KR100376523B1 - Manufacturing method of tensile strength 60 kg/mm¬2 class hot rolled steel sheet having superior stretch flangeability - Google Patents

Manufacturing method of tensile strength 60 kg/mm¬2 class hot rolled steel sheet having superior stretch flangeability Download PDF

Info

Publication number
KR100376523B1
KR100376523B1 KR1019950051877A KR19950051877A KR100376523B1 KR 100376523 B1 KR100376523 B1 KR 100376523B1 KR 1019950051877 A KR1019950051877 A KR 1019950051877A KR 19950051877 A KR19950051877 A KR 19950051877A KR 100376523 B1 KR100376523 B1 KR 100376523B1
Authority
KR
South Korea
Prior art keywords
cooling
temperature
rolled steel
hot rolled
steel sheet
Prior art date
Application number
KR1019950051877A
Other languages
Korean (ko)
Other versions
KR970043154A (en
Inventor
조열래
이승복
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1019950051877A priority Critical patent/KR100376523B1/en
Publication of KR970043154A publication Critical patent/KR970043154A/en
Application granted granted Critical
Publication of KR100376523B1 publication Critical patent/KR100376523B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE: A manufacturing method of tensile strength 60 kg/mm¬2 class hot rolled steel sheet is provided to obtain superior stretch flangeability by properly controlling cooling patterns in the cooling section in front of down coiler and miniaturizing shape of grain boundary cementite. CONSTITUTION: In a 60 kg/mm¬2 class hot rolled steel sheet(4) manufacturing method comprising the processes of hot rolling a steel slab comprising 0.07 to 0.09 wt.% of C, 0.25 wt.% or less of Si, 1.40 to 1.60 wt.% of Mn, 0.005 to 0.06 wt.% of t-Al, 0.03 to 0.05 wt.% of Nb, 0.003 wt.% or less of S, 0.02 wt.% or less of P and a balance of Fe and other inevitably contained impurities; and coiling the water cooled steel slab after water cooling the hot rolled steel slab to a target coiling temperature in the cooling section in front of down coiler(3) equipped with a plurality of water cooling banks(2), the manufacturing method of tensile strength 60 kg/mm¬2 class hot rolled steel sheet(4) having superior stretch flangeability comprises the processes of water cooling the hot rolled steel slab to a temperature directly under Ar3 transformation point at a cooling rate of 40 to 90 deg.C on run-out table(8) just after the hot rolling; air cooling the water cooled steel slab to a temperature in which 70 to 80% of ferrite transformation is proceeded; and water cooling the air cooled steel slab to an intermediate temperature of bainite transformation initiation temperature Bs and martensite transformation initiation temperature Ms at a cooling rate of 40 to 90 deg.C so that final structure of the steel slab comprises 70 to 80% of equiaxed ferrite (F) and 20 to 30% of bainite (B).

Description

연신장출성이 우수한 인장강도 60 킬로그램(kg/㎟)급 열간압연강판의 제조방법Manufacturing method of 60kg (kg / mm²) hot rolled steel sheet with excellent tensile strength

본 발명은 프레스 가공되어 자동차의 휠, 멤버 등의 부품으로 사용되는 열간압연 강판(이하, '열연강판' 이라 한다)의 제조방법에 관한 것으로, 보다 상세하게는 연신장출성이 우수한 인장강도 60kg/㎟ 급 열연강판을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a hot rolled steel sheet (hereinafter referred to as a 'hot rolled steel sheet') that is press-processed and used as a part of a wheel, a member, etc. of a vehicle, and more particularly, a tensile strength of 60 kg / It relates to a method of manufacturing a mm 2 grade hot rolled steel sheet.

승용차의 멤버와 휠 등에는 냉연강판에 비하여 비교적 두께가 두꺼운 열연강판이 사용되고 있다. 이러한 열연강판을 상기한 용도로 적용함에 있어서 승용차의 연비저감을 목적으로 한 차체의 경량화 및 안전성 향상을 위하여 가공성이 우수한 고강도 열연강판의 개발과 적용에 대한 노력이 지속적으로 이루어지고 있다.Hot rolled steel sheets, which are relatively thicker than cold rolled steel sheets, are used for members and wheels of passenger cars. In applying the hot rolled steel sheet to the above-mentioned uses, efforts have been made to develop and apply high-strength hot rolled steel sheets having excellent workability in order to reduce the weight and safety of the vehicle body for the purpose of reducing fuel consumption of passenger cars.

자동차의 휠, 멤버 등의 부품은 대부분 프레스 가공에 의하여 제조되기 때문에 상기 용도로 사용되는 열연강판은 요구강도 외에 충분한 프레스 성형성을 가져야 하는데 성형성 지표로서는 강판의 연신율과 연신장출성이 있다. 그 가운데 연신장출성(버링성)은 구멍을 펀칭하였을 때 생성된 단부의 극한변형능을 나타내는 것으로서 버링가공시 파괴의 기점이 되는 미소균열의 생성과 전파가 일어나기 어려울수록 우수해진다.Since most parts of wheels, members, etc. of automobiles are manufactured by press working, hot rolled steel sheets used for the above-mentioned applications must have sufficient press formability in addition to the required strength. The formability indexes include elongation and stretch elongation of the steel sheet. Among them, the stretch elongation (burring property) shows the ultimate deformation of the end portion generated when the hole is punched out, and the better it is that the generation and propagation of microcracks, which are the starting point of fracture during burring, are less likely to occur.

따라서 연신장출성을 향상시키기 위해서는 균열의 핵생성 위치가 되는 결정입계 탄화물을 미세화하거나 균열의 생성 및 전파를 억제하기 위하여 구성 상 간의 소성변형능의 차이가 작은 상이 형성되도록 열간압연 및 압연후 냉각공정을 제어하는 것이 중요하다.Therefore, in order to improve stretch elongation, hot rolling and post-rolling cooling processes are performed in order to form a grain boundary carbide which is a nucleation site of a crack, or to form a phase having a small difference in plastic deformation between constituent phases in order to suppress formation and propagation of cracks. It is important to control.

열연강판의 재질은 일반적으로 강도가 증가하면 연성 및 연신장출성 등은 저하된다. 따라서 우수한 프레스 성형성을 갖는 열연강판을 제조하기 위해서는 강도수준에 대응하는 강의 강화기구를 적절하게 선택하여 강도와 성형성을 조합시키는 것이 중요하다. 60kg/㎟ 급의 고강도 열연강판은 제조구분상 석출강화형 열연강판 및 C-Mn-Si 계를 이용하여 냉각과정을 적절히 제어한 변태조직 강화형 열연강판 등으로 구분된다.In general, the material of a hot rolled steel sheet decreases its ductility and stretch elongation as strength increases. Therefore, in order to manufacture a hot rolled steel sheet having excellent press formability, it is important to appropriately select a steel reinforcement mechanism corresponding to the strength level and combine strength and formability. High-strength hot-rolled steel sheets of 60kg / mm2 class are divided into precipitation-reinforced hot-rolled steel sheets and transformed structure-reinforced hot-rolled steel sheets properly controlled by the C-Mn-Si system.

석출강화형 열연강판의 경우, C-Mn 성분계에 석출강화원소로서 Nb, Ti 등이 첨가되며, 페라이트와 퍼얼라이트 조직으로 되어 있다. 석출강화원소의 첨가에 의한 석출 강화형 열연강판의 강도는 타 강화법에 비하여 우수하나 강도 상승에 따른 가공성의 저하는 피할 수 없으며, 또한 석출강화를 위하여 580 - 600℃의 고온권취를 행함으로서 형성되는 페라이트-퍼얼라이트조직은 저온 변태조직 강화형에 비하여 연신장출성이 나쁜 것으로 알려져 있다.In the case of the precipitation-reinforced hot rolled steel sheet, Nb, Ti, and the like are added to the C-Mn component system as precipitation-reinforcement elements, and have ferrite and pearlite structures. The strength of the precipitation-reinforced hot-rolled steel sheet by the addition of precipitation-reinforcing elements is superior to other reinforcement methods, but the degradation of workability due to the increase in strength is unavoidable, and is formed by high temperature winding of 580-600 ° C for precipitation strengthening. Ferrite-perlite tissue is known to have poor elongation compared to low temperature metamorphic reinforcement.

저온 변태조직을 이용한 변태조직 강화형 열연강판의 경우, (가) C-Si-Mn 계를 이용하여 열간압연후 냉각과정을 적절히 제어함으로서 등축의 페라이트 기지에 제 2 상으로서 마르텐사이트조직을 생성시킨 이상(dual phase)강(NSC;CAMP-ISIJ, Vol. 4(91),p.980), (나) C-Si-Mn계(KOBE:JP90306762, KSC:JP91358007), C-Mn-Nb-Ti계(SMI:CAMP-ISIJ,Vol.1(88),p.881, KOBE;CAMP-ISIJ,Vol.5(92), p.1859), C-Si-Mn-Nb계(KOBE: Trans ISIJ, Vo.23(83),p303)를 이용하여 제 2 상으로서 베이나이트 조직을 형성시킨 페라이트-베이나이트 복합조직강, (다)C-Si-Mn-Cr계(KOBE:JP903704l, JP9037040, JP9037039), C-Si-Mn계(KOBE:JP817598)계를 이용하여 제 2 상으로서 베이나이트와 마르텐사이트를 혼재시킨 3 상 복합조직강이 있다.In the case of transformed tissue-reinforced hot-rolled steel sheets using low-temperature transformation tissues, (A) C-Si-Mn system was used to control the cooling process after hot rolling to create martensite structure as a second phase on the equiaxed ferrite matrix. Dual phase steel (NSC; CAMP-ISIJ, Vol. 4 (91), p. 980), (b) C-Si-Mn system (KOBE: JP90306762, KSC: JP91358007), C-Mn-Nb- Ti-based (SMI: CAMP-ISIJ, Vol. 1 (88), p. 881, KOBE; CAMP-ISIJ, Vol. 5 (92), p. 1859), C-Si-Mn-Nb system (KOBE: Trans Ferritic-bainite composite steel, in which bainite was formed as a second phase using ISIJ, Vo. 23 (83), p303), (C) C-Si-Mn-Cr system (KOBE: JP903704l, JP9037040, JP9037039) and C-Si-Mn-based (KOBE: JP817598) -based three-phase composite steels in which bainite and martensite are mixed as a second phase.

상기한 저온변태조직을 이용한 변태조직강화형 강들 중 페라이트-마르텐사이트 복합조직강은 강도 및 연신율이 대단히 우수한 반면, 연신장출성은 타 강화법에 비하여 열세인 것으로 알려져 있다. 그리고, 페라이트-베이나이트 복합조직형 60kg/㎟ 급 열연강판의 강도-연신율 밸런스는 페라이트-마르텐사이트 복합조직강에 비하여 불리하나 연신장출성이 타 강화법에 비하여 대단히 우수하여 60kg/㎟ 급 자동차 휠용 소재로 가장 적합한 것으로 알려져 있다.The ferrite-martensitic composite steels of the metamorphic structure-reinforced steels using the low temperature transformation tissue have excellent strength and elongation, while the elongation of stretching is inferior to other reinforcement methods. In addition, the strength-elongation balance of ferritic-bainite composite tissue type 60kg / mm2 hot rolled steel sheet is disadvantageous compared to ferritic-martensitic steel structure, but its elongation is excellent compared to other reinforcement methods. It is known to be the most suitable.

이러한 페라이트-베이나이트의 변태조직강화형 고강도 열연강판은 C-Si-Mn 계를 기본으로 하여 열간압연후 300-500℃ 정도의 저온에서 권취되며, 냉각과정에서 페라이트 변태를 촉진시키기 위하여 Si 을 첨가하거나, 열간압연후 냉각과정에서 수냉역의 중간에 공냉구간을 설정하여 권취한다. 그러나 Si 가 첨가된 성분계로 고강도 열연강판을 제조할 경우, 표면품질이 열화되는 문제점이 있다.The transformation structure of high-strength hot-rolled steel sheet of ferrite-bainite is wound at low temperature of 300-500 ℃ after hot rolling based on C-Si-Mn system, and Si is added to promote ferrite transformation during cooling. Or, in the cooling process after hot rolling, set an air cooling section in the middle of the water cooling zone and wind up. However, when manufacturing a high-strength hot-rolled steel sheet with a component system added with Si, there is a problem that the surface quality deteriorates.

이에 본 발명자는 석출강화형 강의 단점인 열악한 연신장출성 및 Si 가 함유된 합금계를 사용하여 연신장출성을 향상시킨 페라이트-베이나이트계 복합조직강의 단점인 고강도 열연강판 제조시 표면이 열화되는 문제점을 해결하기 위하여 연구와 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게 된 것으로서,Therefore, the present inventors have a problem that the surface is degraded when manufacturing high-strength hot-rolled steel sheet, which is a disadvantage of ferritic-bainite-based composite tissue steel, which has poor draw elongation property, which is a disadvantage of precipitation-reinforced steel, and an alloy system containing Si, which improves draw elongation. In order to solve the research and experiments, and based on the results suggest the present invention,

본 발명은 석출강화형 원소인 Nb 이 함유된 강을 열간압연 직후 권취기 전면의 수냉대에서 냉각패턴을 적절히 제어하여 최종조직을 등축 페라이트 및 베이나이트 조직이 되도록 하고 결정입계 세멘타이트의 형상을 미세하게 하므로서, 연신장출성이 우수한 인장강도 60kg/㎟급 열간압연 강판을 제조하는 방법을 제공하고자 하는데 그 목적이 있다.The present invention controls the cooling pattern in the water cooling zone in front of the winder immediately after hot rolling a steel containing Nb, a precipitation strengthening element, to make the final structure into equiaxed ferrite and bainite structure, and fine grain shape of grain boundary cementite In order to provide a method for manufacturing a hot rolled steel sheet having a tensile strength of 60 kg / mm 2, which has excellent elongation and elongation, it is an object of the present invention.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 중량%로, C: 0.07-0.09%, Si: 0.3% 이하, Mn: 1.40-1.60%, t-Al: 0.005-0.06%, Nb: 0.03-0.05%, S: 0.003% 이하, P: 0.02% 이하, 나머지 Fe 및 기타 불가피하게 함유되는 불순물로 조성되는 강슬라브를 열간압연한 다음, 다수개의 수냉뱅크를 구비하고 있는 권취기 전면의 수냉대에서 목표권취온도로 수냉한 후 권취하여 60kg/㎟ 급 열간압연강판을 제조하는 방법에 있어서,The present invention is in weight%, C: 0.07-0.09%, Si: 0.3% or less, Mn: 1.40-1.60%, t-Al: 0.005-0.06%, Nb: 0.03-0.05%, S: 0.003% or less, P : 0.02% or less, hot-rolled steel slab composed of remaining Fe and other unavoidable impurities, followed by water cooling to the target winding temperature in the water cooler in front of the winder equipped with a plurality of water cooling banks, followed by winding up to 60 kg. In the method of manufacturing a / mm2 hot rolled steel sheet,

상기 열간압연 직후 런 아웃 테이블 상에서 Ar3변태점 직하의 온도까지 40-90°c/s 의 냉각속도로 수냉하고, 이어 페라이트 변태가 70 - 80% 진행되는 온도까지 공냉한 다음, 베이나이트 변태개시온도 Bs와 마르텐 사이트 변태개시온도 Ms의 중간온도까지 40 - 90°c/s 의 냉각속도로 수냉하는 것을 포함하여 이루어지는 연신장출성이 우수한 인장강도 60kg/㎟ 급 열간압연강판의 제조방법에 관한 것이다.Immediately after the hot rolling, water was cooled on the runout table at a cooling rate of 40-90 ° C / s to a temperature directly below the Ar 3 transformation point, followed by air cooling to a temperature at which ferrite transformation proceeded 70 to 80%, and then bainite transformation start temperature. Tensile strength excellent in stretch elongation, including water cooling at a cooling rate of 40-90 ° c / s to the intermediate temperature between B s and martensitic transformation start temperature M s will be.

이하 본 발명에 대하여 첨부된 도면을 참고하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

일반적으로, 석출강화형 원소인 Ti 또는 Nb 을 함유하는 합금계의 강을 열간압연하고 런 아웃 테이블상에서 연속냉각을 실시하여 인장강도 60kg/㎟ 급 열연강판으로 제조할 때 스트립의 온도변화는 제 1 도에 나타난 바와 같다.In general, when the steel of the alloy system containing Ti or Nb, which is a precipitation-reinforced element, is hot rolled and continuously cooled on a run-out table, the temperature change of the strip is produced when the tensile strength is 60 kg / mm2 hot rolled steel sheet. As shown in the figure.

즉, 중량%로, C: 0.07-0.09%, Si: 0.3% 이하, Mn: 1.3-1.5%, t-Al: 0.005-0.06%, Nb: 0.03-0.05%, S: 0.003% 이하, P: 0.02% 이하, 나머지 Fe 및 기타 불가피하게 함유되는 불순물로 조성되는 강 슬라브를 열간압연후 사상압연기(1)를 빠져나온 열연강판(4)은 권취기(3)에 도달하는 동안 주수대(70)를 거치면서 강제 수냉되며, 목표권취온도까지의 온도강하는 방냉에 의한 온도강하량을 제외한 나머지 온도강하량에 대하여 수냉이 이루어진다. 이때 주수는 수냉뱅크(2)의 전방뱅크 부터 이루어진다.Namely, by weight%, C: 0.07-0.09%, Si: 0.3% or less, Mn: 1.3-1.5%, t-Al: 0.005-0.06%, Nb: 0.03-0.05%, S: 0.003% or less, P: The hot rolled steel sheet 4, which has exited the finishing mill 1 after hot rolling a steel slab composed of 0.02% or less and the remaining Fe and other unavoidable impurities, may be discharged to the catcher 70 while reaching the winding machine 3. Forced water cooling while going through, and the temperature drop up to the target winding temperature is water cooling is carried out for the remaining temperature drop except the temperature drop due to cooling. At this time, the water is made from the front bank of the water-cooled bank (2).

이와 같은 냉각방식을 전단냉각법이라고 하며, 권취온도가 530℃ 이상이 되면 최종 조직은 페라이트-퍼얼라이트 조직이 되며, 그 이하의 권취온도에서는 침상 페라이트 및 베이나이트 조직 또는 베이나이트 단상조직으로 된다. 페라이트 형상이 침상으로 변화하거나 상 전체가 베이나이트 단상으로 되면 강도는 증가하나, 프레스가공에 요구되는 연성은 저하된다.Such a cooling method is called a shear cooling method, and when the coiling temperature is 530 ° C. or more, the final structure becomes a ferrite-perlite structure, and at a coiling temperature below that, it becomes a needle-like ferrite and bainite structure or bainite single phase structure. When the ferrite shape changes to needle shape or the entire phase becomes bainite single phase, the strength increases, but the ductility required for press working is lowered.

따라서 본 발명에서는 상기와 같이 석출강화원소인 Nb 을 포함하여 조성되는 강을 열간압연후 런아웃테이블(8) 상에서 냉각시 제 2 도에 나타낸 바와 같이 베이나이트 변태개시 온도인 Bs이하의 온도에서 권취하는 제어냉각을 하여 그 조직을 페라이트 베이나이트 복합조직으로 형성시키므로서 상기한 목적의 달성이 가능하다.Therefore, in the present invention, when the steel formed by hot rolling is formed on the runout table 8 after hot rolling as described above, at a temperature below B s which is the bainite transformation start temperature as shown in FIG. The above object can be attained by controlling the cooling to form the tissue into a ferrite bainite composite.

즉, 본 발명에서는 중량%로, C: 0.07-0.09%, Si: 0.3% 이하, Mn: 1.3-1.5%, t-Al: 0.005-0.06%, Nb: 0.03-0.05%, S: 0.003% 이하, P: 0.02% 이하, 나머지 Fe 및 기타 불가피하게 함유되는 불순물로 조성되는 강 슬라브를 열간압연 후 1차 수냉이 개시되는 온도(T1)에서 Ar3변태점 직하의 온도인 T2까지 40-90°c/s의 냉각속도로 수냉각 한 후, 페라이트 변태가 70-80% 정도 진행되는 온도 T3까지 공냉을 실시하여 미세한 페라이트생성 및 페라이트 분율의 증가를 촉진시킨 다음 베이나이트변태개시온도와 마르텐사이트 변태개시온도의 중간인 온도 T4까지 2 차 수냉을 40-90°c/s의 냉각속도로 실시하여 T3에서 미변태된 오스테나이트가 베이나이트 조직이 되도록 하여 권취된 열연강판의 최종조직이 연질의 등축 페라이트 기지에 베이나이트가 생성된 조직이 되도록 함이 바람직한데 그 이유는 다음과 같다.That is, in the present invention, by weight%, C: 0.07-0.09%, Si: 0.3% or less, Mn: 1.3-1.5%, t-Al: 0.005-0.06%, Nb: 0.03-0.05%, S: 0.003% or less , P: 0.02% or less, the steel slab composed of the remaining Fe and other unavoidable impurities, from the temperature (T 1 ) at which the first water cooling is started after hot rolling to 40 2-90 to the temperature T 2 directly below the Ar 3 transformation point. Water-cooled at a cooling rate of ° C / s, and then air-cooled to a temperature T 3 where the ferrite transformation proceeds about 70-80% to promote the formation of fine ferrite and the increase of the ferrite fraction, and then the bainite transformation start temperature. And martensite transformation start temperature Secondary water cooling is carried out at a cooling rate of 40-90 ° c / s to a temperature T 4 , which is in the middle, so that unaffected austenite becomes bainite structure at T 3 , and the final structure of the wound hot rolled steel sheet is soft It is desirable to have a bainite formed in the ferrite matrix because of the following reasons.

본 발명의 방법에 의한 제어냉각시 1차수냉종료온도인 T2가 Ar3변태점 이상이 되면 강판의 페라이트 변태역에서의 통과시간이 단축되어 제 2 상 분율이 증가하고, 반대로 Ar3변태점보다 너무 낮게 되면 페라이트 변태 및 결정립의 성장이 억제되어 최종조직의 페라이트 형상이 침상으로 되어 열연강판의 연성이 저하되므로 1 차 수냉종료온도인 T2는 Ar3변태점 직하의 온도범위에서 관리함이 바람직하다.When control cooling by the method of the present invention, the first water cooling end temperature T 2 is more than the Ar 3 transformation point, the passage time in the ferrite transformation region of the steel sheet is shortened, the second phase fraction increases, and conversely, it is too much than the Ar 3 transformation point. When the low ferrite transformation is suppressed and the growth of crystal grains is because the ferrite shape of the final tissue is a needle-like decrease in ductility of the hot rolled steel sheet of the water-cooling end temperature T 2 is preferably a primary managing in a temperature range of Ar 3 transformation point immediately below.

그리고 1 차 수냉시 냉각속도가 40°c/s 이하로 되면 1 차 수냉종료온도 T2에서 2차 수냉개시온도 T3까지의 공냉시간이 단축되어 페라이트의 등축화가 원활하지않고 상한치 90°c/s는 열간압연라인의 최저속도를 고려한 것이다.And when the cooling rate in the first water cooling is 40 ° c / s or less, the air cooling time from the first water cooling end temperature T 2 to the second water cooling start temperature T 3 is shortened, so that the equalization of the ferrite is not smooth and the upper limit is 90 ° c / s. s considers the minimum speed of hot rolling line.

Ar3로 변태점 직하의 온도까지 1 차 수냉후에는 연신율 확보를 위해 페라이트 변태가 70-80% 정도 진행되도록 공냉을 실시함이 바람직한데, 그 이유는 페라이트 변태정도가 70% 이하일 경우에는 강도는 상승되는 반면 연신율이 저하되며, 80% 이상일 경우에는 본 발명에서 목적하는 인장강도 60kg/㎟ 급의 강도특성을 얻을 수 없기 때문이다.After the first water cooling to the temperature just below the transformation point with Ar 3 , it is preferable to perform air cooling such that the ferrite transformation proceeds about 70-80% to secure the elongation, because the strength increases when the ferrite transformation degree is 70% or less. On the other hand, the elongation is lowered, and if it is 80% or more, it is because the tensile strength of the present invention can not obtain the strength characteristics of 60kg / mm2 class.

페라이트 변태가 70-80% 정도 진행된 후에는 T3에서 미변태된 오스테나이트가 베이나이트조직이 되도록 T3에서 2 차 수냉을 실시하여 베이나이트 변태개시 온도와 마르텐사이트 변태개시온도의 중간온도까지 40-90°c/s 의 냉각속도 범위로 수냉각함이 바람직한데 그 이유는 냉각속도가 40°c/s 이하인 경우에는 퍼얼라이트 변태가 조장되어 연신장출성이 떨어지기 때문이다. 그리고 상한치를 90°c/s로 하는 것은 상기 1 차 수냉각의 경우와 동일하다.Ferrite transformation is advanced after 70-80% of the non-transformed austenite is bainite structure is such that T 3 and in the embodiment the secondary water-cooled bainite transformation starting temperature T 3 in the And martensite transformation start temperature It is preferable to cool the water in the cooling speed range of 40-90 ° c / s up to the intermediate temperature of. The reason is that when the cooling speed is 40 ° c / s or less, the pearlite transformation is promoted and the elongation is inferior. . And the upper limit is set to 90 ° c / s is the same as in the case of the primary water cooling.

이상과 같은 조건을 만족하도록 Nb 이 첨가된 석출강화형 강을 제어냉각하게 되면 연신장출성이 우수한 고강도 열간압연 강판을 제조할 수 있다.When controlled cooling of the precipitation-reinforced steel to which Nb is added so as to satisfy the above conditions, it is possible to produce a high strength hot rolled steel sheet excellent in stretch elongation.

이하 실시예를 통하여 본 발명에 대하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to the following examples.

실시예1Example 1

0.08 중량% C-1.4중량% Mn-0.04중량% Nb을 포함하는 성분계로 조성되어 주조된 슬라브를 1250℃에서 3시간 가열한 후 Ar3온도이상인 870℃ 에서 마무리하는 열간압연을 행하여 두께 3.5 mm의 열연판을 제조하였다.A slab composed of 0.08% by weight C-1.4% by weight Mn-0.04% by weight Nb was heated at 1250 ° C. for 3 hours, and then hot-rolled to finish at 870 ° C. above Ar 3 temperature to 3.5 mm thick. A hot rolled plate was prepared.

상기와 같이 열간압연을 행한 후 냉각패턴 및 권취온도가 연신장출성에 미치는 영향을 확인하기 위하여, 하기 표 1 의 종래예(1,2)의 경우는 전단냉각, 즉 권취온도를 620℃ 및 580℃ 로 하였고, 비교예(1,2) 및 발명예(1)의 경우는 제 2 상의 조직을 제어하기 위하여 480-580℃의 온도범위에서 권취하는 제어냉각을 행하였다. 이때 비교예(1) 및 (2)의 권취온도는 각각 580℃ 및 530℃ 이며, 발명예(1)의 권취온도는 베이나이트 변태개시 온도이하의 온도인 480℃ 이다.In order to check the effect of the cooling pattern and the coiling temperature on the elongation elongation after performing the hot rolling as described above, in the conventional examples (1, 2) of Table 1, the shear cooling, that is, the coiling temperature is 620 ℃ and 580 In the case of Comparative Examples (1, 2) and Inventive Example (1), control cooling was carried out in a temperature range of 480-580 ° C. in order to control the structure of the second phase. At this time, the coiling temperatures of Comparative Examples (1) and (2) are 580 ° C and 530 ° C, respectively, and the coiling temperature of Inventive Example (1) is 480 ° C, which is below the bainite transformation start temperature.

상기 제어냉각에서 1 차 수냉종료온도(T2)는 700℃ 2차 수냉개시온도(T3)는 670℃이고, 1차 수냉종료온도(T2)에서 2차 수냉개시온도(T3)까지의 온도구간에서 공냉시간은 4-6초 이다. 그리고 1 차 수냉개시온도(T1)에서 1 차 수냉종료온도(T2)까지 및 2차 수냉개시온도(T3)에서 2 차 수냉종료온도(T4)까지의 수냉각에 있어서, 냉각속도는 열간압연된 스트립의 두께 및 통판 속도에 의해 결정되는데 이경우에는 두경우 모두 40-90°c/s의 냉각속도를 갖는다.In the controlled cooling, the first water cooling end temperature (T 2 ) is 700 ° C., the second water cooling start temperature (T 3 ) is 670 ° C., and the first water cooling end temperature (T 2 ) to the second water cooling start temperature (T 3 ). Air cooling time is 4-6 seconds in the temperature range of. And in the water cooling from the primary water cooling start temperature (T 1 ) to the primary water cooling end temperature (T 2 ) and from the secondary water cooling start temperature (T 3 ) to the secondary water cooling end temperature (T 4 ), the cooling rate Is determined by the thickness of the hot rolled strip and the sheet speed, in which case both have a cooling rate of 40–90 ° c / s.

이상과 같이 전단냉각 및 제어냉각방법이 적용되어 제조된 두께 3.5 mm 의 열연강판에 대하여 기계적 성질 및 연신장출성을 조사하여 그 결과를 하기 표 1 에 나타내었다.As described above, the mechanical properties and the elongation of the hot rolled steel sheet having a thickness of 3.5 mm manufactured by applying the shear cooling and the control cooling method were shown in Table 1 below.

이때, 연신장출성은 소재원판에 구멍의 초기지름(do)이 18mm 인 구멍을 펀칭가공한후 어께 반경이 25mm 인 구두형 펀치를 사용하여 구멍을 확장하였다. 확장된 구멍의 단부를 균열이 관통할 때까지 펀치를 상승시켰을 때의 구멍지름(df)를 측정하여 다음과 같은 식에 의해 평가하였다.At this time, the stretch elongation was punched in the hole of the initial diameter (do) of the hole 18mm in the raw material plate, and then the hole was expanded using a shoe-shaped punch having a radius of 25mm. The hole diameter (df) at the time of raising a punch until a crack penetrates the edge part of the expanded hole was measured, and it evaluated by the following formula.

연신장출성(%) = (df-do)/do %100Elongation at Stretch (%) = (df-do) / do% 100

표1Table 1

상기 표 1 에서 알 수 있는 바와 같이 종래의 방법인 전단냉각법에 의해 제조된 페라이트-퍼얼라이트 조직의 종래예(1,2)의 경우 연신장출성은 77% 정도이다.As can be seen from Table 1, in the conventional example (1, 2) of the ferrite-perlite structure produced by the shear cooling method, which is a conventional method, the elongation elongation is about 77%.

그리고 비교예(1) 및 (2) 와 발명예(1)의 비교에 있어서 권취온도의 저하에 다른 기계적 성질의 변화는 거의 없으나, 제 2 상이 퍼얼라이트에서 베이나이트로 변화하면서 연신장출성은 증가되며, 베이나이트 변태개시온도이하인 480℃ 에서 권취한 발명예(1)의 경우, 인장도 60kg/㎟ 이상, 연신장출성이 90% 이상인 열연강판이 제조된다. 그리고 전단냉각이 적용된 종래예(2)와 발명예(1)을 비교할 경우 기계적 성질에 있어서는 큰 변화가 없으나 연신장출성은 종래예(2)에 비하여 15% 이상 증가된 결과가 얻어짐을 알 수 있다.In comparison between Comparative Examples (1) and (2) and Inventive Example (1), there are almost no changes in mechanical properties due to the decrease in winding temperature, but the extension elongation is increased as the second phase changes from pearlite to bainite. Bainite transformation start temperature In the invention example (1) wound up at 480 degreeC or less, the hot-rolled steel sheet of 60 kg / mm <2> or more of tensile strength and 90% or more of draw elongation is manufactured. And when comparing the conventional example (2) and the invention example (1) to which the shear cooling is applied, there is no significant change in the mechanical properties, but it can be seen that the elongation is increased by more than 15% compared to the conventional example (2).

실시예2Example 2

0.08 중량% C-1.4 중량% Mn-0.04중량% Nb 을 포함하는 성분계로 조성되어 주조된 슬라브를 1250℃ 에서 3 시간 가열한 후 Ar3온도이상인 870℃에서 마무리하는 열간압연을 행하여 두께 3.2mm 및 3.0mm의 열연판을 제조하였다.0.08% by weight C-1.4% by weight Mn-0.04% by weight Nb, the slab formed by heating the slab formed by heating at 1250 ℃ for 3 hours and then hot-rolled to finish at 870 ℃ above the Ar 3 temperature 3.2mm and A 3.0 mm hot rolled sheet was prepared.

상기와 같이 열간압연을 행한 후 냉각패턴 및 권취온도가 연신장출성에 미치는 영향을 확인하기 위하여 하기 2의 종래예(3)의 경우는 전단냉각을 행하여 580℃에서 권취하였고, 발명예(2,3)의 경우는 제어냉각을 행하여 베이나이트 변태개시 온도이하의 온도인 480℃에서 권취하였다.In order to check the effect of the cooling pattern and the winding temperature on the stretch elongation after performing the hot rolling as described above, in the case of the following conventional example (3), it was subjected to shear cooling and wound up at 580 ° C. In the case of 3), controlled cooling was carried out and wound up at 480 ° C. which was a temperature below the bainite transformation start temperature.

상기 발명예(2,3)의 제어냉각에서 1 차 수냉종료온도(T2)는 700℃, 2차수냉개시온도(T3)는 670℃ 이고, 1차수냉종료온도(T2)에서 2차수냉개시온도(T3)까지의 온도구간에서 공냉시간은 3-5초이다. 그리고 1차수냉개시온도(T1)에서 1차수냉종료온도(T2)까지 및 2차수냉개시온도(T3)에서 2차수냉종료온도(T4)까지의 수냉각에 있어서 냉각속도는 열간압연된 스트립의 두께 및 통판속도에 의해 결정되는데 이 경우에는 두 경우 모두 40-90°c/s의 냉각속도를 갖는다.In the controlled cooling of the inventive examples (2, 3), the primary water cooling end temperature (T 2 ) is 700 ℃, the secondary water cooling start temperature (T 3 ) is 670 ℃, 2 at the primary water cooling end temperature (T 2 ) The air cooling time is 3-5 seconds in the temperature range up to the starting water cooling temperature (T 3 ). In the water cooling from the first water cooling start temperature (T 1 ) to the first water cooling end temperature (T 2 ) and from the second water cooling start temperature (T 3 ) to the second water cooling end temperature (T 4 ), the cooling rate is It is determined by the thickness of the hot rolled strip and the sheet speed, in which case both have cooling rates of 40-90 ° c / s.

이상과 같이 절단냉각 및 제어냉각방법이 적용되어 제조된 두께 3.0mm 및 3.2 mm의 강판에 대하여 기계적 성질 및 연신장출성을 조사하여 그 결과를 하기 표 2 에 나타내었다.As described above, the mechanical properties and the elongation of the steel sheet having a thickness of 3.0 mm and 3.2 mm manufactured by applying the cutting cooling and the control cooling method were shown in Table 2 below.

이때 연신장출성은 소재원판에 구멍의 초기지름(do)이 18mm 인 구멍을 펀칭가공한 후 어께 반경이 25 mm 인 구두형 펀치를 사용하여 구멍을 확장하였다. 확장된 구멍의 단부를 균열이 관통할 때까지 펀치를 상승시켰을 때의 구멍지름(df)를 측정하여 다음과 같은 식에 의해 평가하였다.At this time, stretch elongation was performed by punching a hole having an initial diameter (do) of 18 mm in the raw material disc, and then using a shoe punch having a shoulder radius of 25 mm to expand the hole. The hole diameter (df) at the time of raising a punch until a crack penetrates the edge part of the expanded hole was measured, and it evaluated by the following formula.

연신장출성(%) = (df-do)/do %100Elongation at Stretch (%) = (df-do) / do% 100

표2Table 2

상기 표2에서 알 수 있는 바와 같이, 열연판 두께가 3.2 mm로 동일한 경우인 종래예(3)과 발명예(2)와의 비교에서 종래예(3)을 페라이트-퍼얼라이트 조직이며, 연신장출성은 79% 정도이다. 이에 비하여 발명예(2)는 등축 페라이트-베이나이트복합 조직강으로서 종래예와 동등한 기계적 성질을 가지면서도 연신장출성은 90% 정도로서 종래예에 비하여 10% 이상 증가된 결과가 얻어졌다. 그리고 발명예(3)은 발명예(2)에 비하여 두께가 얇은 3.0mm 열연강판의 결과인데 역시 90% 에 근접된 연신장출성이 얻어짐을 보여주고 있다.As can be seen in Table 2, the conventional example (3) is a ferrite-perlite structure in comparison with the conventional example (3) and the invention example (2), where the thickness of the hot rolled sheet is equal to 3.2 mm, 79%. On the other hand, Inventive Example (2) is an equiaxed ferrite-bainite composite tissue steel, which has the same mechanical properties as those of the prior art, but has a stretch elongation of about 90%, resulting in an increase of 10% or more compared with the conventional example. Inventive Example (3) is a result of 3.0 mm hot-rolled steel sheet, which is thinner than Inventive Example (2), and shows that stretch elongation of 90% is obtained.

상술한 바와 같이 본 발명은 Nb 이 첨가된 석출강화형 강의 성분계를 이용하여 열간압연후 런 아웃 테이블 상에서 열연강판의 냉각패턴을 제어함과 동시에 베이나이트가 생성되는 온도범위에서 권취하는 제어냉각법을 사용함으로서 종래의 전단냉각시 고온권취에서 얻어지는 페라이트-미세 퍼얼라이트 조직 또는 저온권취에서 얻어지는 베이나이트단상 조직의 열연강판에 대비하여 연성 및 연신장출성이 우수한 60kg/㎟ 급 고강도 열연강판을 제조할 수 있는 효과가 있다.As described above, the present invention uses a controlled cooling method to control the cooling pattern of the hot-rolled steel sheet on the run-out table after hot rolling using the component system of the precipitation-reinforced steel added with Nb and to wind it in the temperature range where bainite is generated. It is possible to produce 60kg / mm2 high strength hot rolled steel sheet with excellent ductility and elongation property in comparison with hot rolled steel sheet of ferrite-fine pearlite structure obtained by high temperature winding or bainite single phase structure obtained by low temperature winding. It works.

제 1 도는 종래의 방법을 적용하여 열간압연 강판을 제조시 냉각패턴을 나타낸 냉각곡선1 is a cooling curve showing a cooling pattern when manufacturing a hot rolled steel sheet using a conventional method

제 2 도는 본 발명의 방법을 적용하여 열간압연 강판을 제조시 냉각패턴을 나타낸 냉각곡선2 is a cooling curve showing a cooling pattern when manufacturing a hot rolled steel sheet by applying the method of the present invention

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

1.... 열간압연기 2.... 수냉뱅크 3.... 권취기1 .... hot rolling mill 2 .... water cooling bank 3 .... winder

4.... 열연강판 5.... 열간압연 마무리온도계 6.... 권취온도계4 .... Hot rolled steel sheet 5 .... Hot rolled finish thermometer 6 .... Winding thermometer

7.... 수냉대 8.... 런 아웃 테이블(run out table) F: 페라이트7 .... water cooler 8 .... run out table F: ferrite

P: 퍼얼라이트 B: 베이나이트 A: 오스테나이트 M: 마르텐사이트P: pearlite B: bainite A: austenite M: martensite

T1: 1차수냉개시온도 T2: 1차수냉종료온도(공냉개시온도)T 1 : 1st water cooling start temperature T 2 : 1st water cooling end temperature (air cooling start temperature)

T3: 2차수냉개시온도(공냉종료온도) T4: 2차수냉종료온도T 3 : 2nd water cooling start temperature (air cooling end temperature) T 4 : 2nd water cooling end temperature

Claims (1)

중량%로 C: 0.07-0.09%, Si: 0.25% 이하, Mn: 1.40-1.60%, t-Al: 0.005-0.06%, Nb: 0.03-0.05%, S: 0.003%이하, P: 0.02%이하, 나머지 Fe 및 기타 불가피하게 함유되는 불순물로 조성되는 강 슬라브를 열간압연한 다음, 다수 개의 수냉뱅크를 구비하고 있는 권취기전면의 수냉대에서 목표권취온도로 수냉한 후 권취하여 60kg/㎟급 열간압연강판을 제조하는 방법에 있어서,By weight% C: 0.07-0.09%, Si: 0.25% or less, Mn: 1.40-1.60%, t-Al: 0.005-0.06%, Nb: 0.03-0.05%, S: 0.003% or less, P: 0.02% or less , Hot-rolled steel slab composed of the remaining Fe and other unavoidable impurities, followed by water cooling to the target winding temperature in the front of the winder equipped with a plurality of water cooling banks, followed by winding up to 60kg / mm2 hot In the method of manufacturing a rolled steel sheet, 상기 열간압연 직후 런 아웃 테이블상에서 Ar3변태점 직하의 온도까지 40-90℃/s 의 냉각속도로 수냉하고, 이어 페라이트 변태가 70-80% 진행되는 온도까지 공냉한 다음, 베이나이트 변태개시온도 Bs와 마르텐사이트 변태개시온도 Ms의 중간온도까지 40-90℃/s의 냉각속도로 수냉하여 최종 조직이 70-80%의 등축 페라이트와 20-30%의 베이나이트로 이루어지도록 하는 것을 특징으로 하는 연신장출성이 우수한 인장강도 60kg/㎟급 열간압연강판의 제조방법.Immediately after the hot rolling, the water was cooled at a cooling rate of 40-90 ° C./s to a temperature directly below the Ar 3 transformation point on the run-out table, followed by air cooling to a temperature at which ferrite transformation proceeds to 70-80%, and then bainite transformation start temperature Bs. And martensitic transformation start temperature Ms to water at a cooling rate of 40-90 ℃ / s at a cooling rate of 40-90 ℃ / s so that the final structure is composed of 70-80% equiaxed ferrite and 20-30% bainite A method for producing hot rolled steel sheets having a tensile strength of 60 kg / mm2 having excellent elongation property.
KR1019950051877A 1995-12-19 1995-12-19 Manufacturing method of tensile strength 60 kg/mm¬2 class hot rolled steel sheet having superior stretch flangeability KR100376523B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950051877A KR100376523B1 (en) 1995-12-19 1995-12-19 Manufacturing method of tensile strength 60 kg/mm¬2 class hot rolled steel sheet having superior stretch flangeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950051877A KR100376523B1 (en) 1995-12-19 1995-12-19 Manufacturing method of tensile strength 60 kg/mm¬2 class hot rolled steel sheet having superior stretch flangeability

Publications (2)

Publication Number Publication Date
KR970043154A KR970043154A (en) 1997-07-26
KR100376523B1 true KR100376523B1 (en) 2003-06-09

Family

ID=37416960

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950051877A KR100376523B1 (en) 1995-12-19 1995-12-19 Manufacturing method of tensile strength 60 kg/mm¬2 class hot rolled steel sheet having superior stretch flangeability

Country Status (1)

Country Link
KR (1) KR100376523B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293910A (en) * 1993-04-07 1994-10-21 Nippon Steel Corp Production of high strength hot rolled steel plate excellent in bore expandability and ductility

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293910A (en) * 1993-04-07 1994-10-21 Nippon Steel Corp Production of high strength hot rolled steel plate excellent in bore expandability and ductility

Also Published As

Publication number Publication date
KR970043154A (en) 1997-07-26

Similar Documents

Publication Publication Date Title
US4502897A (en) Method for producing hot-rolled steel sheets having a low yield ratio and a high tensile strength due to dual phase structure
JP2000282175A (en) Superhigh strength hot-rolled steel sheet excellent in workability, and its production
CN112941408B (en) Method for manufacturing 500 MPa-grade seat sliding rail steel based on continuous casting and rolling line
US20040118489A1 (en) Dual phase hot rolled steel sheet having excellent formability and stretch flangeability
WO1994025635A1 (en) Sheet steel excellent in flanging capability and process for producing the same
JPH08176723A (en) Hot rolled steel sheet and cold rolled steel sheet having excellent impact resistance for automobiles and their production
JPH0949026A (en) Production of high strength hot rolled steel plate excellent in balance between strength and elongation and in stretch-flange formability
JPH1060593A (en) High strength cold rolled steel sheet excellent in balance between strength and elongation-flanging formability, and its production
KR101299803B1 (en) Method for manufacturing low-alloy high-strength cold rolled thin steel sheet with excellent weldability
JP2001220647A (en) High strength cold rolled steel plate excellent in workability and producing method therefor
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
KR20220073762A (en) Composite steel with high hole expandability and manufacturing method therefor
JP2000336455A (en) High ductility hot rolled steel sheet and its production
KR100352587B1 (en) Method for manufacturing high strength hot rolled steel sheet with excellent elongation
JPH09279233A (en) Production of high tension steel excellent in toughness
JPS6239230B2 (en)
US12049687B2 (en) High-strength steel having high yield ratio and excellent durability, and method for manufacturing same
KR100376523B1 (en) Manufacturing method of tensile strength 60 kg/mm¬2 class hot rolled steel sheet having superior stretch flangeability
JP2003147481A (en) Non-heatteated high strength and high toughness steel for forging, method of producing the steel, and method of producing forging
KR20210079720A (en) Alloyed hot dip galvanized steel sheet and manufacturing method thereof
JP3870840B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
US4662950A (en) Method of making a steel plate for construction applications
CN111363978A (en) Welding softening resistant ferrite martensite hot-rolled dual-phase steel and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130305

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140305

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee