KR100404884B1 - Secondary battery using non-aqueous electrolyte - Google Patents

Secondary battery using non-aqueous electrolyte Download PDF

Info

Publication number
KR100404884B1
KR100404884B1 KR1019980007568A KR19980007568A KR100404884B1 KR 100404884 B1 KR100404884 B1 KR 100404884B1 KR 1019980007568 A KR1019980007568 A KR 1019980007568A KR 19980007568 A KR19980007568 A KR 19980007568A KR 100404884 B1 KR100404884 B1 KR 100404884B1
Authority
KR
South Korea
Prior art keywords
secondary battery
electrolyte
aqueous electrolyte
battery
electrolyte secondary
Prior art date
Application number
KR1019980007568A
Other languages
Korean (ko)
Other versions
KR19990074161A (en
Inventor
이한호
이기영
김명환
이상영
김명만
송헌식
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1019980007568A priority Critical patent/KR100404884B1/en
Publication of KR19990074161A publication Critical patent/KR19990074161A/en
Application granted granted Critical
Publication of KR100404884B1 publication Critical patent/KR100404884B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: A secondary battery using a non-aqueous electrolyte is provided to reduce the time needed for injecting an electrolyte and water content in the electrolyte, thereby increasing the battery life. CONSTITUTION: The secondary battery using a non-aqueous electrolyte comprises: (a) a polyolefin separator having hydrophilic property by irradiation of ion particles, or ion particles and a reactive gas; (b) an electrolyte in a non-aqueous organic solvent; (c) an anode comprising a carbonaceous material capable of lithium intercalation/deintercalation as an anode active material; and (d) a cathode comprising a lithium-containing transition metal composite oxide as a cathode active material.

Description

비 수성 전해액 이차 전지Non-aqueous electrolyte secondary battery

본 발명은 비 수성 전해액 이차 전지에 관한 것이다. 본 발명은 특히 에너지를 가진 이온 입자 또는 이온 입자와 반응성 가스(예 : 아르곤, 산소, 공기, 크립톤, N2O 및 이들의 혼합물)의 혼합물이 조사되어 친수성 성질이 부여된 격리막과 리튬을 흡장, 방출할 수 있는 탄소 재료를 음극 활물질로 하는 음극 전극 및 리튬 함유 천이 금속 복합 산화물을 양극 활물질로 이용하는 비 수성 전해액 이차 전지에 관한 것이다.The present invention relates to a non-aqueous electrolyte secondary battery. In particular, the present invention provides a method for absorbing lithium and a separator having hydrophilic properties by irradiating an ion particle or a mixture of ion particles with energy and a reactive gas such as argon, oxygen, air, krypton, N 2 O, and mixtures thereof. A negative electrode having a carbon material capable of being released as a negative electrode active material and a nonaqueous electrolyte secondary battery using a lithium-containing transition metal composite oxide as a positive electrode active material.

리튬을 흡장, 방출할 수 있는 탄소 재료를 음극 전극의 활물질로 하고, 리튬 함유 천이 금속 복합 산화물을 양극 활물질로 이용하는 비 수성 전해액 이차 전지에 친수성 격리막을 사용하여 전해액을 주입하면 전해액 흡수에 필요한 시간을 감소시켜 제조 공정이 단축되고, 전해액내 수분 함량이 감소되어 전지의 수명이 향상된다.If a non-aqueous electrolyte secondary battery using a carbon material capable of occluding and releasing lithium as an active material of a negative electrode and using a lithium-containing transition metal composite oxide as a positive electrode active material is injected with an electrolytic solution using a hydrophilic separator, the time required for absorbing the electrolyte solution is increased. By reducing the manufacturing process is shortened, the moisture content in the electrolyte is reduced to improve the life of the battery.

최근 휴대용 전화기, 노트북 컴퓨터, 비디오 카메라 등의 전자 기기의 소형화에 따라 전력을 제공하는 재충전 전지(이차 전지)는 전자 기기 전체의 크기, 중량 및 성능을 결정하는 핵심 부품으로 자리잡고 있다. 이러한 전자 기기의 소형화 추세에 따라 니카드, 니켈 수소, 납 축전지 보다 높은 에너지 저장 밀도를 갖는 비 수성 전해액 리튬 이차 전지가 소형 전자 기기의 재충전 가능한 이차 전지로 널리 사용되고 있다.Recently, rechargeable batteries (secondary batteries), which provide power according to the miniaturization of electronic devices such as portable telephones, notebook computers, and video cameras, are becoming key components for determining the size, weight, and performance of the entire electronic device. In accordance with the trend of miniaturization of such electronic devices, non-aqueous electrolyte lithium secondary batteries having a higher energy storage density than nickel, nickel hydrogen, and lead storage batteries are widely used as rechargeable secondary batteries of small electronic devices.

그러나 소형 전자 기기의 소형화, 고성능화가 더욱 요구됨에 따라 비 수성 전해액 리튬 이차전지도 더욱 소형화, 고성능화되고 있다. 특히 전지의 수명은 전자 기기의 사용 가능 시간을 결정하고, 전지의 방전후 재충전 하는데 걸리는 시간이 장기간이면 전지의 에너지 저장밀도가 저하되어 전자 기기 사용 시간이 단축되기 때문에 전지의 고 에너지 밀도화가 전지의 성능을 결정하는 중요한 요소이다.However, as miniaturization and high performance of small electronic devices are further demanded, non-aqueous electrolyte lithium secondary batteries are becoming smaller and higher in performance. In particular, the life of the battery determines the usable time of the electronic device, and if the time required for recharging after discharge of the battery is long, the energy storage density of the battery decreases and the use time of the electronic device is shortened. It is an important factor in determining performance.

비 수성 전해액 리튬 이차전지의 수명은 충방전을 반복함에 따라 전지의 양극, 음극을 구성하는 활물질의 성능이 저하되는 정도(열화 속도)에 의존한다. 그리고 전지 제조 과정에 들어가는 불순물은 열화 속도를 가속시켜 예상 보다 수명이 크게 단축되기도 한다. 특히 공기중의 수분은 전지의 구성 분인 전해액에 용해되어 전지의 수명을 크게 단축시킨다. 따라서 전지의 제조는 대기중의 수분을 감소시킨 건조 분위기 환경(드라이 룸)에서 이루어지고 있다.The life of the non-aqueous electrolyte lithium secondary battery depends on the degree (deterioration rate) of the performance of the active materials constituting the positive electrode and the negative electrode of the battery as the charge and discharge are repeated. In addition, impurities entering the battery manufacturing process may accelerate the deterioration rate, which may significantly shorten the life expectancy. In particular, moisture in the air is dissolved in the electrolyte, which is a component of the battery, which greatly shortens the life of the battery. Therefore, the battery is manufactured in a dry atmosphere environment (dry room) in which moisture in the air is reduced.

일반적으로 전지를 밀봉하기 전까지의 분위기내 수분은 전해액에 침투하여 밀봉된 후에도 계속 전해액에 잔류하게 된다. 이렇게 잔류된 전해액내 수분은 전해액과 반응하여 부식성이 강한 가스를 생성하게 되고, 이러한 가스는 양극과 음극의 활물질과 반응하여 성능을 저하시킨다. 따라서 전해액을 전지에 주입하는데 소요되는 시간과 주입한 후 분위기 노출 시간을 최대한 단축시키면 전지의 수명이 향상된다.In general, moisture in the atmosphere until the battery is sealed continues to penetrate the electrolyte and remain in the electrolyte even after being sealed. The remaining water in the electrolyte reacts with the electrolyte to produce a highly corrosive gas, and the gas reacts with the active material of the positive electrode and the negative electrode to decrease performance. Therefore, the life of the battery is improved by shortening the time required for injecting the electrolyte into the battery and the exposure time after the injection as much as possible.

종래기술에서는 전해액 주입 시간(전해액이 전극에 흡수되는데 필요한 시간을 포함하여)을 단축시키기 위하여 이용하는 방법으로, 전지 용기를 진공화 시킨 후 주입하는 진공 주입식, 전해액 주입 후 가압하는 가압식, 원심력을 이용하여 원심기에서 주입하는 원심 주입식 또는 이러한 방법을 2가지 이상 혼합하여 사용 하는 방법등 여러 가지 방법들이 사용되고 있으나, 제조 과정이 복잡하고, 고가의 장비를 사용해야 하므로 전지의 제조 가격이 상승되는 어려움이 수반된다.In the prior art, a method used to shorten the electrolyte injection time (including the time required for the electrolyte to be absorbed by the electrode) is to use a vacuum injection type to inject and evacuate the battery container, a pressurization type to pressurize after electrolyte injection, and centrifugal force Although various methods are used, such as centrifugal injection in a centrifuge or a mixture of two or more of these methods, the manufacturing process is complicated and expensive equipment requires the use of expensive equipment. .

근본적으로 전해액이 흡수되는 속도는 전지의 내부 구성 요소인 양극 전극과 음극 전극의 단락을 방지하면서 전해액의 담지와 이온을 통과시키는 역할을 하는 격리막의 성질에 좌우된다. 격리막이 친수성일 경우 전해액의 흡수가 용이해지고, 격리막이 소수성일 경우에는 전해액 흡수가 어려워진다. 주입 방식을 개량하는 것보다 친수성의 격리막을 사용하는 것이 전해액 주입 시간을 단축시키는 근본적인 해결 방법이다. 즉, 친수성 격리막을 사용한 전지는 전해액 주입 시간이 단축되어 전해액내 수분 함량이 감소되기 때문에 전지의 수명이 향상된다.Fundamentally, the rate at which the electrolyte is absorbed depends on the nature of the separator, which serves to carry electrolyte and support ions while preventing short circuits between the positive and negative electrodes, which are internal components of the battery. When the separator is hydrophilic, absorption of the electrolyte becomes easy, and when the separator is hydrophobic, absorption of the electrolyte becomes difficult. Rather than improving the injection method, using a hydrophilic separator is a fundamental solution to shorten the electrolyte injection time. That is, the battery using the hydrophilic separator is shortened the injection time of the electrolyte solution, the water content of the electrolyte is reduced, thereby improving the life of the battery.

본 발명은 비 수성 전해액 리튬 이차 전지에 사용되는 격리막에 이온 입자 또는 이온 입자와 반응성 가스의 혼합 기체를 조사(照射)시켜 격리막 표면에 친수성을 부여하여 전해액 주입 시간을 단축시키고, 전해액내 수분 함량을 감소시킴으로써 전지의 수명을 증가 시키는 것을 목적으로 한다. 이온 입자 또는 이온 입자와 반응성 가스의 혼합 기체는 격리막을 제조하는 공정 도중 또는 제조 공정이 완료 후 조사되며, 이온 입자는 그 크기가 수백 나노미터(nm = 10-9m)로 매우 작으므로, 조사된 격리막에는 크기가 0.05 μm∼1 μm인 구형 또는 타원형의 미세 기공이 형성되어 친수성이 부여된다.The present invention irradiates the separator used in the non-aqueous electrolyte lithium secondary battery with ion particles or a mixture gas of the ion particles and a reactive gas to impart hydrophilicity to the surface of the separator to shorten the injection time of the electrolyte, and to reduce the moisture content of the electrolyte. It is intended to increase the life of the battery by reducing it. Ion particles or a mixture of ionic particles and reactive gases are irradiated during or after completion of the manufacturing process of the separator, and because the ion particles are very small, several hundred nanometers (nm = 10 -9 m), irradiation In the separator, spherical or elliptical micropores having a size of 0.05 μm to 1 μm are formed to impart hydrophilicity.

도 1은 기존의 격리막을 이용한 전지와 본 발명의 전지의 수명을 비교한 것으로 재충전 싸이클 수에 따른 전지의 초기 용량에 대한 비율을 나타낸 곡선이다.1 is a curve comparing the lifespan of a battery using a conventional separator and the battery of the present invention, and is a curve showing the ratio of the initial capacity of the battery according to the number of recharge cycles.

본 발명의 비 수성 전해액 이차 전지의 격리막은 폴리올레핀, 특히 폴리프로필렌, 폴리에틸렌 또는 이들 두개 이상의 다중 구조로 이루어진 고분자 막의 제조 공정도중 또는 제조 공정 완료 후 0.01∼10 keV의 에너지를 갖는 이온 입자 또는 이온 입자와 반응성 가스 (아르곤, 산소, 공기, 크립톤, N2O, 및 이들의 혼합물)의 혼합 기체가 조사되어 친수성을 갖게 된다.Separation membrane of the non-aqueous electrolyte secondary battery of the present invention is a polyolefin, in particular polypropylene, polyethylene or ion particles or ion particles having an energy of 0.01 to 10 keV during or during the production process of the polymer membrane composed of two or more of these multiple structures and A mixed gas of reactive gases (argon, oxygen, air, krypton, N 2 O, and mixtures thereof) is irradiated to become hydrophilic.

본 발명 전지의 양극은 일반식 LixM1-yNyOz( M 은 Co, Ni, Mn; N 은 Al, In, Sn, Ga, Ge, Si, 및 천이금속, 또는 이들의 혼합물; 0.05 ≤ x ≤ 1.10, 0 ≤ y ≤ 0.5, 1.8 ≤ z ≤ 2.2)으로 표시되는 리튬을 함유하는 천이금속 복합 산화물을 양극 활물질로 하고 불소계 수지 화합물을 결착제로 하여, 전도성 전류 집전체 분말인 탄소가 혼합되어 알루미늄 전류 집전체 기판에 도포되어 있는 전극이다.The positive electrode of the battery of the present invention is a general formula Li x M 1-y N y O z (M is Co, Ni, Mn; N is Al, In, Sn, Ga, Ge, Si, and transition metals, or mixtures thereof; 0.05 ≤ x ≤ 1.10, 0 ≤ y ≤ 0.5, 1.8 ≤ z ≤ 2.2), and the carbon as the conductive current collector powder is made by using a transition metal composite oxide containing lithium as a positive electrode active material and a fluorine resin compound as a binder. It is an electrode mixed and apply | coated to the aluminum current collector board | substrate.

본 발명 전지의 음극은 리튬을 흡장, 방출할 수 있는 탄소계 물질을 활물질로 하고, 불소계 수지 화합물이 결착제와 혼합되어 구리 전류 집전체 기판에 도포되어 있는 전극이다.The negative electrode of the battery of the present invention is an electrode in which a carbon-based material capable of occluding and releasing lithium is used as an active material, and a fluorine-based resin compound is mixed with a binder and coated on a copper current collector substrate.

본 발명 전지의 비 수성 유기 용매 전해액으로는 프로필렌 카보네이트(propylene carbonate, PC), 에틸렌 카보네이트(ethylene carbonate, EC), 부틸 카보네이트(butyle carbonate, BC), 비닐렌 카보네이트(vinylene carbonate, VC), 감마-부틸락톤(γ-butyllactone), 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디메톡시 에탄(dimethoxy ethane, DME), 디에톡시 에탄(diethoxy ethane, DEE) 등이 사용 가능하다.The non-aqueous organic solvent electrolyte of the battery of the present invention is propylene carbonate (PC), ethylene carbonate (EC), butyl carbonate (BC), vinylene carbonate (VC), gamma- Butyl lactone (γ-butyl l actone), dimethyl carbonate (DMC), diethyl carbonate (DEC), dimethoxy ethane (DME), diethoxy ethane (DEE), etc. Can be used

본 발명 전지의 전해 용질로는 LiClO4, LiPF6, LiAlCl4,LiAsF6, LiBF4등이 사용 가능하다.As the electrolytic solute of the battery of the present invention, LiClO 4 , LiPF 6 , LiAlCl 4, LiAsF 6 , LiBF 4 and the like can be used.

본 발명 전지는 상기 전해 용질이 유기 용매에 용해되어 있는 전해액을 사용하고 친수성 격리막 사용으로 수분함량이 감소되어 수분함량이 300ppm 이하인 것을 특징으로 한다.The battery of the present invention is characterized by using an electrolyte solution in which the electrolytic solute is dissolved in an organic solvent and using a hydrophilic separator to reduce water content so that the water content is 300 ppm or less.

다음에서는 실시예를 통하여 본 발명을 상세히 설명하고자 한다. 그러나 본 발명의 범위가 다음의 실시예에 의해 제한되는 것은 아니다.Next, the present invention will be described in detail with reference to Examples. However, the scope of the present invention is not limited by the following examples.

실시예 1Example 1

본 발명의 실시예 1 로 제작된 전지를 전지 A 로 표시한다.The battery produced in Example 1 of the present invention is referred to as battery A.

[격리막의 제조][Production of Separator]

두께 25 μm인 폴리프로필렌(PP) 기공막(기공율 32%) 필름을 10-3∼ 10-6torr 진공도의 용기에 투입하고, 아르곤 입자 (Ar+)를 이온 총을 이용하여 필름의 양면에 조사하고 동시에 반응성 가스(산소)를 흘려 주어 미세 기공을 형성하여 친수성 처리하였다. 이때 이온 입자의 에너지는 1 keV, 이온 조사량은 1016ions/cm2이었고 산소 유량은 4 ml/min 이었다. 이와 같이 제조된 격리막의 친수성 성질을 측정하기 위해 물의 흡적 속도를 측정하였다. 측정은 물 방울을 격리막에 떨어뜨린 후 물이 흡수되면서 접촉각이 0 이 될 때까지의 시간으로 흡적 속도를 측정하였다. 그 결과 처리 전 5.6 sec 에서 처리 후 2.2 sec 로 크게 감소되어 친수성이 증가되었다. 이렇게 제조된 격리막을 폭 58 mm, 길이 1300 mm로 절단하였다.A polypropylene (PP) pore membrane (32% porosity) film having a thickness of 25 μm was introduced into a vessel having a vacuum degree of 10 −3 to 10 −6 torr, and argon particles (Ar +) were irradiated on both sides of the film using an ion gun. At the same time, a reactive gas (oxygen) was flowed to form micropores and hydrophilic treatment. At this time, the energy of the ion particles was 1 keV, the ion irradiation amount was 10 16 ions / cm 2 and the oxygen flow rate was 4 ml / min. In order to measure the hydrophilic property of the separator thus prepared, the rate of water absorption was measured. The measurement measured the speed of absorption by dropping water droplets into the separator and then time until the contact angle became zero while water was absorbed. As a result, the hydrophilicity was increased from 5.6 sec before treatment to 2.2 sec after treatment. The separator thus prepared was cut into a width of 58 mm and a length of 1300 mm.

[양극의 제조][Manufacture of Anode]

LiCoO2의 조성을 갖는 리튬 코발트 산화물과, 전도성 전류 집전체 분말로 아세틸렌 블랙, 결착제로 불소계 수지화합물(PVdF)을 중량비 90 : 5 : 5 로 혼합하고, 이 혼합제를 유기용매 NMP 100 중량부에 중량비 35의 비율로 혼련하여 슬러리를 제조하고 알루미늄 전류 집전체의 한쪽 면에 도포하여 건조시킨 후, 다른 한면도 위와 같이 도포한 후 건조시켰다. 그리고 가압 압연하여 두께 180 um, 길이 470 mm, 폭 54 mm의 전극을 제조하였다. 그리고 한쪽 끝에 외부 도선에 연결될 알루미늄 탭을 스팟 용접기로 융착시켰다.Lithium cobalt oxide having a composition of LiCoO 2 , acetylene black as a conductive current collector powder, and fluorinated resin compound (PVdF) as a binder are mixed in a weight ratio of 90: 5: 5, and the mixture is added to 100 parts by weight of an organic solvent NMP in weight ratio 35 A slurry was prepared by kneading at a ratio of and then applied to one side of the aluminum current collector to dry, and then the other side was applied as above and then dried. Then, pressure rolling was performed to prepare an electrode having a thickness of 180 um, a length of 470 mm, and a width of 54 mm. The aluminum tab to be connected to the outer conductor at one end was fused with a spot welder.

[음극의 제조][Production of Cathode]

결정질 탄소 분말 과 불소계 수지화합물(PVdF) 을 중량비 90 : 10 으로 혼합하고, 이 혼합제를 유기 용매 NMP 100 중량부에 중량비 70의 비율로 혼련하여 슬러리를 제조하고 구리 전류 집전체 기판의 한 쪽면에 도포하여 건조시킨 후, 다른 한면도 위와 같이 도포한 후 건조시켰다. 그리고 가압 압연하여 두께 180 um, 길이 520 mm, 폭 56 mm의 전극을 제조하였다. 그리고 한 쪽 끝에 외부 도선과 연결될 구리 탭을 스팟 용접기로 융착시켰다.A crystalline carbon powder and a fluorine resin compound (PVdF) are mixed in a weight ratio of 90:10, and the mixture is kneaded in 100 parts by weight of an organic solvent NMP in a ratio of 70 by weight to prepare a slurry, and applied to one side of a copper current collector substrate. After drying, the other side was dried as above. Then, pressure rolling was performed to prepare an electrode having a thickness of 180 um, a length of 520 mm, and a width of 56 mm. The copper tab to be connected to the outer conductor at one end was welded with a spot welder.

[양극과 음극 및 격리막의 적층][Lamination of Anode, Cathode and Separator]

상기 제조된 양극, 음극, 격리막을 권취기(winding device)을 이용하여 외경 17.1 mm 의 코일 형상으로 적층된 젤리-롤을 제조하였다. 이때 격리막은 양극과 음극사이에서 코일 형상으로 감겨 있고, 양극에 융착된 알루미늄 탭은 젤리-롤의 중심쪽 위쪽 방향으로, 음극에 융착된 구리 탭은 바깥쪽 아래 방향으로 위치하고 있다.The prepared cathode, cathode, and separator were laminated in a coil shape having an outer diameter of 17.1 mm using a winding device. At this time, the separator is wound in a coil shape between the anode and the cathode, and the aluminum tab fused to the anode is located upwardly toward the center of the jelly-roll, and the copper tab fused to the cathode is located outwardly downward.

[젤리롤의 장입][Charging of Jelly Roll]

상기 제조된 젤리-롤을 외경 17.8 mm 의 전지 외관 용기에 장입하고 용기 바닥쪽으로 위치한 음극 니켈 탭을 전지 외관 용기의 바닥에 스팟 용접기로 융착한 후, 전지 외관 용기의 위 부분에 홈을 내어 전지 뚜껑이 위치할 부분을 만들었다.The prepared jelly-roll was charged into a battery outer container having an outer diameter of 17.8 mm, and a negative electrode nickel tab positioned toward the bottom of the container was fused with a spot welder at the bottom of the cell outer container, and then a groove was formed in the upper part of the cell outer container. We have made a part of this.

[전해액 주입][Electrolyte injection]

에틸렌 카보네이트(EC)와 디에틸 카보네이트(DEC) 가 1:1 (부피비)인 혼합용제에 LiPF6가 1M 농도로 용해된 전해액을 노점 -30oC 인 건조 분위기에서 자유 낙하식으로 전지 외관 용기에 떨어뜨려 주입하였다. 그리고 상기 기술한 방법대로 전지를 밀봉 조립하기 전 상태의 전지를 제작하여 전해액 주입 후 경과 시간에 따른전해액 흡수량과 전해액의 수분 함량을 측정하였고 상세한 설명은 아래의 전해액 흡수량 비와 수분함량 측정의 실시예에 명시하였다.Electrolyte solution in which LiPF 6 was dissolved at a concentration of 1M in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a 1: 1 (volume ratio) was added to a battery external container in a dry atmosphere having a dew point of -30 o C. Dropped and injected. In addition, as described above, the battery was prepared before sealing and assembling the battery, and the electrolyte absorbed amount and the water content of the electrolyte were measured according to the time elapsed after the electrolyte was injected. Specified in

[전지의 밀봉 조립][Sealed assembly of batteries]

가운데에 알루미늄 심이 박혀 있고 바깥쪽은 환 형태의 폴리프로필렌으로 절연되어 있는 전지 뚜껑의 가운데에 양극의 알루미늄 탬을 융착하고 젤리롤 장입 공정에서 미리 만들어 놓은 홈에 전지 뚜껑을 씌우고 가압한 후, 전지 외관 용기의 남은 위 부분을 안쪽으로 구부려 밀봉시켰다. 전해액 주입 후 밀봉하기까지 소요되는 시간은 전해액의 흡수율이 90 % 이상되는 시간으로 설정하였고, 본 발명의 전해액 흡수율 과 수분 함량 측정의 실시예의 결과로부터 본 실시예 1의 전지 A 는 전해액 주입 수 밀봉하기까지 소요되는 시간을 10분으로 제어하였다.After welding the aluminum foil of the positive electrode to the center of the battery lid insulated with the aluminum core in the center and insulated with polypropylene in the outside and putting the battery lid on the groove made in the jelly roll charging process and pressurizing The remaining upper part of the container was bent inward to seal it. The time required for sealing after the injection of the electrolyte solution was set to a time at which the absorption rate of the electrolyte solution was 90% or more, and the battery A of Example 1 was sealed from the result of the measurement of the electrolyte absorption rate and moisture content of the present invention. The time required to control was controlled to 10 minutes.

실시예 2Example 2

본 발명의 실시예 2 로 제작된 전지를 전지 B 로 표시한다.The battery produced in Example 2 of the present invention is referred to as battery B.

격리막은 상기 기술한 실시예1 와 같으며 양극 전극은 LiNi0.8Co0.17Al0.03O2의조성을 갖는 리튬 니켈 코발트 복합산화물과 전도성 전류 집전체 분말로 아세틸렌 블랙, 결착제로 불소계 수지화합물을 중량비 88 : 7 : 5 로 혼합하고, 이 혼합체를 100 : 40 의 중량비로 유기 용매 NMP 에 혼련하여 실시예 1 에서 기술한 양극의 제조 방법과 동일하게 양극 전극을 제조하였다. 그리고 그외에는 상기 기술한 실시예 1 와 동일하게 본 발명의 전지 B 를 제조하였다. 전해액 주입후 밀봉하기까지 소요되는 시간은 전해액의 흡수율이 90 % 이상되는 시간으로 설정하였고, 본 발명의 전해액 흡수율 과 수분 함량 측정의 실시예의 결과로부터 본 실시예 2의 전지 B 는 전해액 주입 수 밀봉하기까지 소요되는 시간을 10분으로 제어하였다.The separator is the same as Example 1 described above, and the anode electrode is a lithium nickel cobalt composite oxide having a composition of LiNi 0.8 Co 0.17 Al 0.03 O 2 , an acetylene black as a conductive current collector powder, and a fluorinated resin compound as a binder. : 5, and the mixture was kneaded in an organic solvent NMP at a weight ratio of 100: 40 to prepare a positive electrode in the same manner as in the manufacturing method of the positive electrode described in Example 1. In addition, the battery B of the present invention was prepared in the same manner as in Example 1 described above. The time required for sealing after the injection of the electrolyte solution was set to a time at which the absorption rate of the electrolyte solution was 90% or more, and the battery B of Example 2 was sealed from the result of the measurement of the electrolyte absorption rate and moisture content of the present invention. The time required to control was controlled to 10 minutes.

실시예 3Example 3

본 발명의 실시예 3 으로 제작된 전지를 전지 C로 표시한다.The battery produced in Example 3 of the present invention is referred to as battery C.

격리막은 상기 기술한 실시예 1 과 같으며 양극 전극은 LiMn2O4조성의 리튬 니켈 코발트 복합산화물과 전도성 전류 집전체 분말로 아세틸렌 블랙, 결착제로 불소계 수지화합물을 중량비 82 : 10 : 8 로 혼합하고, 이 혼합체를 100 : 50 의 중량비로 유기 용매 NMP 에 혼련하여 실시예1 에서 기술한 양극의 제조 방법과 동일하게 양극 전극을 제조하였다. 그리고 그외에는 상기 기술한 실시예 1 과 동일하게 본 발명의 전지 C 를 제조하였다. 전해액 주입후 밀봉하기까지 소요되는 시간은 전해액의 흡수율이 90 % 이상되는 시간으로 설정하였고, 본 발명의 전해액 흡수율 과 수분 함량 측정의 실시예의 결과로부터 본 실시예 3의 전지 C 는 전해액 주입 수 밀봉하기까지 소요되는 시간을 10분으로 제어하였다.The separator is the same as Example 1 described above, and the anode electrode is a lithium nickel cobalt composite oxide having a LiMn 2 O 4 composition, acetylene black as a conductive current collector powder, and a fluorine-based resin compound as a binder in a weight ratio of 82:10:10: The mixture was kneaded in an organic solvent NMP at a weight ratio of 100: 50 to prepare a positive electrode in the same manner as in the manufacturing method of the positive electrode described in Example 1. In addition, the battery C of the present invention was prepared in the same manner as in Example 1 described above. The time required for sealing after the injection of the electrolyte was set to a time at which the absorption rate of the electrolyte was more than 90%, and from the result of the embodiment of the measurement of the electrolyte absorption rate and water content of the present invention, the battery C of Example 3 was sealed with the electrolyte injection water. The time required to control was controlled to 10 minutes.

비교예 1Comparative Example 1

격리막은 상기 기술한 실시예 1과 같이 이온 입자 및 반응성 가스를 조사시키기 전의 친수성 처리되지 않은 종래의 격리막을 사용하고, 양극, 음극의 제조는 상기 기술한 실시예 1과 동일한 방법으로 제조하였다. 그리고 그외에는 상기 기술한 실시예 1과 동일하게 본 발명의 비교 전지 D 를 제조하였다. 전해액 주입후 밀봉하기까지 소요되는 시간은 전해액의 흡수율이 90 % 이상되는 시간으로 설정하였고, 본 발명의 전해액 흡수율 과 수분 함량 측정의 실시예의 결과로부터 본 비교예 1의 전지 D는 전해액 주입 후 밀봉하기까지 소요되는 시간을 30분으로 제어하였다.As the separator, a conventional separator without hydrophilic treatment before irradiating the ion particles and the reactive gas was used as in Example 1, and the preparation of the anode and the cathode was made in the same manner as in Example 1 described above. In addition, the comparative battery D of the present invention was manufactured in the same manner as in Example 1 described above. The time required for sealing after the injection of the electrolyte was set to a time at which the absorption rate of the electrolyte was more than 90%, and the cell D of Comparative Example 1 was sealed after the injection of the electrolyte from the results of the examples of the measurement of the electrolyte absorption and the moisture content of the present invention. The time required to control was controlled to 30 minutes.

전해액 흡수량 비와 수분함량 측정의 실시예Example of Measurement of Electrolyte Absorption Ratio and Water Content

상기 기술한 실시예 1∼3 및 비교예에서 제조된 전지 A, B, C, D 에 대해서 밀봉 조립하기 전의 전지에 대해 별도로 동일하게 제조하여 전해액 주입후 시간 경과에 따라 젤리롤에 흡수되는 전해액의 양을 측정하기 위해 5∼10분 간격으로 흡수되지 않고 잔류된 전해액을 제거하여 질량을 측정하여 주입량과의 차이로부터 젤리롤에 흡수된 전해액량을 계산하고 60분 경과를 100으로 하여 그 비율을 전해액 흡수율로 계산하였다. 또한 시간에 따라 전해액내 수분 함량을 칼-피셔 수분계로 측정하여 비교하였다. 도 1의 표에 그 결과를 예시하였다. 본 발명의 전지 A, B, C 는 10 분 이내에 전해액이 90 % 이상 젤리롤에 흡수되는 반면에 비교 전지 D 는 10 분 경과후에는 60 % 이내의 흡수율을 갖고, 30 분이 경과되어야지만 90 % 이상의 흡수율을 갖는다. 그런데 전해액 주입후 경과 시간(즉, 전해액의 분위기 노출 시간)이 10분이내 일때 전해액내 수분 함량은 100ppm 이내이고, 30분이 경과되면 약 300 ppm 을 초과하였다. 따라서 본 발명의 전지 A, B, C는 전해액이 최소 90 % 흡수되는데 소요되는 시간을 10분으로 하여 제조할 수 있게 되어 전해액의 수분 함량이 100 ppm 이하로 제어되지만, 비교예 1의 전지 D 는 소요시간이 30분 이상으로 수분 함량은 300 ppm 이 초과되게 된다.For the batteries A, B, C, and D prepared in Examples 1 to 3 and Comparative Examples described above, the same solution was prepared separately for the batteries before sealing assembling, and the electrolyte solution absorbed into the jelly roll over time after the injection of the electrolyte solution. To measure the amount, remove the remaining electrolyte solution without absorbing it at intervals of 5 to 10 minutes, and measure the mass to calculate the amount of electrolyte absorbed by the jelly roll from the difference with the injected amount. Calculated by absorbance. In addition, the water content in the electrolyte was measured and compared with Karl-Fischer moisture meter over time. The results are illustrated in the table of FIG. 1. The cells A, B, and C of the present invention absorb 90% or more of the electrolyte in the jellyroll within 10 minutes, while the comparative battery D has an absorption rate of 60% or more after 10 minutes, but after 30 minutes, the 90% or more It has an absorption rate. However, when the time elapsed after the injection of the electrolyte (that is, the atmosphere exposure time of the electrolyte) was within 10 minutes, the water content in the electrolyte was within 100 ppm, and after 30 minutes, the water content was about 300 ppm. Therefore, the batteries A, B, and C of the present invention can be manufactured with a time required to absorb at least 90% of the electrolyte to 10 minutes, so that the moisture content of the electrolyte is controlled to 100 ppm or less, but the battery D of Comparative Example 1 The time required is more than 30 minutes and the water content exceeds 300 ppm.

전지의 수명 평가의 실시예Example of life evaluation of a battery

상기 기술한 실시예 1∼3 및 비교예에서 제조된 전지 A, B, C, D에 대해서재충전 싸이클에 따른 전지 용량을 측정하여 본 발명의 전지 A, B, C 와 비교 전지 D 의 수명을 비교 평가하였다. 충방전 조건은 다음과 같다. 충전 정전류는 1.0 A, 정전압은 4.1 V, 충전 시간은 2.5 h 의 조건으로 정전류 정전압 방식으로 충전하고, 방전 정전류는 1.0 A, 종지 전압은 3.0 V 의 조건으로 정전류 방식으로 방전하여 상기 제조된 비 수성 전해액 전지를 충방전 하였다. 수명의 평가는 첫 싸이클의 방전 용량을 기준으로 하여 각 싸이클의 용량을 백분율로 평가하였으며 그 결과를 도 2에 싸이클 수에 따른 전지 용량비를 나타내었다. 본 발명의 비교예 1의 전지 D 와 비교하여, 전해액의 분위기 노출 시간을 30 분에서 10분이내로 감소시켜 전해액 수분 함량이 100 ppm 이내로 제어된 본 발명의 전지 A, B, C는 전지 수명이 월등히 향상되었다.For the batteries A, B, C, and D prepared in Examples 1 to 3 and Comparative Examples described above, the battery capacities according to the recharge cycles were measured to compare the lifetimes of the batteries A, B, and C of the present invention and the comparative battery D. Evaluated. Charge and discharge conditions are as follows. The non-aqueous solution was prepared by discharging in a constant current method under a condition of a constant charging current of 1.0 A, a constant voltage of 4.1 V, and a charging time of 2.5 h, and a discharge constant current of 1.0 A and a termination voltage of 3.0 V. The electrolyte cell was charged and discharged. The lifespan was evaluated by the percentage of each cycle based on the discharge capacity of the first cycle, and the result shows the battery capacity ratio according to the number of cycles. Compared with the battery D of Comparative Example 1 of the present invention, the batteries A, B, and C of the present invention, in which the atmospheric exposure time of the electrolyte solution was reduced from 30 minutes to 10 minutes and the electrolyte moisture content was controlled to within 100 ppm, have a superior battery life. Improved.

전해액 주입 후 경과 시간에 따른 전해액 흡수량비와 전해액의 수분 함량The amount of electrolyte absorption and the water content of the electrolyte according to the time elapsed after the injection of the electrolyte 전해액 주입 후경과 시간에 따른전해액 흡수량 비(%)Electrolyte absorption amount ratio according to elapsed time after electrolyte injection 전해액 주입 후경과 시간에 따른전해액내 수분의 함량 (ppm)Moisture content in electrolyte according to elapsed time after electrolyte injection (ppm) 5 분5 minutes 10 분10 minutes 20 분20 minutes 30 분30 minutes 0 분0 min 5 분5 minutes 10 분10 minutes 20 분20 minutes 30 분30 minutes 전지 ABattery A 81.981.9 96.396.3 99.599.5 100100 1212 3030 8585 160160 300300 전지 BBattery B 78.578.5 94.794.7 98.598.5 100100 1212 3535 8282 158158 305305 전지 CBattery C 74.574.5 92.392.3 97.597.5 100100 1212 3232 8484 160160 300300 전지 DBattery D 36.736.7 58.858.8 80.980.9 90.390.3 1212 3535 8585 165165 310310

상기의 결과로부터 비 수성 전해액 이차 전지에 대해 본 발명의 실시예 1∼3에서 기술한 바와 같이 이온 입자 또는 이온 입자와 반응성 가스가 조사되어 친수성 성질이 부여된 격리막을 사용함으로써 전지 제조 공정 시간이 단축되고, 전해액 노출 시간의 감소에 의한 전해액 수분 함량의 감소로부터 전지의 수명이 향상되는효과를 얻을 수 있게 된다.From the above results, as described in Examples 1 to 3 of the non-aqueous electrolyte secondary battery, the production time of the battery is shortened by using an ion particle or a separator in which the ion particles and the reactive gas are irradiated and imparted hydrophilic property As a result, the battery life can be improved by reducing the electrolyte moisture content by reducing the electrolyte exposure time.

Claims (8)

비 수성(非 水性) 전해액 이차 전지에 있어서,In a non-aqueous electrolyte secondary battery, a) 이온 입자 또는 이온 입자와 반응성 가스가 조사(照射)되어 친수성 성질을 갖는 폴리 올레핀 격리막;a) a polyolefin separator having ion hydrophilic property by irradiating ion particles or reactive particles with a reactive gas; b) 비 수성 유기 용매 전해액;b) non-aqueous organic solvent electrolyte; c) 리튬을 흡장, 방출 할 수 있는 탄소 재료를 음극 활물질로 하는 음극 전극; 및c) a negative electrode comprising a carbon material capable of occluding and releasing lithium as a negative electrode active material; And d) 리튬 함유 천이 금속 복합 산화물을 양극 활물질로 양극 전극을 포함하는 비 수성 전해액 이차 전지.d) A non-aqueous electrolyte secondary battery comprising a positive electrode with a lithium-containing transition metal composite oxide as a positive electrode active material. 제 1항에 있어서,The method of claim 1, 폴리올레핀 격리막이 폴리프로필렌 고분자막, 폴리에틸렌 고분자막 또는 이들 고분자막 두개 이상으로 구성된 다층 구조의 고분자막인 비 수성 전해액 이차 전지.A non-aqueous electrolyte secondary battery, wherein the polyolefin isolation membrane is a polypropylene polymer membrane, a polyethylene polymer membrane, or a polymer membrane having a multilayer structure composed of two or more of these polymer membranes. 제 1항에 있어서,The method of claim 1, 양극 활물질이 일반식 LixM1-yNyOz( M 은 Co, Ni, Mn, N 은 Al, In, Sn, Ga, Ge, Si, 및 천이금속, 또는 이들의 혼합물; 0.05≤x≤1.10, 0≤y≤0.5,1.8≤z≤2.2 ) 인 리튬 함유 천이 금속 복합 산화물인 비 수성 전해액 이차 전지.The positive electrode active material is a general formula Li x M 1-y N y O z (M is Co, Ni, Mn, N is Al, In, Sn, Ga, Ge, Si, and transition metals, or mixtures thereof; 0.05≤x A non-aqueous electrolyte secondary battery, wherein the lithium-containing transition metal composite oxide is ≦ 1.10, 0 ≦ y ≦ 0.5, 1.8 ≦ z ≦ 2.2). 제 1항에 있어서,The method of claim 1, 전해액이 프로필렌 카보네이트(propylene carbonate, PC), 에틸렌 카보네이트(ethylene carbonate, EC), 부틸 카보네이트(butyle carbonate, BC), 비닐렌 카보네이트(vinylene carbonate, VC), 감마-부틸락톤(γ-butyl lactone), 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디메톡시 에탄(dimethoxy ethane, DME), 디에톡시 에탄(diethoxy ethane, DEE)인 비 수성 전해액 이차 전지.Electrolytes include propylene carbonate (PC), ethylene carbonate (EC), butyl carbonate (BC), vinylene carbonate (VC), gamma-butyl lactone, A non-aqueous electrolyte secondary battery which is dimethyl carbonate (DMC), diethyl carbonate (DEC), dimethoxy ethane (DME), and diethoxy ethane (DEE). 제 4항에 있어서,The method of claim 4, wherein 전해 용질이 LiClO4, LiPF6, LiAlCl4, LiAsF6, LiBF4인 비 수성 전해액 이차 전지.A non-aqueous electrolyte secondary battery in which the electrolytic solutes are LiClO 4 , LiPF 6 , LiAlCl 4 , LiAsF 6 , LiBF 4 . 제 1항에 있어서 전해액 수분의 함량이 300 ppm 이하인 비 수성 전해액 이차 전지.The nonaqueous electrolyte secondary battery according to claim 1, wherein the content of the electrolyte solution moisture is 300 ppm or less. a) 이온 입자 또는 이온 입자와 반응성 가스가 조사(照射)되어 친수성 성질을 갖는 폴리 올레핀 격리막;a) a polyolefin separator having ion hydrophilic property by irradiating ion particles or reactive particles with a reactive gas; b) 비 수성 유기 용매 전해액;b) non-aqueous organic solvent electrolyte; c) 리튬을 흡장, 방출 할 수 있는 탄소 재료를 음극 활물질로 하는 음극 전극; 및c) a negative electrode comprising a carbon material capable of occluding and releasing lithium as a negative electrode active material; And d) 리튬 함유 천이 금속 복합 산화물을 양극 활물질로 양극 전극d) a positive electrode using a lithium-containing transition metal composite oxide as a positive electrode active material 을 포함하는 이차 전지를 제조함에 있어서, 폴리에틸렌 고분자 막에 0.01-10 KeV의 에너지를 갖는 이온 입자 또는 이온 입자와 반응성 가스의 혼합물 조사(照射)하여 격리막을 제조함을 특징으로 하는 비 수성 전해액 이차 전지 제조 방법.In manufacturing a secondary battery comprising a non-aqueous electrolyte secondary battery, characterized in that to prepare a separator by irradiating a polyethylene polymer membrane with ion particles having a energy of 0.01-10 KeV or a mixture of ion particles and a reactive gas. Manufacturing method. 제 7항에 있어서,The method of claim 7, wherein 반응성 가스가 이르곤, 산소, 공기, 크립톤, N2O 및 이들의 혼합물 중에서 선택되는 비 수성 전해액 이차 전지 제조 방법.A method for producing a non-aqueous electrolyte secondary battery, wherein the reactive gas is early and is selected from oxygen, air, krypton, N 2 O and mixtures thereof.
KR1019980007568A 1998-03-06 1998-03-06 Secondary battery using non-aqueous electrolyte KR100404884B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980007568A KR100404884B1 (en) 1998-03-06 1998-03-06 Secondary battery using non-aqueous electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980007568A KR100404884B1 (en) 1998-03-06 1998-03-06 Secondary battery using non-aqueous electrolyte

Publications (2)

Publication Number Publication Date
KR19990074161A KR19990074161A (en) 1999-10-05
KR100404884B1 true KR100404884B1 (en) 2004-01-28

Family

ID=37422626

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980007568A KR100404884B1 (en) 1998-03-06 1998-03-06 Secondary battery using non-aqueous electrolyte

Country Status (1)

Country Link
KR (1) KR100404884B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100578861B1 (en) * 1998-11-13 2006-09-27 삼성에스디아이 주식회사 Cathode Active Material for Lithium Secondary Battery
JP4608735B2 (en) * 2000-05-16 2011-01-12 ソニー株式会社 Non-aqueous electrolyte secondary battery charging method
US8658125B2 (en) * 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
KR102522025B1 (en) * 2019-05-14 2023-04-14 주식회사 엘지에너지솔루션 Lithium secondary battery

Also Published As

Publication number Publication date
KR19990074161A (en) 1999-10-05

Similar Documents

Publication Publication Date Title
US5597659A (en) Manufacturing method of a separator for a lithium secondary battery and an organic electrolyte lithium secondary battery using the same separator
US7642015B2 (en) Nonaqueous electrolyte secondary battery
CN107658472B (en) Negative electrode comprising mesh-type current collector, lithium secondary battery comprising same, and method for manufacturing same
KR20180036600A (en) Anode for lithium secondary battery with double protective layer and lithium secondary battery comprising the same
CN112368873B (en) Secondary battery activation method with enhanced capability of detecting low voltage
KR20190083305A (en) Method of pre-lithiating an anode for lithium secondary battery and Lithium metal laminate for being used therefor
KR100587437B1 (en) Nonaqueous Secondary Battery
EP1063720B1 (en) Nonaqueous electrolyte battery
JP2002015771A (en) Nonaqueous electrolyte and nonaqueous electrlyte secondary cell
EP1439596B1 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary cell
JPH07296849A (en) Nonaqueous electrolyte secondary battery
JP2003331916A (en) Secondary cell, and manufacturing method of the same
KR100404884B1 (en) Secondary battery using non-aqueous electrolyte
JP3327468B2 (en) Lithium ion secondary battery and method of manufacturing the same
JP2004228019A (en) Nonaqueous electrolyte secondary battery
KR101613766B1 (en) Gel polymer electrolyte and secondary battery comprising the same
JP2003168427A (en) Nonaqueous electrolyte battery
JP4439070B2 (en) Non-aqueous secondary battery and charging method thereof
KR102663587B1 (en) Bipolar lithium secondary battery
JP4159005B2 (en) Non-aqueous secondary battery
KR101178710B1 (en) Secondary battery
KR20170111741A (en) Method for preparing lithium secondary battery
KR101547385B1 (en) Process for preparing secondary battery without impregnation process
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPWO2004023590A1 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee