KR100366066B1 - A fiber reinforced plastic pipe manufactured by the wrapping and filament winding process using uni-direction fiber and a method for preparing the same - Google Patents

A fiber reinforced plastic pipe manufactured by the wrapping and filament winding process using uni-direction fiber and a method for preparing the same Download PDF

Info

Publication number
KR100366066B1
KR100366066B1 KR10-2000-0018958A KR20000018958A KR100366066B1 KR 100366066 B1 KR100366066 B1 KR 100366066B1 KR 20000018958 A KR20000018958 A KR 20000018958A KR 100366066 B1 KR100366066 B1 KR 100366066B1
Authority
KR
South Korea
Prior art keywords
fiber
reinforced plastic
mold
plastic pipe
impregnation
Prior art date
Application number
KR10-2000-0018958A
Other languages
Korean (ko)
Other versions
KR20010095665A (en
Inventor
장봉열
Original Assignee
대원토질 주식회사
원창공업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대원토질 주식회사, 원창공업주식회사 filed Critical 대원토질 주식회사
Priority to KR10-2000-0018958A priority Critical patent/KR100366066B1/en
Publication of KR20010095665A publication Critical patent/KR20010095665A/en
Application granted granted Critical
Publication of KR100366066B1 publication Critical patent/KR100366066B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/56Tensioning reinforcements before or during shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/06Unsaturated polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0809Fabrics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

본 발명은 일방향성 보강섬유를 래핑(Wrapping)과 필라멘트와인딩(Filament Winding)의 두 공법을 일관공정으로 처리하여, 제품의 일체화를 이루어 내압 및 인장ㆍ전단강도 등 연약지반 보강 그라우팅공법에 요구되는 중요성능을 동시에 만족시킨 섬유강화플라스틱(FRP) 파이프 및 그 제조방법에 관한 것이다.The present invention is to treat the two methods of unidirectional reinforcing fiber wrapping and filament winding in a consistent process, the product is integrated to make the important ground required for soft ground reinforcement grouting methods such as pressure resistance, tensile strength and shear strength The present invention relates to a fiber-reinforced plastic (FRP) pipe that simultaneously satisfies performance and a method of manufacturing the same.

본 발명의 섬유강화플라스틱 파이프는 소재의 인장을 향상시키는 일방향성 보강섬유를 열경화성 수지에 함침시켜 파이프 형상의 형틀에 소정의 균일한 두께에 이를 때까지 래핑한 후 이 래핑된 일방향성 보강섬유의 상부에 소재의 내압을 향상시키는 보강섬유를 필라멘트와인딩하는 두 개의 주요공법을 거친다. 이 복합공법을 일관공정으로 거친 재료를 형틀과 함께 가열하여 열경화성수지를 경화시킨 후 경화된 성형품을 탈형하고 탈형된 성형품을 필요한 두께로 절단하는 공정으로 제조된다.The fiber-reinforced plastic pipe of the present invention is impregnated with a unidirectional reinforcing fiber to improve the tensile strength of the material in the thermosetting resin to wrap the pipe-shaped mold until the predetermined uniform thickness until the top of the wrapped unidirectional reinforcing fiber Two main methods of winding the filament of the reinforcing fiber to improve the internal pressure of the material. This composite process is produced by heating the coarse material together with the mold to cure the thermosetting resin, demolding the cured molded product and cutting the demolded product to the required thickness.

상기 복합공정에 의해 제조된 섬유강화플라스틱 파이프는 신소재 강화 플라스틱 복합재로써 절단 및 가공이 쉽고 중량이 가벼워 취급이 용이하며, 내화학성과 내부식성이 우수한 제품으로 부식과 변질이 되지 않아 시공 중 굴착보조재로써 뿐만 아니라 영구적인 보강재로써 사용할 수 있다.Fiber-reinforced plastic pipe manufactured by the composite process is a new material reinforced plastic composite material, easy to cut and process, light weight, easy to handle, and excellent chemical resistance and corrosion resistance, and does not corrode and deterioration. It can also be used as a permanent reinforcement.

Description

방향성을 갖는 보강재를 래핑과 필라멘트와인딩의 복합공법을 이용하여 제조한 섬유강화플라스틱 파이프 및 그 제조방법 {A fiber reinforced plastic pipe manufactured by the wrapping and filament winding process using uni-direction fiber and a method for preparing the same}Fiber reinforced plastic pipe manufactured by the wrapping and filament winding process using uni-direction fiber and a method for preparing the same}

본 발명은 터널 및 사면의 연약지반 등 토목지반 보강에 적용되는 섬유강화플라스틱 파이프 및 그 제조방법에 관한 것이다.The present invention relates to a fiber-reinforced plastic pipe applied to reinforcement of civil engineering grounds such as soft ground of tunnels and slopes, and a method of manufacturing the same.

더욱 구체적으로, 열경화성 수지에 함침시킨 일방향성의 보강섬유를 파이프형상의 형틀(Mandrel)에 소정의 균일한 두께에 이를 때까지 래핑한 후 경화되기 전에 파이프의 내압을 만족시키기 위해 필라멘트와인딩 공정에 위해 종적으로 권취(Winding)하는, 즉 래핑과 필라멘트와인딩 두 공법의 일관공정 처리에 의해 제품의 일체화를 이루어 내압 및 인장ㆍ전단강도를 향상시킨 섬유강화플라스틱 파이프 및 그 제조방법에 관한 것이다.More specifically, the unidirectional reinforcing fibers impregnated with the thermosetting resin are wrapped in a pipe-shaped mold until a uniform thickness is reached, and then the filament winding process is used to satisfy the internal pressure of the pipe before curing. The present invention relates to a fiber-reinforced plastic pipe and a method of manufacturing the same, which are integrally formed by the integrated process treatment of both winding and filament winding methods, thereby improving internal pressure, tensile strength, and shear strength.

현재 연약지반의 보강을 위하여 사용하고 있는 소일네일링(Soil Nailing)공법 및 록볼트(Rock Bolt)공법은 네일(Nail) 및 볼트(Bolt)의 부식으로 인하여 소재의 내구연한 내에서만 사용되고 있어 영구적 사용에는 한계가 있으며 지반의 일체화를 통하여 보강하는 것이 아니고 지반자체가 강도를 발휘하도록 도와주는 지보제의 역할만 할뿐이다.Soil nailing method and rock bolt method currently used for reinforcement of soft ground are used only in the durability of the material due to corrosion of nail and bolt. There is a limit and it does not reinforce through the integration of the ground, but only serves as a support system to help the ground itself to exert strength.

이에, 종래의 강관 주입관에 비해 매우 경량이면서 부식의 염려가 없는 섬유강화플라스틱 파이프를 사용하여, 연약지반을 보강함으로써 주변지반을 일체화시켜 영구적으로 적용할 수 있도록 하였다.Thus, by using a fiber-reinforced plastic pipe that is very lightweight compared to the conventional steel pipe injection tube, there is no fear of corrosion, by reinforcing the soft ground can be applied permanently by integrating the surrounding ground.

그러나, 인발(Pultrusion)공정을 이용한 섬유강화플라스틱 파이프를 적용한 경우에는, 패커(Packer)관 내측에 틈도 없이 패커의 재료인 고무관이 공기압에 의하여 팽창하여 파지하여야 패커에 의한 지반강화액(시멘트밀크 및 주입액제)이 토출, 파이프의 천공된 구멍으로 분출되어 지반을 보강하게 되는데, 이 공기압(40kg/㎠)에 섬유강화플라스틱 파이프가 쪼개지는 현상이 일어나 상기 인발공정을 이용한 섬유강화플라스틱 파이프는 적용할 수가 없었다.However, in case of applying fiber reinforced plastic pipes using pultrusion process, the rubber tube, which is the material of the packer, should be expanded and grasped by air pressure without gaps inside the packer tube, so that the ground reinforcement liquid by the packer (cement milk) And the injection liquid) is discharged and ejected into the perforated hole of the pipe to reinforce the ground, and the fiber reinforced plastic pipe is split into the air pressure (40 kg / ㎠), so that the fiber reinforced plastic pipe using the drawing process is applied. I could not.

또한 필라멘트와인딩 공정에 의한 섬유강화플라스틱 파이프를 적용한 경우에는, 연약지반 보강의 주요요소인 전단강도 및 인장강도가 강재(Steel)의 20%밖에 나오지 않았다.In addition, when the fiber-reinforced plastic pipe by the filament winding process is applied, the shear strength and tensile strength, which are the main elements of the soft ground reinforcement, are only 20% of the steel.

상기와 같은 문제점을 해결, 내압 및 전단ㆍ인장강도를 증대시키기 위하여 본 발명은 일방향성 보강재를 내측에 포진시켜 전단ㆍ인장강도를 강재의 1.5배가 나오도록 래핑공정을 거친 후 내압을 유지토록 필라멘트와인딩 공정을 거치도록, 두 공법을 일관공정으로 처리하여 공법상 요구되는 성능을 만족시킬 수 있는 섬유강화플라스틱 파이프를 개발하게 되었다.In order to solve the above problems, and to increase the internal pressure and shear and tensile strength, the present invention is a filament winding to maintain the internal pressure after the lapping process so that the shear and tensile strength is 1.5 times of the steel by shinging the unidirectional reinforcement inside In order to go through the process, both processes are processed in a consistent process to develop fiber-reinforced plastic pipes that can satisfy the performance requirements of the process.

본 발명의 목적은 연약지반 보강 그라우팅 주입관에 있어 내압 및 전단ㆍ인장강도를 증대시킨 섬유강화플라스틱 파이프 및 그 제조방법을 제공하는 것이다.An object of the present invention is to provide a fiber-reinforced plastic pipe and a method for manufacturing the same, which have increased internal pressure, shear and tensile strength in a soft ground reinforced grouting injection pipe.

본 발명의 다른 목적은 종래의 강관 그라우팅 주입관에 비하여 부식의 염려가 없어 영구적으로 주변지반에 적용할 수 있는 섬유강화플라스틱 파이프 및 그 제조방법을 제공하는 것이다.Another object of the present invention is to provide a fiber-reinforced plastic pipe and a method of manufacturing the same, which can be applied to the surrounding ground permanently, as compared with the conventional steel pipe grouting injection tube.

본 발명의 다른 목적은 지반자체가 강도를 발휘하도록 도와주는 지보제의 역할이 아니라 주변지반을 일체화시켜 영구적으로 적용할 수 있는 섬유강화플라스틱 파이프 및 그 제조방법을 제공하는 것이다.Another object of the present invention is to provide a fiber-reinforced plastic pipe and a method of manufacturing the same, which can be applied permanently by integrating the surrounding ground, not the role of the supporting agent to help the ground itself to exert its strength.

본 발명의 또 다른 목적은 종래의 강관 그라우팅 주입관에 비하여 매우 경량일 뿐만 아니라 절단 및 가공이 쉽고 취급이 용이하여 작업시간을 단축함으로써 시공성 및 경제성이 우수한 섬유강화플라스틱 파이프 및 그 제조방법을 제공하는 것이다.Another object of the present invention is to provide a fiber-reinforced plastic pipe excellent in workability and economical efficiency by shortening the working time is not only very light weight compared to the conventional steel pipe grouting injection pipe, easy to cut and process, easy handling, will be.

도1은 본 발명의 섬유강화플라스틱 파이프의 제조방법을 도시한 것으로써,Figure 1 shows a method of manufacturing a fiber-reinforced plastic pipe of the present invention,

도1a는 함침 및 래핑공정,Figure 1a is an impregnation and lapping process,

도1b는 함침 및 필라멘트와인딩공정,Figure 1b is an impregnation and filament winding process,

도1c는 경화공정,Figure 1c is a curing process,

도1d는 탈형공정, 그리고1d shows a demolding process, and

도1e는 절단공정을 공정별로 나타낸 개략도이다.Figure 1e is a schematic diagram showing the cutting process by process.

도2는 본 발명의 방법에 따라 제조되는 섬유강화 플라스틱 파이프를 이용한 다단 그라우팅의 구조를 나타낸 구조도이다.Figure 2 is a structural diagram showing the structure of multi-stage grouting using a fiber-reinforced plastic pipe manufactured according to the method of the present invention.

< 도면의 주요 부분에 대한 부호의 설명 ><Description of Symbols for Main Parts of Drawings>

1: 보강섬유타래 2: 열경화성 플라스틱 수지1: reinforcing fiber skein 2: thermosetting plastic resin

3: 함침조 4: 보강섬유3: impregnation tank 4: reinforcing fiber

5: 고리 6: 형틀(Mandrel)5: Ring 6: Mandrel

7: 권취성형틀 8: 파이프7: winding mold 8: pipe

9: 앤드캡 10: 간격재9: end cap 10: spacer

11: 주입공11: injection hole

도면에 따라 본 발명을 공정별로 설명하면 다음과 같다.Referring to the drawings according to the present invention by the process as follows.

도1a는 본 발명의 함침 및 래핑공정에 관한 것으로써, 타래(1)에 감겨있는 보강섬유(4)를 수지함침조(3)에 들어있는 열경화성 수지(2)중에 일정한 속도로 연속 통과시켜 함침시킨 다음, 함침된 보강섬유(4)를 파이프형상 형틀(6, Mandrel)의 회전축에 소정의 균일한 두께에 이를 때까지 회전축과 직각(90°)을 유지시키면서 래핑한다. 이때 수지함침조(3)에 부착된 고리(5)는 함침된 섬유의 장력을 유지하고 과도하게 함침된 수지를 제거함으로써 균일한 함침을 제공하는 역할을 한다. 상기 보강섬유(4)의 함침조(3) 내에서의 함침속도는 통상 5∼10m/분으로 하며, 함침조(3)내의 수지온도는 20℃∼30℃로 하는 것이 함침에 유리하다. 상기 보강섬유(4)의 래핑공정에 있어 형틀(6)의 회전속도는 요구되는 권취성형틀(7)의 크기에 따라 변화시킬 수 있으며, 보강섬유(4)의 래핑두께는 요구되는 파이프(8)의 강도에 따라 변화시킬 수 있다.FIG. 1A relates to the impregnation and lapping process of the present invention, in which a reinforcing fiber 4 wound on a tuft 1 is continuously impregnated at a constant rate in a thermosetting resin 2 contained in a resin impregnation tank 3. Then, the impregnated reinforcing fiber 4 is wrapped while maintaining a right angle (90 °) with the axis of rotation until a predetermined uniform thickness is reached on the axis of rotation of the pipe-shaped mold (6, Mandrel). At this time, the ring 5 attached to the resin impregnation tank 3 serves to provide uniform impregnation by maintaining the tension of the impregnated fiber and removing excessively impregnated resin. The impregnation speed in the impregnation tank 3 of the reinforcing fiber 4 is usually 5 to 10 m / min, and the resin temperature in the impregnation tank 3 is advantageous to impregnation at 20 ° C to 30 ° C. In the lapping process of the reinforcing fiber 4, the rotational speed of the mold 6 can be changed according to the size of the wound mold 7 required, and the wrapping thickness of the reinforcing fiber 4 is required for the pipe 8 Can be changed according to the strength of the

상기 함침 및 래핑공정에서, 보강섬유(4)는 유리섬유(Fiberglass)를 사용하며, 용도에 따라 탄소섬유, 아라미드섬유, 보론섬유 등을 사용할 수 있으며, 파이프(8)의 모재로서 사용되는 함침용 수지는 열경화성 불포화 폴리에스테르 수지를 사용하며, 고강도가 요구되는 경우에는 TPA수지, 에폭시수지를 사용할 수 있다.In the impregnation and lapping process, the reinforcing fiber 4 uses fiberglass, carbon fiber, aramid fiber, boron fiber, etc. may be used depending on the use, and for impregnation used as a base material of the pipe 8 The resin uses a thermosetting unsaturated polyester resin, and when high strength is required, TPA resin or epoxy resin can be used.

도1b는 본 발명의 함침 및 필라멘트와인딩 공정에 관한 것으로써, 타래(1)에 감겨있는 보강섬유(4)를 수지함침조(3)중에 일정한 속도로 연속 통과시켜 함침시킨 다음, 함침된 보강섬유(4)를 링크형상 형틀(6)의 회전축에 소정의 균일한 두께에 이를 때까지 15°∼80°의 각도를 유지시키면서 권취한다. 상기 수지함침조(4)는 형틀(6)의 회전축과 평행한 방향으로 직선운동을 하는 돌레이트(도시되어 있지 않음)위에 고정되어, 함침된 보강섬유(4)가 15°∼80°의 각도를 유지하면서 균일한 두께로 상기 형틀(6)에 권취(Winding)되도록 한다. 함침된 보강섬유(4)가 형틀의 회전축과 이루는 각도는 54.75 °∼64.75°의 각도를 유지하는 것이 바람직하다. 또한 상기 수지함침조(3)에 부착된 고리(5)는 함침된 섬유의 장력을 유지하고 과도하게 함침된 수지를 제거함으로써 균일한 함침을 제공하는 역할을 한다. 상기 보강섬유(4)의 함침조(3) 내에서의 함침속도는 통상 5∼10m/분으로 하며, 함침조(3)내의 수지온도는 20℃∼30℃로 하는 것이 함침에 유리하다. 상기 보강섬유(4)의 권취공정에 있어 형틀(6)의 회전속도는 형틀(6)의 크기에 따라 다르며, 이는 보강섬유(4)의 함침속도에 따라 조정되며, 보강섬유(4)의 권취두께는 요구되는 파이프(8)의 강도에 따라 변화시킬 수 있다.Figure 1b relates to the impregnation and filament winding process of the present invention, the reinforcing fibers (4) wound on the tuft (1) is continuously impregnated in a resin impregnation tank (3) at a constant rate, and then impregnated reinforcing fibers (4) is wound around the rotational axis of the link-shaped mold 6 while maintaining an angle of 15 ° to 80 ° until a predetermined uniform thickness is reached. The resin impregnated bath 4 is fixed on a dolate (not shown) which has a linear motion in a direction parallel to the axis of rotation of the mold 6, so that the impregnated reinforcing fiber 4 has an angle of 15 ° to 80 °. It is to be wound (Winding) to the mold 6 to a uniform thickness while maintaining the. The angle of the impregnated reinforcing fiber 4 and the rotating shaft of the mold is preferably maintained at an angle of 54.75 ° to 6.75 °. In addition, the ring 5 attached to the resin impregnation tank 3 serves to provide uniform impregnation by maintaining the tension of the impregnated fiber and removing excessively impregnated resin. The impregnation speed in the impregnation tank 3 of the reinforcing fiber 4 is usually 5 to 10 m / min, and the resin temperature in the impregnation tank 3 is advantageous to impregnation at 20 ° C to 30 ° C. In the winding process of the reinforcing fiber 4, the rotational speed of the mold 6 depends on the size of the mold 6, which is adjusted according to the impregnation speed of the reinforcing fiber 4, the winding of the reinforcing fiber 4 The thickness can be varied depending on the strength of the pipe 8 required.

상기 함침 및 필라멘트와인딩 공정에서, 보강섬유(4)로는 유리섬유를 사용하며, 용도에 따라 탄소섬유, 아라미드섬유 등을 사용할 수 있는데, 파이프 전체길이에 대한 높은 치수정밀도가 요구되는 경우, 즉 고강성 파이프를 제작하는 경우에는 보강섬유(4)로써 탄소섬유를 사용하고 체인의 길이가 매우 길어 경량화가 요구되는 경우, 즉 고강도 경량 파이프를 제작하는 경우에는 아라미드 섬유를 사용한다.In the impregnation and filament winding process, glass fiber is used as the reinforcing fiber (4), and carbon fiber, aramid fiber, etc. may be used depending on the purpose. When high dimensional precision for the entire length of the pipe is required, that is, high rigidity In the case of producing pipes, carbon fiber is used as the reinforcing fiber 4, and the length of the chain is very long, so that light weight is required, that is, aramid fiber is used when producing a high strength light weight pipe.

도1c는 본 발명의 경화공정에 관한 것으로써, 상기 공정에 의해 권취된 성형틀(7)을 형틀(6)과 함께 가열하여 열경화성수지를 경화시킨다. 상기 가열은 전기 또는 스팀가열오븐을 사용하여 수행할 수 있으며, 열경화성수지의 경화온도는 수지의 종류에 따라 다르나 통상은 100℃∼200℃의 온도에서 1시간∼4시간 동안 행하는 것이 바람직하다.FIG. 1C relates to the curing process of the present invention, wherein the mold 7 wound by the process is heated together with the mold 6 to cure the thermosetting resin. The heating may be performed using an electric or steam heating oven, the curing temperature of the thermosetting resin is different depending on the type of resin, but is usually performed for 1 to 4 hours at a temperature of 100 ℃ to 200 ℃.

도1d는 본 발명의 탈형공정에 관한 것으로써, 상기공정에 의해 경화된 성형틀(7)을 통상의 방법으로 탈형한다.1D relates to the demolding process of the present invention, in which the mold 7 hardened by the above process is demolded in a conventional manner.

도1e는 본 발명의 절단공정에 관한 것으로써, 상기공정에 의해 탈형된 성형틀(7)은 사용용도에 따라 필요한 크기로 절단한다.Figure 1e relates to the cutting process of the present invention, wherein the mold 7 demolded by the above process is cut into the required size according to the intended use.

다음 <표1>은 본 발명에 따라 제조되는 섬유강화플라스틱 파이프의 인장강도를 확인하기 위한 시험결과이다. 아래 시험결과는 요구되는 두께와 폭에 따라 섬유를 재단ㆍ절단하여 수지에 함침시키고, 이 함침된 섬유를 형틀에 래핑한 후 보강섬유를 동일수지에 함침 통과시켜 상기 래핑된 상부에 필라멘트와인딩하여 완료시킨 후 표면의 광활도를 위해 공회전 시키면서 경화시켜 제품을 제조한 후, 시험에 적합한 크기로 절단하여 일반적인 인장강도 시험방법에 따라 만능재료시험기를 사용하여 측정한 것이다.Table 1 is a test result for confirming the tensile strength of the fiber-reinforced plastic pipe manufactured according to the present invention. The test results below are completed by cutting and cutting the fibers according to the required thickness and width, impregnating the resin, wrapping the impregnated fibers in the mold, and then impregnating the reinforcing fibers through the same resin and winding the filaments on the wrapped upper part. After making the product by hardening while idling for light activity of the surface, and then cut to a size suitable for the test, it is measured using a universal testing machine according to the general tensile strength test method.

<표 1> 섬유강화플라스틱(FRP) 파이프의 인장시험결과<Table 1> Tensile test results of FRP pipes

시험항목Test Items 시험결과 (kg.f)Test result (kg.f) 내경 36.7 mm -1내경 36.7 mm -2내경 36.7 mm -3내경 36.7 mm -4Bore 36.7 mm -1 Bore 36.7 mm -2 Bore 36.7 mm -3 Bore 36.7 mm -4 15,75813,57913,60113,04215,75813,57913,60113,042

본 발명의 섬유강화플라스틱 파이프는 연약지반 보강 그라우팅 주입관에 있어 래핑과 필라멘트와인딩의 두 공법을 일관공정으로 처리하여 내압 및 전단ㆍ인장강도를 증대시킨 것으로 종래의 강관 그라우팅 주입관에 비하여 내화학성과 내부식성이 우수한 제품으로 부식과 변질이 되지 않아 시공 중 굴착보조재로써 뿐만 아니라 영구적인 보강재로써 사용할 수 있으며, 지반자체가 강도를 발휘하도록 도와주는 지보제의 역할이 아니라 주변지반을 일체화시켜 영구적으로 적용할 수 있다. 또한 매우 경량일 뿐만 아니라 절단 및 가공이 쉽고 취급이 용이하여 작업시간을 단축함으로써 시공성 및 경제성을 향상시킬 수 있다.Fiber-reinforced plastic pipe of the present invention increases the pressure resistance, shear and tensile strength by treating two methods of lapping and filament winding in a uniform process in soft ground reinforced grouting injection pipe, compared to conventional steel pipe grouting injection pipe. This product is excellent in corrosion resistance and can be used not only as an excavation auxiliary material but also as a permanent reinforcing material during construction because it is not corroded or deteriorated.It is applied permanently by integrating the surrounding ground, not as a supporting agent to help the ground itself exert its strength. can do. In addition, it is not only very light, but also easy to cut and process, and can be easily handled to shorten the work time, thereby improving workability and economy.

또한 본 발명의 섬유강화플라스틱 파이프에 사용된 플라스틱은 식수용 물탱크 및 식기류에 널리 쓰이는 폴리에스테르 합성수지이므로 환경오염의 문제를 초래하지 않으며, 그 주요 구성부재가 갖는 높은 내약품성 및 내오존성으로 인하여 산성비 등 옥외에 노출부위도 배출수에 위한 오염문제가 발생하지 않는다.In addition, since the plastic used in the fiber-reinforced plastic pipe of the present invention is a polyester synthetic resin widely used in drinking water tanks and tableware, it does not cause a problem of environmental pollution, and acid rain due to high chemical resistance and ozone resistance of the main components. Outdoor exposure also does not cause pollution problems for the discharged water.

이상 본 발명은, 섬유강화플라스틱 파이프의 경우에 한정하여 설명하였는데, 본 발명의 섬유강화플라스틱은 다른 종류의 설비에 사용될 수 있으며 군수, 통신 등 요구되어지는 여러 타 분야에 사용될 수 있다.The present invention has been described above in the case of fiber-reinforced plastic pipes, but the fiber-reinforced plastics of the present invention can be used in other kinds of equipment and can be used in various other fields such as military, communication, and the like.

Claims (7)

일방향성 보강섬유(4)를 함침용 수지(2)가 들어있는 함침조(3) 속에 일정속도로 연속 통과시켜 고르게 함침하는 단계;Continuously impregnating the unidirectional reinforcing fibers 4 at a constant speed through the impregnation tank 3 containing the impregnation resin 2; 상기 함침한 보강섬유(4)를 형틀(6)의 회전축과 직각(90°)을 유지시키면서 형틀(6)에 래핑하는 단계;Wrapping the impregnated reinforcing fiber (4) in the mold (6) while maintaining a right angle (90 °) with the axis of rotation of the mold (6); 상기 형틀(6)에 래핑된 재료의 상부에 함침조(3)를 연속 통과한 보강섬유(4)를 형틀(6)의 회전축과 15°∼80°의 각도를 유지시키면서 필라멘트와인딩하는 단계;Winding the filament with the reinforcing fiber (4) continuously passing through the impregnation tank (3) on top of the material wrapped in the mold (6) while maintaining an angle of 15 ° to 80 ° with the rotation axis of the mold (6); 상기의 래핑과 필라멘트와인딩의 두 공정을 거친 섬유강화플라스틱재를 형틀(6)과 함께 가열하여 상기 함침용 수지를 경화시키는 단계;Curing the impregnating resin by heating the fiber-reinforced plastic material, which has undergone the two processes of lapping and filament winding, together with the mold (6); 상기 경화된 섬유강화플라스틱재를 형틀에서 탈형하는 단계; 그리고,Demolding the cured fiber-reinforced plastic material in a mold; And, 상기 탈형된 섬유강화플라스틱재를 필요한 두께로 절단하는 단계;Cutting the demolded fiber-reinforced plastic material to the required thickness; 로 구성되는 것을 특징으로 하는 섬유강화플라스틱 파이프 제조방법.Fiber reinforced plastic pipe manufacturing method characterized in that consisting of. 제1항의 방법에 의하여 제조된 섬유강화플라스틱 파이프.Fiber-reinforced plastic pipe produced by the method of claim 1. 제1항에서, 상기 함침조(3)에 고리(5)를 부착하여 함침된 섬유의 장력을 유지하고 과도하게 함침된 수지를 제거하여 균일한 함침을 제공하는 단계를 더 포함하는 것을 특징으로 하는 섬유강화플라스틱 파이프 제조방법.The method of claim 1, further comprising attaching the ring (5) to the impregnation tank (3) to maintain the tension of the impregnated fiber and remove the excessively impregnated resin to provide a uniform impregnation. Fiber reinforced plastic pipe manufacturing method. 제1항에서, 상기 보강섬유(4)의 함침조(3) 내에서의 함침속도를 5∼10m/분으로 하며, 함침조(3) 내의 수지(2)온도는 20℃∼30℃로 하는 것을 특징으로 하는 섬유강화플라스틱 파이프 제조방법.The impregnation rate of the reinforcing fiber 4 in the impregnation tank 3 is set to 5 to 10 m / min, and the temperature of the resin 2 in the impregnation tank 3 is set to 20 ° C to 30 ° C. Fiber reinforced plastic pipe manufacturing method characterized in that. 제1항에서, 상기 형틀(6)의 회전축에 필라멘트와인딩하는 보강섬유(4)의 진입방향이 형틀의 회전축과 54.75°∼64.75°의 각도를 유지하도록 하는 것을 특징으로 하는 섬유강화플라스틱 파이프 제조방법.The method according to claim 1, wherein the entry direction of the reinforcing fiber (4), which binds the filament to the rotation axis of the mold (6), maintains an angle of 54.75 ° to 64.75 ° with the rotation axis of the mold. . 제1항에서, 상기 보강섬유(4)가 유리섬유, 탄소섬유, 아라미드섬유, 보론섬유로 이루어진 군으로부터 선택되는 것이 특징인 섬유강화플라스틱 파이프 제조방법.The method of claim 1, wherein the reinforcing fibers (4) is selected from the group consisting of glass fibers, carbon fibers, aramid fibers and boron fibers. 제1항에서, 상기 함침용 수지(2)가 불포화 폴리에스테르 수지, 비닐에스터 수지, 에폭시 수지로 이루어진 군으로부터 선택되는 것이 특징인 섬유강화플라스틱 파이프 제조방법.The method of claim 1, wherein the impregnating resin (2) is selected from the group consisting of unsaturated polyester resins, vinyl ester resins, and epoxy resins.
KR10-2000-0018958A 2000-04-11 2000-04-11 A fiber reinforced plastic pipe manufactured by the wrapping and filament winding process using uni-direction fiber and a method for preparing the same KR100366066B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0018958A KR100366066B1 (en) 2000-04-11 2000-04-11 A fiber reinforced plastic pipe manufactured by the wrapping and filament winding process using uni-direction fiber and a method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0018958A KR100366066B1 (en) 2000-04-11 2000-04-11 A fiber reinforced plastic pipe manufactured by the wrapping and filament winding process using uni-direction fiber and a method for preparing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR2020000010390U Division KR200209551Y1 (en) 2000-04-12 2000-04-12 A fiber reinforced plastic pipe

Publications (2)

Publication Number Publication Date
KR20010095665A KR20010095665A (en) 2001-11-07
KR100366066B1 true KR100366066B1 (en) 2003-01-09

Family

ID=19663472

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0018958A KR100366066B1 (en) 2000-04-11 2000-04-11 A fiber reinforced plastic pipe manufactured by the wrapping and filament winding process using uni-direction fiber and a method for preparing the same

Country Status (1)

Country Link
KR (1) KR100366066B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101098016B1 (en) 2010-07-26 2011-12-22 한국전기연구원 Manufacturing method frp tube of bushing and frp tube thereby
KR102464661B1 (en) 2022-05-18 2022-11-09 황희영 Hybrid rotor sail manufacturing method with high performance reinforced structure
KR20230021939A (en) 2021-08-06 2023-02-14 박근실 Wind power tower and Method of building the tower module of wind power with composite materials

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100715216B1 (en) * 2005-10-13 2007-05-08 최용기 urethane resin type drawing out fabrication pipe and its manufacture method for reinforcing and grouting in the ground
KR101223704B1 (en) * 2010-10-15 2013-01-21 (주) 남진 Making method of carbon fiber pipe and carbon fiber pipe made by it

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09314687A (en) * 1996-05-23 1997-12-09 Toray Ind Inc Frp cylindrical body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09314687A (en) * 1996-05-23 1997-12-09 Toray Ind Inc Frp cylindrical body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101098016B1 (en) 2010-07-26 2011-12-22 한국전기연구원 Manufacturing method frp tube of bushing and frp tube thereby
KR20230021939A (en) 2021-08-06 2023-02-14 박근실 Wind power tower and Method of building the tower module of wind power with composite materials
KR102464661B1 (en) 2022-05-18 2022-11-09 황희영 Hybrid rotor sail manufacturing method with high performance reinforced structure

Also Published As

Publication number Publication date
KR20010095665A (en) 2001-11-07

Similar Documents

Publication Publication Date Title
US3340115A (en) Method of making a reinforced composite concrete pipe
US3177902A (en) Reinforced pipe and method of making
US9028635B2 (en) Fiber reinforced plastic bolt and method for producing the same
US20050271845A1 (en) Composite poles with an integral mandrel and methods for making the same
USRE27061E (en) Method of making a reinforced composite concrete pipe
CN107542226A (en) By steam-pressing aero-concrete(AAC)Manufactured reinforcement building block
CN102235095A (en) Preparation method of fiber reinforced polymer sheet
KR100366066B1 (en) A fiber reinforced plastic pipe manufactured by the wrapping and filament winding process using uni-direction fiber and a method for preparing the same
KR200209551Y1 (en) A fiber reinforced plastic pipe
KR100852681B1 (en) An electric pole made from fiber reinforced plastics and it&#39;s manufacturing method
KR100835870B1 (en) Repairing method for sewing or drain pipe using basalt fiber sheet
CN104325653A (en) Continuous glass steel pipeline manufacturing method and prepared glass steel pipeline
JP3519051B2 (en) Architectural reinforcement and method of manufacturing the same
CN111086195A (en) FRP (fiber reinforced plastic) strip-shaped spiral stirrup and preparation method thereof
KR102398499B1 (en) Precast concrete using fiber-reinforced plastic rebar and manufacturing method thereof
EP0390535B1 (en) Method of making a rigid structure
KR100483850B1 (en) An Environment Friendly Electric Utility Pole and Method of Manufacturing thereof
KR100301360B1 (en) Process for preparing filament winding product
CN111844702A (en) Winding type glass steel tube production equipment
CN213512467U (en) Plastic FRP rib composite pipe
CN112976605B (en) Forming method of low-cost double-flanging flange structure
JPH0473501B2 (en)
JPS63139735A (en) Bar made of fiber-reinforced resin
KR940003707A (en) Manufacturing method of fiber reinforced plastic chain link for water treatment and sanitation
JPH09262910A (en) Production of fiber reinforced resin pipe

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121130

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20131210

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140929

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20151210

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee