KR100389322B1 - 내황산부식성이우수한냉연강판및그제조방법 - Google Patents

내황산부식성이우수한냉연강판및그제조방법 Download PDF

Info

Publication number
KR100389322B1
KR100389322B1 KR10-1998-0060184A KR19980060184A KR100389322B1 KR 100389322 B1 KR100389322 B1 KR 100389322B1 KR 19980060184 A KR19980060184 A KR 19980060184A KR 100389322 B1 KR100389322 B1 KR 100389322B1
Authority
KR
South Korea
Prior art keywords
sulfuric acid
less
steel sheet
temperature
corrosion
Prior art date
Application number
KR10-1998-0060184A
Other languages
English (en)
Other versions
KR20000043763A (ko
Inventor
백승철
배춘선
박재성
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1998-0060184A priority Critical patent/KR100389322B1/ko
Publication of KR20000043763A publication Critical patent/KR20000043763A/ko
Application granted granted Critical
Publication of KR100389322B1 publication Critical patent/KR100389322B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 내황산부식성이 우수한 냉연강판 및 그 제조 방법에 관한 것으로서, 중량%로 C : 0.007% 이하, Cu : 0.20∼0.50%, S : 0.005∼0.030%, Nb : 0.01∼0.05%, W : 0.003∼0.500%, Cr : 0.2∼2.0%, Si : 0.1∼0.5%, Mn : 0.1∼0.6%, P : 0.02% 이하, Al : 0.020∼0.050%, N : 0.004% 이하, 기타 Fe 및 불가피한 불순물로 조성된 슬라브를 먼저 1050∼1300℃에서 재가열하는 단계와; 마무리 온도 850∼950℃, 권취온도 550∼700℃에서 열간압연 하는 단계와; 50∼80%의 압하율로 냉간압연하는 단계와; 균열대 온도 750∼870℃에서 연속어닐링 하는 단계와; 0.2∼2.0%로 조질압연하는 단계로 이루어진 내황산부식성이 우수한 냉연강판의 제조방법을 요지로 하므로, 화석 연료의 아황산가스에 의하여 황산이 농축되어 부식을 촉진시키는 발전소 예열기 및 보일러 설비에 사용될 수 있으며, 종래의 강판에 비하여 황산부식 속도가 매우 느리기 때문에 장시간 강판의 교체없이 사용할 수 있는 효과가 있다.

Description

내황산부식성이 우수한 냉연강판 및 그 제조 방법 {Cold rolled steel with good sulfar corrosion resistance and method of manufacturing the same}
본 발명은 내황산부식성이 우수한 냉연강판 및 그 제조 방법에 관한 것으로서, 특히 황산부식에 대하여 부식속도가 느린 내황산부식성이 우수한 냉연강판 및 그 제조방법에 관한 것이다.
황산을 함유한 화석연료를 사용하는 보일러의 배기가스계나 공기예열기 등의 저온부에 SO3가스와 물이 결합하여 황산이 응축하는 현상이 발생한다. 이러한 보일러의 배기가스계나 공기예열기 등에 사용되는 강판에 응축된 황산이 부착되게 될 경우 강판의 부식이 촉진되게 되며, 이러한 부식을 황산부식이라고 한다.
보통, 보일러의 열효율을 높이기 위하여 배기가스의 온도를 최대한 낮추고자함에 따라 보일러에 사용되는 강판의 온도가 황산노점 이하로 낮아지게 되어 많은 양의 황산이 응결하고, 이 응결한 황산에 의하여 강판의 부식이 촉진된다.
종래에는 탄소강, 스테인레스강, 고 Ni 합금, 동판 및 Cu 첨가강이 사용되어왔으나 황산이 응결되는 환경에서 강판을 장시간 사용함에 따라 부식을 회피할 수 없는 실정이었다. 이러한 이유로 황산이 응결되는 분위기에서도 장기간 사용될 수 있는 내황산 부식성이 우수한 강판이 요구되었다.
본 발명은 상기의 요망에 부응하기 위하여 안출된 것으로서 황산분위기 중에서 부식속도가 느린 내황산부식성이 우수한 냉연강판과 그 제조방법을 제공하는 것을 목적으로 한다.
도 1은 본 발명강과 종래강의 황산부식속도를 나타내는 그래프.
본 발명은 상기 목적을 달성하기 위하여, 중량%로 C : 0.007% 이하, Cu : 0.20∼0.50%, S : 0.005∼0.030%, Nb : 0.01∼0.05%, W : 0.003∼0.500%, Cr : 0.2∼2.0%, Si : 0.1∼0.5%, Mn : 0.1∼0.6%, P : 0.02% 이하, Al : 0.020∼0.050%, N : 0.004% 이하, 기타 Fe 및 불가피한 불순물로 조성된 강의 슬라브를 가열로에서 1050∼1300℃에서 재가열하는 단계와; 상기 재가열된 슬라브를 열간압연 마무리 온도 850∼950℃와 권취온도 550∼700℃에서 열간압연 하는 단계와; 상기 열간압연강판을 50∼80%의 압하율로 냉간압연하는 단계와; 상기 냉간압연강판을 연속소둔 온도 750∼870℃에서 연속소둔 하는 단계와; 상기 연속소둔강판을 0.2∼2.0%로 조질압연하는 단계로 이루어진 내황산부식성이 우수한 냉연강판의 제조방법을 제공하는 것을 특징으로 한다.
이하, 본 발명을 더욱 상세히 설명하기로 한다.
본 발명은 내황산부식성이 우수한 냉연강판에 관한 것으로, 이 강판의 요구되는 성분의 범위는 중량비로 다음과 같다.
C : 0.007% 이하, Cu : 0.20∼0.50%, S : 0.005∼0.030%, Nb : 0.01∼0.05%, W : 0.003∼0.500%, Cr : 0.2∼2.0%, Si : 0.1∼0.5%, Mn : 0.1∼0.6%, P : 0.02% 이하, Al : 0.020∼0.050%, N : 0.004% 이하, 나머지는 Fe와 기타 불순물의 원소로 이루어져 있다.
이와 같은 성분의 슬라브를 1050∼1300℃에서 재가열한 후 열간압연한다. 열간압연시 마무리 온도는 850∼950℃로 하고 권취온도는 550∼700℃로 한다. 열간압연판을 냉간압연 공정에서 50∼80%의 압하율로 압연한 후, 750∼870℃에서 연속소둔한다. 연속 소둔된 냉간압연강판은 0.2∼2.0%의 조질압연을 실시하여 항복점 현상을 제거하여 준다.
이하 본 발명의 조성범위 한정이유에 대하여 설명한다.
강 중에 탄소의 함량이 많으면 탄화물이 많이 형성된다. 탄화물이 국부 부식을 일으키는 요인으로 작용하므로 탄화물의 최소한 억제하기 위하여 본 발명에서는 탄소의 양이 적은 극저탄소강으로 제조한다. 탄소 함량의 범위는 Fe3C의 형성이 어려운 0.007% 이하로 한다. 탄소의 함량이 0.007% 이상이 되면 Fe3C 형성되어 국부 부식의 원인을 제공하기 때문이다.
Cu를 첨가하는 원인은 용출하는 Cu와 S가 반응하여 강표면에 Cu2S를 형성하여 부식속도를 낮추는 역할을 하기 때문이다. 강 중에 Cu를 첨가하였을 때 부식이일어나면서 Cu가 S와 결합하여 강의 표면에 Cu2S를 형성한다. 강 표면에 부동태 산화피막으로 Cu2S가 형성되면 강의 표면에서 부식전류가 급격히 감소한다. 부동태의 상태에서 부식전류는 산화피막을 통한 금속 이온의 이동에 의하여 제한되는 것이다. 이러한 부동태를 형성하기 위하여 강중에 Cu를 0.20∼0.50% 첨가한다. Cu를 0.20% 이하로 첨가하면 Cu2S의 형성이 적어지고, 0.50% 이상 Cu가 첨가되면 성형성이 저하되면서 FeS가 많이 형성되고, 이 FeS가 표면에서 액상으로 존재하여 열간압연중에 적열취성을 나타내므로 변형중 파단이 일어날 가능성이 높아진다.
Cu와 함께 일정량의 S가 함유되어 있을 때 Cu2S가 잘 형성되므로, S를 0.005% 이상 함유하는 것으로 한다. 하지만 S가 너무 많이 존재하면 황화물이 많이 형성되어 부식 발생의 시작점을 제공하므로 여기서는 S함량을 0.030% 이하로 제한한다.
Cu2S가 형성되어 부동태 상태로 되기 위하여는 강 표면의 전위가 부동태화 전위까지 상승하여야 한다. 부동태 상태로 되기까지는 활성태 상태에서 부식이 촉진되므로 부식을 억제하기 위하여 부동태 전위가 작을수록 유리하다. 즉, Nb는 Cu2S의 부동태 전위를 낮추는 역할을 하므로 Nb를 첨가할 때 부식속도가 감소한다.
Ti, Zr 강 중 S와 반응하여 Cu2S형성을 억제하는 효과가 있으나 Nb는 황화물 형성을 거의 하지 않는 원소로 황화물을 형성하지 않으면서 부동태 전위를 낮추므로 부식속도를 감소시키는 역할을 한다. 이러한 효과를 얻기 위해서는, Nb가 0.01%이상 첨가되어야 한다. Nb의 함량이 0.05%를 초과하면 Nb 석출물이 과도하게 형성하므로 국부부식의 원인을 제공하므로 부식을 촉진시키는 역할을 하므로 Nb을 0.05% 이내로 첨가한다.
Nb와 함께 W이 첨가되었을 때, 부동태 전위를 더욱 낮추게 된다. W을 C의 함량이 비교적 많은 저탄소강에 첨가하였을 때는 오히려 부식속도를 증가시키는 경향을 있으나 극저탄소강에는 부동태 전위를 낮추므로 부식속도를 감소시키는 역할을 한다. 탄화물이 많이 형성되어 있는 저탄소강에서 W을 첨가하여 WO4 -2이온이 황산 중에 존재하게 되면 캐소오드(cathode) 전위밀도가 증가하여 부식속도가 증가한다. 하지만, 탄화물의 형성이 어려운 극저탄소강에서 부동태 전위를 낮추는 효과에 의하여 부식속도를 감소시키는 역할을 한다.
본 발명에서는 C의 함량을 0.007% 이하로 제한한 극저탄소강을 이용한 것으로 W을 0.003% 이상 첨가하였을 때 전위를 낮추어 부식속도를 감소시킬 수 있다. 반면에 W의 함량이 0.500% 이상이면 강도가 크게 증가하므로 강판의 가공에 불리하다. 따라서, W 함량 범위는 0.003~0.500%로 한다.
Cr과 Si도 황산중에서 Cu2S의 부동태 전위를 낮추는 역할을 한다. Cr과 Si를 첨가하였을 때 부식속도가 감소하다가 일정값에서 최소의 부식속도를 나타낸 후 첨가량이 더 많아지면 부식속도가 다시 증가한다. 따라서 부식속도를 최소화하기 위하여 Cr은 0.2% 이상 첨가하여야 하고, Si은 0.1 이상 첨가하여야 한다. Cr이 2.0% 이상 첨가되었을 때 강판의 연신율이 감소하고, Si가 0.5% 이상 첨가되었을 때 표면에 Fe2SiO4의 산화층이 많이 형성되어 산세가 어려워지고 표면특성이 열화된다. 따라서, 본 발명에서 Cr 및 Si의 성분 범위를 각각 0.2~2.0%, 0.1~0.5%로 한정하였다.
Mn은 S와 결합하여 MnS를 만들기에 충분한 량을 첨가한다. S의 일부가 Fe와 결합하여 FeS를 형성하므로 강 중에 Mn 함량이 0.1%보다 적으면 S가 FeS화 하는데, 이 FeS는 1200℃정도의 저융점을 가지므로 응고의 마지막 단계에서 결정립계에 얇은 막으로 응고하게 된다. 이 황화물층은 고온으로 가열할 때 먼저 용해되어 오스테나이트의 결정립계를 따라 균열이 생기는 적열취성의 원인이 되므로, FeS를 형성시키지 않기 위하여 Mn함량을 0.1% 이상 첨가하여야 한다. Mn을 0.6% 이상 첨가할 경우 강판의 연신율이 감소하므로 Mn함량을 0.1∼0.6% 제한한다.
P가 강중에 많으면 부식속도를 증가시키므로 P는 0.02% 이하로 한다.
N는 함량이 많으면 고용강화에 의하여 강판의 연신율이 감소하므로 N의 함량을 0.004% 이하로 한다.
고용상태로 N이 존재하면 강의 가공성을 열화시키므로 Al으로 AIN을 석출시킬 수 있도록 Al을 0.020∼0.050% 첨가한다. Al이 0.020% 이하이면 N이 0.004%일때 N을 전부 석출시킬수 없으며, Al이 0.050% 이상이면 고용강화에 의하여 연신율이 감소한다.
이와같은 성분으로 용해한 강의 슬라브를 재가열한후 열간압연한다. 열간압연은 강의 Ar3온도 이상에서 강의 조직이 오스테나이트 상태에서 압연한다. 페라이트 역에서 압연하면 {110}<001> 조직이 많이 형성되므로 최종적을 가공성이 열화된다. 이러한 현상을 방지하기 위하여, 열간압연의 마무리 온도는 850∼950℃로 하였다. 마무리 온도가 850℃ 미만이면 페라이트가 형성된 상태에서 압연이 실시되고 마무리 온도가 950℃ 이상이면 결정립의 조대화가 발생하여 냉각후 결정립의 크기가 불균일해 진다.
권취온도는 550∼700℃로 하였다. 권취온도가 550℃ 이하일 경우 강중의 NbC의 석출이 어려워지며, 권취온도가 700℃ 이상이 되면 고온에서 오래동안 유지되므로 표면 산화층이 두꺼워져서 재료의 손실량이 많아진다.
상온까지 냉각된 열연강판을 산세하고 냉간압연한 후 소둔한다. 소둔 중에 재결정 형성이 쉽게 이루어지고 재질이 균일하게 큰 압하율로 압연하며 재결정 집합조직이 잘 발달되는 온도 영역에서 소둔한다. 냉간압연공정에서, 50∼80%의 압하율로 압연을 한 후 연속소둔을 실시한다. 압하율이 50% 이하이면 적은 압하율로 인해 두께편차가 증가하고, 압하율이 80% 이상이면 압연기의 부하가 증대되어 압연 작업성이 저하된다.
연속소둔은 750∼870℃에서 열처리한다. 소둔온도가 750℃ 이하에서는 재결정이 충분히 일어나지 않으며, 870℃ 이상에서는 오스테나이트로 변태하여 비정상으로 조대한 결정립이 성장하고 연신율이 급격히 저하될수 있다.
연속소둔된 냉간압연강판은 0.2∼2.0%의 조질압연을 실시하여 항복점 현상을 제거하여 준다. 0.2% 이하의 조질압연으로는 충분히 항복점현상을 제거할 수 없으며, 2.0% 이상으로 조질압연을 실시하면 두께편차가 증가하고 가공경화에 의하여연신율이 감소한다.
이하는 본 발명의 실시예를 설명한다.
[실시예]
하기 [표 1]의 성분을 가진 강을 각각 용해하고 열간압연을 실시하였다.
[표 1]
열간압연시 재가열온도는 1250℃, 마무리 온도는 870℃, 권취온도는 620℃로 유지하였다. 열간압연판의 표면 산화층을 산세하여 제거한 후 69% 냉간압연을 실시하였다. 냉간압연한 강판을 연속소둔로에서 열처리하였다. 열처리시 균열대의 온도는 830℃이고 균열대에서 유지시간은 28초로 하였다. 열처리 후 1.4%의 압하율로 조질압연을 실시하였다. 여기서 비교강B, C, D, E는 각각 일반적으로 생산되고 있는 강판으로 규격 SPA-C, SUS304, SUS430, SUS409L에 해당된다.
상기 [표 1]의 성분을 가진 냉연강판을 황산 분위기에서 부식성 평가를 위해 온도 20~80℃, 황산 농도 10~60%의 황산용액을 침적하여 부식속도를 측정한 결과를 도 1에 나타내었다.
이 결과에서 보면, 본 발명강 A는 온도나 황산의 농도에 거의 영향을 받지않고 부식속도가 가장 낮으면서 일정한 것을 알 수 있다. 그러나, F,G는 Cu첨가강으로서 부식속도가 비교적 낮은 수준이나 온도 40~60℃, 황산 농도 20~40%에서 본 발명강 A에 비해 높은 수준이다. 비교강 B는 상기규격 SPA-C인 내후성강판으로서, 온도 40℃, 황산 농도 20%에서 비교적 부식속도가 높았으며, 비교강 C, D, E는 스테인레스강으로서 온도 60℃, 황산 농도 40%에서 부식속도가 특히 높았다.
따라서, 본 발명은 강판을 구성하는 성분, 압연조건, 및 열처리조건을 적정하게 제어함으로써 내황산부식성이 우수한 냉연강판을 얻을 수 있었다.
상기와 같이 본 발명에 의하면 내황산부식성이 우수한 강판을 제조함으로써 화석 연료의 아황산 가스에 의하여 황산이 농축되어 부식을 촉진시키는 발전소 예열기 및 보일러 설비에 유용하게 사용될 수 있다.

Claims (2)

  1. 중량%로 C : 0.007% 이하, Cu : 0.20∼0.50%, S : 0.005∼0.030%, Nb : 0.01∼0.05%, W : 0.003∼0.500%, Cr : 0.2∼2.0%, Si : 0.1∼0.5%, Mn : 0.1∼0.6%, P : 0.02% 이하, Al : 0.020∼0.050%, N : 0.004% 이하, 기타 Fe 및 불가피한 불순물로 이루어진 것을 특징으로 하는 내황산부식성이 우수한 냉연강판.
  2. 중량%로 C : 0.007% 이하, Cu : 0.20∼0.50%, S : 0.005∼0.030%, Nb : 0.01∼0.05%, W : 0.003∼0.500%, Cr : 0.2∼2.0%, Si : 0.1∼0.5%, Mn : 0.1∼0.6%, P : 0.02% 이하, Al : 0.020∼0.050%, N : 0.004% 이하, 기타 Fe 및 불가피한 불순물로 조성된 슬라브를 1050∼1300℃에서 재가열하는 단계와;
    마무리 온도 850∼950℃와 권취온도 550∼700℃에서 열간압연하는 단계와;
    50∼80%의 압하율로 냉간압연하는 단계와;
    균열대 온도 750∼870℃에서 연속어닐링 하는 단계와;
    0.2∼2.0%로 조질압연하는 단계로 이루어진 것을 특징으로 하는 내황산부식성이 우수한 냉연강판의 제조방법.
KR10-1998-0060184A 1998-12-29 1998-12-29 내황산부식성이우수한냉연강판및그제조방법 KR100389322B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0060184A KR100389322B1 (ko) 1998-12-29 1998-12-29 내황산부식성이우수한냉연강판및그제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0060184A KR100389322B1 (ko) 1998-12-29 1998-12-29 내황산부식성이우수한냉연강판및그제조방법

Publications (2)

Publication Number Publication Date
KR20000043763A KR20000043763A (ko) 2000-07-15
KR100389322B1 true KR100389322B1 (ko) 2003-10-24

Family

ID=19567019

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0060184A KR100389322B1 (ko) 1998-12-29 1998-12-29 내황산부식성이우수한냉연강판및그제조방법

Country Status (1)

Country Link
KR (1) KR100389322B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470046B1 (ko) * 2000-06-05 2005-02-04 주식회사 포스코 내황산 부식특성이 우수한 냉연강판

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544506B1 (ko) * 2001-12-10 2006-01-24 주식회사 포스코 내황산 부식특성이 우수한 고강도 냉연강판과 그 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56133449A (en) * 1980-03-19 1981-10-19 Sumitomo Metal Ind Ltd Damping steel plate for working and its manufacture
JPH02197528A (ja) * 1988-01-14 1990-08-06 Nippon Steel Corp 良加工性高強度冷延鋼板の製造方法
JPH10110237A (ja) * 1996-10-08 1998-04-28 Sumitomo Metal Ind Ltd 熱間加工性に優れた耐酸露点腐食鋼

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56133449A (en) * 1980-03-19 1981-10-19 Sumitomo Metal Ind Ltd Damping steel plate for working and its manufacture
JPH02197528A (ja) * 1988-01-14 1990-08-06 Nippon Steel Corp 良加工性高強度冷延鋼板の製造方法
JPH10110237A (ja) * 1996-10-08 1998-04-28 Sumitomo Metal Ind Ltd 熱間加工性に優れた耐酸露点腐食鋼

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470046B1 (ko) * 2000-06-05 2005-02-04 주식회사 포스코 내황산 부식특성이 우수한 냉연강판

Also Published As

Publication number Publication date
KR20000043763A (ko) 2000-07-15

Similar Documents

Publication Publication Date Title
CN109536827B (zh) 耐酸露点腐蚀性得到改善的钢板及制造方法以及排气流路构成部件
KR100324892B1 (ko) 고강도,고연성복상조직스테인레스강및그제조방법
KR100957981B1 (ko) 가공성이 우수한 고강도 냉연강판, 용융도금 강판 및 그제조방법
JP6308335B2 (ja) 高強度冷延鋼板
JP2661845B2 (ja) 含オキサイド系耐火用形鋼の制御圧延による製造方法
JPH0768583B2 (ja) 高張力冷延鋼板の製造法
KR101787282B1 (ko) 응축수 부식 저항성을 갖는 내식강 및 그 제조 방법
KR101624425B1 (ko) 표면품질이 우수한 초고내식 슈퍼 스테인리스 냉연강판 및 이의 제조방법
KR100389322B1 (ko) 내황산부식성이우수한냉연강판및그제조방법
JPH05271772A (ja) 耐硫化物応力割れ性に優れた油井用鋼管の製造法
JPH0559491A (ja) プレス加工用の高張力薄鋼板とその製造法
JPH05331552A (ja) フェライト系ステンレス鋼板の製造法
KR101290421B1 (ko) 스테인리스 냉연강판의 소둔산세 방법
KR102368362B1 (ko) 내마모성과 복합내식성이 우수한 강판 및 그 제조방법
CN114364820B (zh) 具有改善的高温蠕变抗力的铁素体不锈钢及其制造方法
JPH10237602A (ja) 熱延板の低温靱性に優れたNb含有フェライト系ステンレス鋼
CN116043124B (zh) 一种具有可搪瓷性能的冷轧耐候钢板及其制备方法
JP2907673B2 (ja) 耐高温塩害性に優れたフェライト系ステンレス鋼とその製造方法
JP7278368B2 (ja) 排気系用冷延鋼板およびその製造方法
KR102399814B1 (ko) 내마모성과 복합내식성이 우수한 강판 및 그 제조방법
KR102276233B1 (ko) 저농도 황산/염산 복합 응축 분위기에서 내식성을 갖는 강판 및 그 제조방법
JP7324844B2 (ja) 低濃度硫酸/塩酸複合凝縮雰囲気で耐食性を有する鋼板およびその製造方法
KR100544506B1 (ko) 내황산 부식특성이 우수한 고강도 냉연강판과 그 제조방법
JP3446001B2 (ja) 加工性に優れた冷延鋼板及び溶融亜鉛めっき鋼板の製造方法
JPH0559490A (ja) プレス加工用の高張力薄鋼板とその製造法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130610

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140616

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20150610

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20160608

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20170607

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee