피라미드 꼭지 부분과 바닥 부분에서의 응력을 감소시킴으로써 전지의 성능을 저하시키지 않으면서 광흡수를 증진시킬 수 있는 실리콘 태양전지를 제공하는 것이다.Therefore, an object of the present invention to solve the above problems is to provide a silicon solar cell that can improve the light absorption without reducing the performance of the battery by reducing the stress at the pyramid tip and bottom portion.

본 발명의 다른 목적은 상기 실리콘 태양전지를 제조하는 방법을 제공하는것이다.Another object of the present invention is to provide a method of manufacturing the silicon solar cell.

상기 목적을 달성하기 위하여 본 발명에서는 실리콘 기판과 그 상부에 형성된 전극을 포함하는 실리콘 태양전지에 있어서,In the present invention to achieve the above object, in the silicon solar cell comprising a silicon substrate and an electrode formed thereon,

상기 실리콘 기판의 표면이 꼭지 부분과 바닥 부분이 곡선처리된 피라미드 구조인 것을 특징으로 하는 실리콘 태양전지를 제공한다.The surface of the silicon substrate provides a silicon solar cell, characterized in that the nipples and the bottom portion has a curved pyramid structure.

본 발명의 다른 목적은 실리콘 기판 표면에 피라미드 구조를 형성한 후, pn 접합, 산화막 및 전극을 순차적으로 형성하는 단계를 포함하는 실리콘 태양전지의 제조방법에 있어서,Another object of the present invention is a method of manufacturing a silicon solar cell comprising forming a pyramid structure on the surface of a silicon substrate, and then sequentially forming a pn junction, an oxide film, and an electrode,

pn 접합을 형성하기전에 상기 실리콘 기판 표면에 형성되어 있는 피라미드의 꼭지 부분과 바닥 부분을 곡선처리하는 단계를 더 포함하는 것을 특징으로 하는 실리콘 태양전지의 제조방법에 의해서 달성된다.Before the pn junction is formed by the method of manufacturing a silicon solar cell characterized in that it further comprises the step of curving the top and bottom portions of the pyramid formed on the surface of the silicon substrate.

상기 단계는 등방성 화학 에칭(isotropic chemical etching)을 실시하는 것으로서 10∼40중량%의 수산화나트륨 용액에서 에칭하는 것이다.The step is to perform isotropic chemical etching (etching) in 10 to 40% by weight sodium hydroxide solution.

상기 산화막은 막특성을 조절함으로써 절연막과 반사방지막으로서의 역할을 동시에 수행한다. 이 산화막은 산화실리콘막 또는 불화마그네슘(MgF2)/ 황화아연(ZnS)의 이층막중에서 선택되며, 습식 또는 건식 확산법, 증착법, 스퍼터링법 등의 방법을 이용하여 형성시킨다.The oxide film simultaneously functions as an insulating film and an antireflection film by adjusting film properties. The oxide film is selected from a silicon oxide film or a two- layer film of magnesium fluoride (MgF 2 ) / zinc sulfide (ZnS), and is formed by a method such as wet or dry diffusion, vapor deposition, sputtering, or the like.

상기 전극은 함몰전극형 전극 또는 프린팅형 전극 모두가 가능하다.The electrode may be both a depressed electrode and a printed electrode.

본 발명에서는 이방성 화학에칭방법을 이용하여 우선적으로 실리콘 기판 표면에 피라미드 구조를 형성한 다음, 등방성 화학 에칭을 실시하여 피라미드 구조에서 꼭지 부분과 바닥부분에서의 응력을 최소화시키고자 한 것이다. 여기에서 이방성 화학 에칭방법은 실리콘의 결정축에 따라 에칭속도를 차별화시키는 방법으로서, 1.5∼3중량%의 수산화칼륨이나 수산화나트륨 용액과 같은 저농도의 알칼리 용액을 이용하여 실리콘 기판 표면을 선택적으로 에칭하는 것이다. 이에 반해 등방성 화학에칭방법에 따르면, 에칭속도가 실리콘의 결정축 방향과 관계없이 거의 동일하며 이 방법은 10∼40중량%의 수산화칼륨이나 수산화나트륨 용액과 같은 강알칼리 용액에서 실리콘 기판 표면을 에칭하는 방법이다.In the present invention, an anisotropic chemical etching method is used to first form a pyramid structure on the surface of a silicon substrate, and then isotropic chemical etching is performed to minimize stress at the top and bottom portions of the pyramid structure. Here, the anisotropic chemical etching method is a method of differentiating the etching rate according to the crystal axis of silicon, and selectively etching the surface of the silicon substrate using 1.5 to 3% by weight of an alkaline solution such as potassium hydroxide or sodium hydroxide solution. . On the other hand, according to the isotropic chemical etching method, the etching rate is almost the same regardless of the direction of the crystal axis of silicon, and this method is to etch the surface of the silicon substrate in a strong alkali solution such as 10 to 40% by weight of potassium hydroxide or sodium hydroxide solution. .

본 발명에 따른 실리콘 태양전지를 제3도 및 제4도를 참조하여 설명하면 다음과 같다.The silicon solar cell according to the present invention will be described with reference to FIGS. 3 and 4 as follows.

제3도는 본 발명의 실리콘 태양전지에서 실리콘 기판 표면에 형성된 피라미드 구조를 나타낸 도면이고 제4도는 본 발명의 실리콘 태양전지의 구조도이다. 여기에서 (1)은 p형 또는 n형 실리콘 기판, (2)와 (2')은 n형 또는 p형 반도체층, (3)과 (3')은 확산법 등으로 형성한 산화막, (4)는 전면 전극, (5)는 후면전극을 나타낸다.3 is a view showing a pyramid structure formed on the surface of the silicon substrate in the silicon solar cell of the present invention and FIG. 4 is a structural diagram of the silicon solar cell of the present invention. Where (1) is a p-type or n-type silicon substrate, (2) and (2 ') is an n-type or p-type semiconductor layer, (3) and (3') is an oxide film formed by a diffusion method, and (4) Is a front electrode and 5 is a rear electrode.

이하, 본 발명의 실리콘 태양전지의 제조방법을 살펴보면 다음과 같다.Hereinafter, the manufacturing method of the silicon solar cell of the present invention will be described.

실리콘 기판을 1.5∼3중량% 수산화나트륨 수용액에서 70∼90℃, 20∼50분동안 함침시켜 실리콘 기판 표면에 밑변의 길이가 5∼15㎛인 피라미드를 형성한 다음, 이 실리콘 기판을 10∼40중량%, 바람직하기로는 약 30중량%의 수산화나트륨 수용액에서 10 내지 30초동안 함침시켜서 피라미드 꼭지부분과 바닥 부분을 곡선처리한다.The silicon substrate was impregnated in an aqueous solution of 1.5 to 3 wt% sodium hydroxide at 70 to 90 ° C. for 20 to 50 minutes to form a pyramid having a base length of 5 to 15 μm on the surface of the silicon substrate. The pyramid tip and bottom portion are cured by impregnation in wt%, preferably about 30 wt% in aqueous sodium hydroxide solution for 10-30 seconds.

상기 실리콘 기판에 확산방법 등을 이용하여 pn 접합을 형성한 후, 산화막과 전극을 형성하여 실리콘 태양전지를 제조한다. 이 때 전극은 레이저 또는 기계적 가공법을 사용하여 홈을 형성한 후 이 홈내에 전극을 형성하는 함몰전극형이나 프린팅법 또는 순간열처리법으로 전극을 형성하는 스크린 프린팅형 전극 모두가 가능하다.After the pn junction is formed on the silicon substrate by using a diffusion method or the like, an oxide film and an electrode are formed to manufacture a silicon solar cell. At this time, the electrode can be both a recessed electrode type which forms a groove using a laser or a mechanical processing method and then forms an electrode in the groove, or a screen printed electrode which forms an electrode by a printing method or an instant heat treatment method.

이하, 본 발명을 실시예를 들어 상세히 설명하기로 하되, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.

(실시예)(Example)

p형 실리콘 기판을 약 2% 농도의 수산화나트륨 수용액에 약 80℃에서 30∼50분정도 담가 에칭한 다음, 이 기판을 다시 약 30중량% 농도의 수산화나트륨 용액에 약 20초 동안 담가 에칭하였다.The p-type silicon substrate was immersed in an aqueous solution of sodium hydroxide at a concentration of about 2% at about 80 ° C for 30 to 50 minutes, and then immersed in the sodium hydroxide solution at a concentration of about 30% by weight for about 20 seconds.

피라미드 꼭지 부분과 바닥 부분이 에칭된 실리콘 기판을 통상적인 방법에 따라 pn 접합을 형성하였다.The silicon substrate with the pyramid top and bottom portions etched formed a pn junction according to a conventional method.

상기 결과물 상부에 산화막을 형성한 후, 스크린 프린팅 방식을 사용하여 전극을 만들어 실리콘 태양전지를 제조하였다.After forming an oxide film on the resultant, a silicon solar cell was manufactured by making an electrode using a screen printing method.

(비교예)(Comparative Example)

피라미드의 꼭지 부분과 바닥 부분을 에칭처리하지 않은 것을 제외하고는, 실시예와 동일한 방법으로 실리콘 태양전지를 제조하였다.A silicon solar cell was manufactured in the same manner as in Example, except that the top and bottom portions of the pyramid were not etched.

상기 실시예에 따라 제조된 실리콘 태양전지에서는 비교예에 따라 제조된 실리콘 태양전지보다 피라미드 꼭지 부분과 바닥 부분에서의 응력이 감소하여 반사방지막의 두께가 균일하였으며, 전극과 반사방지막 사이의 접촉저항이 감소하였다. 또한 상기 실시예 및 비교예에 따라 제조한 실리콘 태양전지의 변한효율을 측정한 결과, 실시예에 따라 제조한 실리콘 태양전지의 변화효율이 보다 높았으며, 전지의 신뢰성도 보다 양호하였다.In the silicon solar cell manufactured according to the above embodiment, the stress of the pyramid tip and the bottom part was reduced compared to the silicon solar cell manufactured according to the comparative example, and thus the thickness of the antireflection film was uniform, and the contact resistance between the electrode and the antireflection film was increased. Decreased. In addition, as a result of measuring the change efficiency of the silicon solar cell manufactured according to the above Examples and Comparative Examples, the change efficiency of the silicon solar cell manufactured according to the embodiment was higher, and the reliability of the battery was better.

이상에서 살펴본 바와 같이, 본 발명에 따르면 피라미드 꼭지 부분과 바닥 부분에서의 응력감소로 반사방지막의 두께가 균일화되고, 피라미드 꼭지 부분과 바닥 부분에 형성된 산화막의 안정으로, 그 부분에 전극이 형성되는 것을 방지함으로써 태양전지의 성능을 향상시킬 수 있다.As described above, according to the present invention, the thickness of the anti-reflection film becomes uniform due to the stress reduction at the pyramid tip and the bottom part, and the electrode is formed at the part with the stability of the oxide film formed at the pyramid tip and the bottom part. By preventing it, the performance of a solar cell can be improved.

제1도는 종래의 실리콘 태양전지에서 실리콘 기판 표면에 형성된 피라미드 구조를 나타낸 도면이고,1 is a view showing a pyramid structure formed on the surface of a silicon substrate in a conventional silicon solar cell,

제2도는 종래의 실리콘 태양전지의 구조를 나타낸 도면이고,2 is a view showing the structure of a conventional silicon solar cell,

제3도는 본 발명의 실리콘 태양전지에서 실리콘 기판 표면에 형성된 피라미드 구조를 나타낸 도면이고,3 is a view showing a pyramid structure formed on the surface of the silicon substrate in the silicon solar cell of the present invention,

제4도는 본 발명의 실리콘 태양전지의 구조를 나타낸 도면이다.4 is a view showing the structure of the silicon solar cell of the present invention.

도면의 주요 부분에 대한 부호의 설명 Explanation of symbols for the main parts of the drawings

1. p형 또는 n형 실리콘 기판1. p-type or n-type silicon substrate

2. n형 또는 p형 반도체층2. n-type or p-type semiconductor layer

2'. p형 또는 n형 반도체층2'. p-type or n-type semiconductor layer

3, 3'. 산화막3, 3 '. Oxide film

4. 전면전극4. Front electrode

5. 후면전극5. Rear electrode

Claims (3)

실리콘 기판과 그 기판 상부에 형성된 전극을 포함하는 실리콘 태양전지에 있어서,In a silicon solar cell comprising a silicon substrate and an electrode formed on the substrate, 상기 실리콘 기판이,The silicon substrate, 기판 표면을 1.5-3 중량%의 수산화나트륨 용액 또는 수산화칼륨 용액을 이용하여 이방성 에칭을 실시하여 피라미드 구조를 형성한 다음, 이를 10~40 중량%의 수산화나트륨 용액을 이용하여 등방성 에칭처리하여 실리콘 기판의 꼭지 부분과 바닥 부분이 곡선처리된 피라미드 구조를 갖는 것을 특징으로 하는 실리콘 태양전지.The surface of the substrate is anisotropically etched using 1.5-3 wt% sodium hydroxide solution or potassium hydroxide solution to form a pyramid structure, and then isotropically etched using 10-40 wt% sodium hydroxide solution to form a silicon substrate. The top and bottom portions of the silicon solar cell, characterized in that it has a curved pyramid structure. 실리콘 기판 표면에 피라미드 구조를 형성한 후, pn 접합, 산화막 및 전극을 순차적으로 형성하는 단계를 포함하는 실리콘 태양전지의 제조방법에 있어서,In the silicon solar cell manufacturing method comprising the step of forming a pyramid structure on the silicon substrate surface, and subsequently forming a pn junction, an oxide film and an electrode, 상기 실리콘 기판 표면에 피라미드 구조 형성시, 실리콘 기판 표면을 1.5-3 중량%의 수산화나트륨 용액 또는 수산화칼륨 용액을 이용하여 이방성 에칭을 실시하고,When the pyramid structure is formed on the surface of the silicon substrate, the surface of the silicon substrate is anisotropically etched using 1.5-3% by weight of sodium hydroxide solution or potassium hydroxide solution, pn 접합을 형성하기 전에, 상기 실리콘 기판 표면을 10∼40 중량%의 수산화나트륨 용액 또는 수산화칼륨 용액을 이용하여 등방성 에칭을 실시하여 실리콘 기판 표면에 형성되어 있는 피라미드 꼭지 부분과 바닥 부분을 곡선처리하는 단계를 더 포함하는 것을 특징으로 하는 실리콘 태양전지의 제조방법.Before forming the pn junction, the silicon substrate surface is isotropically etched using 10 to 40 wt% sodium hydroxide solution or potassium hydroxide solution to curve the pyramid tip and bottom portions formed on the silicon substrate surface. Method for producing a silicon solar cell, characterized in that it further comprises a step. 제2항에 있어서, 상기 산화막이 산화실리콘막 또는 불화마그네슘/황화아연의 이층막인 것을 특징으로 하는 실리콘 태양전지의 제조방법.The method of manufacturing a silicon solar cell according to claim 2, wherein the oxide film is a silicon oxide film or a two-layer film of magnesium fluoride / zinc sulfide.
KR1019950048075A 1995-12-09 1995-12-09 Silicon solar cell and fabricating method thereof KR100351065B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950048075A KR100351065B1 (en) 1995-12-09 1995-12-09 Silicon solar cell and fabricating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950048075A KR100351065B1 (en) 1995-12-09 1995-12-09 Silicon solar cell and fabricating method thereof

Publications (2)

Publication Number Publication Date
KR970054575A KR970054575A (en) 1997-07-31
KR100351065B1 true KR100351065B1 (en) 2002-12-12

Family

ID=37489106

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950048075A KR100351065B1 (en) 1995-12-09 1995-12-09 Silicon solar cell and fabricating method thereof

Country Status (1)

Country Link
KR (1) KR100351065B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100408527B1 (en) * 1996-08-30 2004-01-24 삼성전자주식회사 Solar cell and method for manufacturing thereof
CN102185028A (en) * 2011-04-07 2011-09-14 无锡市佳诚太阳能科技有限公司 Manufacturing method of surface texture of P-type oversized-crystalline-grain polycrystalline silicon solar battery
CN102569497A (en) * 2010-12-30 2012-07-11 北京北方微电子基地设备工艺研究中心有限责任公司 Method for forming anti-reflecting film on base plate as well as solar cell and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254721A (en) * 1994-03-16 1995-10-03 Fuji Electric Co Ltd Production of thin film solar cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254721A (en) * 1994-03-16 1995-10-03 Fuji Electric Co Ltd Production of thin film solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100408527B1 (en) * 1996-08-30 2004-01-24 삼성전자주식회사 Solar cell and method for manufacturing thereof
CN102569497A (en) * 2010-12-30 2012-07-11 北京北方微电子基地设备工艺研究中心有限责任公司 Method for forming anti-reflecting film on base plate as well as solar cell and preparation method thereof
CN102185028A (en) * 2011-04-07 2011-09-14 无锡市佳诚太阳能科技有限公司 Manufacturing method of surface texture of P-type oversized-crystalline-grain polycrystalline silicon solar battery

Also Published As

Publication number Publication date
KR970054575A (en) 1997-07-31

Similar Documents

Publication Publication Date Title
EP2371010B1 (en) Solar cell and method of manufacturing the same
KR101212198B1 (en) Solar cell
KR101002282B1 (en) Solar cell and manufacturing method thereof
US8569614B2 (en) Solar cell and method of manufacturing the same
KR100976454B1 (en) Solar cell and manufacturing method of the same
KR20100013649A (en) Photovoltaic device and method of manufacturing the same
JP2003069061A (en) Laminated photovoltaic transducer device
JP2013526053A (en) Solar cell and manufacturing method thereof
EP2538447B1 (en) Solar cell and method for manufacturing the same
KR101159276B1 (en) Back junction solar cells and method for manufacturing thereof
KR20080032866A (en) Mentalization wrap through type solar cell
US20120094421A1 (en) Method of manufacturing solar cell
KR20100068833A (en) Manufacturing method of solar cell and etching paste
JP2001326370A (en) Solar battery and method of manufacturing the same
KR20090075421A (en) Solar cell
US20110061729A1 (en) Solar Cell and Method of Manufacturing the Same
KR100351065B1 (en) Silicon solar cell and fabricating method thereof
KR101891336B1 (en) Solar cell and manufacturing method thereof
CN110476256B (en) Solar cell, solar cell module, and method for manufacturing solar cell
TW201701490A (en) Metallization of solar cells with differentiated P-type and N-type region architectures
CN114628545B (en) Manufacturing process of alkali polishing PERC battery
KR100408527B1 (en) Solar cell and method for manufacturing thereof
KR100322708B1 (en) Method for fabricating self-voltage applying solar cell
US8852982B2 (en) Photoelectric device and manufacturing method thereof
JPS62237765A (en) Solar cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110729

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20120720

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee