JPH09314687A - Frp cylindrical body - Google Patents

Frp cylindrical body

Info

Publication number
JPH09314687A
JPH09314687A JP8153127A JP15312796A JPH09314687A JP H09314687 A JPH09314687 A JP H09314687A JP 8153127 A JP8153127 A JP 8153127A JP 15312796 A JP15312796 A JP 15312796A JP H09314687 A JPH09314687 A JP H09314687A
Authority
JP
Japan
Prior art keywords
layer
reinforcing fiber
fiber
axis
frp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8153127A
Other languages
Japanese (ja)
Inventor
Nobuhiko Shimizu
信彦 清水
Yasuyuki Kawanomoto
靖之 川野元
Masayoshi Yamagiwa
昌好 山極
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP8153127A priority Critical patent/JPH09314687A/en
Publication of JPH09314687A publication Critical patent/JPH09314687A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To uniformly exhibit high strength and high rigidity over the whole cylindrical body and to obtain a high degree of roundness by providing a reinforcing fiber layer with a fiber axis in the cylindrical axis direction and at least three-layer reinforcing fiber layers respectively consisting of a continuous reinforcing fiber with a fiber axis of a specified angle to the cylindrical axis direction. SOLUTION: In an FRP cylindrical body 1, a reinforcing fiber layer 3 (0 deg. layer) consisting of a continuous reinforcing fiber with a fiber axis in the cylindrical axis 2 direction in the inner layer, a reinforcing fiber layer 4 (+θ deg. layer) consisting of a continuous reinforcing fiber with a fiber axis of +θ deg. in the cylindrical axis 2 direction in the intermediate layer and a reinforcing fiber layer 5 (-θ deg. layer) consisting of a continuous reinforcing fiber with a fiber axis of -θ deg. in the cylindrical axis 2 direction in the outer layer, are arranged. The value of θ is set in the range of at least 45 deg. to smaller than 90 deg.. These reinforcing fiber layers 3, 4 and 5 form respectively a composite material contg. the reinforcing fiber and a resin, namely, an FRP under a condition where they are molded into the FRP cylindrical body 1. As the reinforcing fiber, lightweight, high strength and high elasticity carbon fibers are pref.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、FRP筒体に関
し、とくに、高強度・高剛性で、かつ、表面加工を施さ
ないでも高い真円度を有し、安価に製造できるFRP筒
体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an FRP tubular body, and more particularly to an FRP tubular body which has high strength and high rigidity, has a high roundness without surface treatment, and can be manufactured at low cost.

【0002】[0002]

【従来の技術】従来のFRP筒体は、主としてフィラメ
ントワインディング法やシートワインディング法によっ
て成形されている。
2. Description of the Related Art A conventional FRP cylinder is mainly formed by a filament winding method or a sheet winding method.

【0003】フィラメントワインディング法は、マンド
レル上に樹脂を含浸しない、あるいは樹脂を含浸した補
強繊維束を巻き付けて成形する方法であるが、繊維軸が
筒軸方向(筒体長手方向)の補強繊維層(0°層)を巻
くことができないので、筒軸方向における弾性率を上げ
ることが困難であり、その分長手方向における曲げ強
度、剛性が上がらない。
The filament winding method is a method in which a mandrel is not impregnated with a resin or a reinforcing fiber bundle impregnated with a resin is wound around the mandrel to form a fiber. Since the (0 ° layer) cannot be wound, it is difficult to increase the elastic modulus in the cylinder axis direction, and the bending strength and rigidity in the longitudinal direction are not increased accordingly.

【0004】また、表面に、巻き付けられた補強繊維束
に沿った凹凸が残るため、そのままでは真円度が低く、
真円度向上や外観向上のため、一般に成形後に表面研削
加工が必要である、研削のため、加工工数が増大すると
ともに、研削により補強繊維が切断されることがあり、
強度低下や強度的欠陥部位発生の原因になる。
Further, since irregularities along the wound reinforcing fiber bundle remain on the surface, the roundness is low as it is,
In order to improve roundness and appearance, it is generally necessary to perform surface grinding after molding.Due to grinding, the number of processing steps increases and the reinforcing fiber may be cut by grinding.
This may cause a decrease in strength and the occurrence of defective parts in terms of strength.

【0005】シートワインディング法は、マンドレル上
に樹脂を含浸しない補強繊維のシート、あるいは樹脂を
含浸した補強繊維のシート(プリプレグ)を巻き付けて
成形する方法であるが、予め準備された所定サイズのシ
ートを巻き付けるため、各繊維配向角に配された補強繊
維は連続繊維とはならない。そのため、補強繊維が連続
繊維である場合に比べ、強度的に劣る。
The sheet winding method is a method in which a sheet of reinforcing fiber not impregnated with resin or a sheet of resin-impregnated reinforcing fiber (prepreg) is wound on a mandrel to be molded, but a sheet of a predetermined size prepared in advance. The reinforcing fibers arranged at each fiber orientation angle do not become continuous fibers because of the winding. Therefore, it is inferior in strength as compared with the case where the reinforcing fiber is a continuous fiber.

【0006】また、一般に、シートを巻き付けた後樹脂
含浸状態にて、外周にラッピングテープを巻いて樹脂を
絞るとともに表面側から圧縮力を加えて成形するので、
表面に、テープ巻き付けに伴う凹凸が残る。したがっ
て、前記同様に、とくに塗装等のためには、表面研削加
工が必要になる。その結果、加工工数が増加するととも
に、研削による繊維切断によって、強度低下や強度的な
欠陥部位発生の原因となる。
Further, in general, after the sheet is wound, in the resin-impregnated state, a wrapping tape is wrapped around the outer periphery to squeeze the resin and to apply a compressive force from the surface side for molding.
Unevenness due to tape winding remains on the surface. Therefore, similarly to the above, surface grinding is required especially for painting or the like. As a result, the number of processing steps is increased, and the fiber is cut by grinding, which causes a decrease in strength and a generation of a defective portion in strength.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、筒体
全体にわたって均一に高強度・高剛性を発現でき、か
つ、外周面加工なしでも高い真円度を有するFRP筒体
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an FRP tubular body which can uniformly exhibit high strength and high rigidity over the entire tubular body, and which has a high roundness without machining the outer peripheral surface. It is in.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明のFRP筒体は、繊維軸が筒軸方向の補強繊
維層と、繊維軸が筒軸方向に対し+θ°および−θ°を
なす補強繊維層との少なくとも3層の補強繊維層を有
し、かつ、筒軸方向に対し+θ°および−θ°をなす補
強繊維層が連続補強繊維から形成されていることを特徴
とするものからなる。
In order to solve the above-mentioned problems, the FRP cylinder of the present invention has a reinforcing fiber layer whose fiber axis is in the cylinder axis direction and whose fiber axis is + θ ° and -θ with respect to the cylinder axis direction. Characterized in that it has at least three reinforcing fiber layers and a reinforcing fiber layer forming an angle of +, and that the reinforcing fiber layer forming + θ ° and −θ ° with respect to the cylinder axis direction is formed of continuous reinforcing fibers. It consists of

【0009】上記θ°の値は、45°以上90°未満の
範囲が好ましい。このような±θ°層を配することによ
り、筒体径方向の高い強度、剛性が確保されるととも
に、繊維軸が筒軸方向の補強繊維層により筒軸方向にお
ける高い曲げ強度、曲げ剛性が達成される。
The value of θ ° is preferably in the range of 45 ° or more and less than 90 °. By arranging such ± θ ° layers, high strength and rigidity in the cylinder radial direction are secured, and high bending strength and bending rigidity in the cylinder axis direction due to the reinforcing fiber layer in which the fiber axis is in the cylinder axis direction. To be achieved.

【0010】この繊維軸が筒軸方向の層における繊維配
向角は、丁度筒軸方向(つまり、0°方向)の場合はも
ちろんのこと、±10°程度までの範囲を含む(以下、
この補強繊維層を0°層ということもある)。
The fiber orientation angle in the layer in which the fiber axis is in the cylinder axis direction includes not only the case where the fiber axis is in the cylinder axis direction (that is, 0 ° direction) but also the range up to ± 10 ° (hereinafter,
This reinforcing fiber layer is sometimes called a 0 ° layer).

【0011】このようなFRP筒体は、いわゆる引抜成
形法によって連続的に成形できる。たとえば、マンドレ
ルの外周に前記少なくとも3層の補強繊維層が配され、
該補強繊維層と樹脂を含む複合材が引抜成形により筒体
に形成されたFRP筒体である。
Such an FRP cylinder can be continuously molded by a so-called pultrusion molding method. For example, the at least three reinforcing fiber layers are arranged on the outer periphery of the mandrel,
A composite material containing the reinforcing fiber layer and a resin is formed into a cylindrical body by pultrusion, which is an FRP cylindrical body.

【0012】この引抜成形においては、上記補強繊維層
と樹脂を含む複合材が筒状の金型(ダイ)を通して連続
的に引き抜かれるので、成形されるFRP筒体の表面は
金型内面形状に沿った滑らかな外周面に成形される。し
たがって、基本的に表面研削が不要になり、加工工数が
大幅に削減される。また、表面研削なしで、高い真円度
が得られる。
In this pultrusion molding, since the composite material containing the reinforcing fiber layer and the resin is continuously drawn out through the cylindrical mold (die), the surface of the FRP cylinder to be molded has the inner surface shape of the mold. It is molded along the smooth outer peripheral surface. Therefore, the surface grinding is basically unnecessary, and the processing man-hour is significantly reduced. Also, high roundness can be obtained without surface grinding.

【0013】さらに、0°層に加え、+θ°層、−θ°
層が連続補強繊維から形成されるので、実質的に繊維に
切れ目が存在せず、筒体全体にわたって均一に高強度、
高剛性が発現される。また、表面研削を必要としないか
ら、研削による繊維の切断も発生せず、強度的な欠陥部
位が発生するおそれもない。
Further, in addition to 0 ° layer, + θ ° layer and -θ ° layer
Since the layer is formed from continuous reinforcing fibers, there is virtually no break in the fibers, and high strength is evenly distributed over the entire cylinder.
High rigidity is exhibited. Further, since surface grinding is not required, the fiber is not cut by grinding, and there is no possibility of generating a defective portion in terms of strength.

【0014】このように、少ない工数で均一かつ高特性
に製造される本発明に係るFRP筒体は、とくに、軽量
で、かつ、強度、剛性的に均一で、しかも、高真円度が
要求される用途に好適なものである。たとえば、高速で
回転されるボビンや各種ローラ、高速回転する伝導軸を
内包する刈払機の操作捍用主管等に用いて最適なもので
ある。
As described above, the FRP cylinder according to the present invention, which is manufactured uniformly and with high characteristics by a small number of steps, is particularly lightweight, uniform in strength and rigidity, and requires high roundness. It is suitable for the intended use. For example, it is most suitable for use in a bobbin or various rollers that rotate at high speed, or a main pipe for operating and manipulating a bush cutter that includes a conductive shaft that rotates at high speed.

【0015】[0015]

【発明の実施の形態】以下に、本発明のFRP筒体の望
ましい実施の形態を、図面を参照して説明する。図1お
よび図2は、本発明の一実施態様に係るFRP筒体1を
示している。本実施態様においては、FRP筒体1は、
内層に、繊維軸が筒軸2方向の連続補強繊維からなる補
強繊維層3(0°層)、中間層に、繊維軸が筒軸2方向
に対し+θ°をなす連続補強繊維からなる補強繊維層4
(+θ°層)、外層に、繊維軸が筒軸2方向に対し−θ
°をなす連続補強繊維からなる補強繊維層5(−θ°
層)が配置されている。θの値は、45°以上90°未
満の範囲に設定されている。これら補強繊維層3、4、
5は、FRP筒体1に成形された状態では補強繊維と樹
脂とを含む複合材料、つまりFRPからなっている。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the FRP cylinder of the present invention will be described below with reference to the drawings. 1 and 2 show an FRP cylinder 1 according to an embodiment of the present invention. In this embodiment, the FRP cylinder 1 is
The inner layer is a reinforcing fiber layer 3 (0 ° layer) made of continuous reinforcing fibers whose fiber axis is in the tube axis 2 direction, and the intermediate layer is a reinforcing fiber made of continuous reinforcing fibers whose fiber axis is + θ ° with respect to the tube axis 2 direction. Layer 4
(+ Θ ° layer), the outer layer has a fiber axis of −θ with respect to the cylinder axis 2 direction.
Reinforcing fiber layer 5 (−θ °
Layers) are arranged. The value of θ is set in the range of 45 ° or more and less than 90 °. These reinforcing fiber layers 3, 4,
5 is made of a composite material containing reinforcing fibers and a resin, that is, FRP when it is molded into the FRP cylinder 1.

【0016】使用する補強繊維の種類としては、特に限
定されないが、たとえば、炭素繊維、ガラス繊維、アラ
ミド繊維、アルミナ繊維等の高強度・高弾性率繊維を一
種または二種以上使用できる。中でも、軽量でかつ高強
度・高弾性率の炭素繊維が好ましい。
The type of reinforcing fiber used is not particularly limited, but for example, one or more high strength / high elastic modulus fibers such as carbon fiber, glass fiber, aramid fiber and alumina fiber can be used. Of these, carbon fibers that are lightweight and have high strength and high elastic modulus are preferable.

【0017】また、上記のような補強繊維に対し、他の
繊維を併用することもできる。併用する繊維としては、
有機繊維が好ましく、有機繊維の併用によって、たとえ
ば炭素繊維100%で補強する場合に比べ、耐衝撃性や
振動減衰特性を向上できる。
Further, other fibers can be used in combination with the above-mentioned reinforcing fibers. As the fibers used in combination,
Organic fibers are preferable, and by using the organic fibers together, impact resistance and vibration damping characteristics can be improved as compared with the case of reinforcing with, for example, 100% carbon fibers.

【0018】併用する有機繊維としては、例えば芳香族
ポリアミド繊維、芳香族ポリエステル繊維、ポリビニル
アルコール繊維などの高強度、高弾性率の繊維が好まし
いが、ナイロン、ポリエステル等に一般の有機繊維を使
用してもよい。勿論、このような有機繊維による効果を
特に必要としない場合には、炭素繊維に併用する繊維と
して、ガラス繊維等の無機繊維を補助として使用しても
何ら差し支えない。
As the organic fibers to be used in combination, fibers having high strength and high elastic modulus such as aromatic polyamide fibers, aromatic polyester fibers and polyvinyl alcohol fibers are preferable, but general organic fibers such as nylon and polyester are used. May be. Of course, when the effect of such organic fibers is not particularly required, inorganic fibers such as glass fibers may be used as an auxiliary fiber to be used in combination with the carbon fibers.

【0019】使用するマトリックス樹脂としては、エポ
キシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、
ビニルエステル樹脂等の熱硬化性樹脂が好ましい。特
に、後述のようなプルワインド法により連続製造する場
合においては、熱硬化性樹脂の使用が好ましい。勿論、
ポリアミド樹脂、ポリエステル樹脂等の熱可塑性樹脂も
使用可能である。また、これらの混合樹脂も使用可能で
ある。
As the matrix resin used, epoxy resin, unsaturated polyester resin, phenol resin,
Thermosetting resins such as vinyl ester resins are preferred. Particularly, in the case of continuous production by the pull wind method as described below, it is preferable to use a thermosetting resin. Of course,
Thermoplastic resins such as polyamide resins and polyester resins can also be used. Also, a mixed resin of these can be used.

【0020】また、上記マトリックス樹脂にはエラスト
マーを混合することもできる。このエラストマーの混合
によって有機繊維を併用した場合と同様に、FRP筒体
の耐衝撃性や振動減衰性を向上することができ、たとえ
ば、刈払機の操作捍用主管として用いるのに最適なFR
P筒体が得られる。
An elastomer may be mixed with the matrix resin. By mixing this elastomer, the impact resistance and the vibration damping property of the FRP cylinder can be improved as in the case of using the organic fiber together. For example, the FR which is most suitable for use as the main pipe for the operation and handling of a brush cutter.
A P cylinder is obtained.

【0021】マトリックス樹脂に混合するエラストマー
としては、ポリブタジエン、アクリルニトリル−ブタジ
エン共重合体などを挙げることができる。特にアクリル
ニトリル−ブタジエン共重合体は、マトリックス樹脂と
して代表的なエポキシ樹脂との相溶性に優れているた
め、一層高度の振動減衰性を発揮することができる。特
にエポキシ樹脂にアクリルニトリルの重合比が20〜5
0%であるアクリルニトリル−ブタジエン共重合体を1
0〜40重量%混合する場合において、優れた振動減衰
性を発揮することができる。
Examples of the elastomer mixed with the matrix resin include polybutadiene and acrylonitrile-butadiene copolymer. In particular, the acrylonitrile-butadiene copolymer is excellent in compatibility with an epoxy resin that is a typical matrix resin, and therefore can exhibit a higher vibration damping property. Especially, the polymerization ratio of acrylonitrile to epoxy resin is 20 to 5
0% of acrylonitrile-butadiene copolymer is 1
When mixed in an amount of 0 to 40% by weight, excellent vibration damping property can be exhibited.

【0022】図3は、本発明の別の実施態様に係るFR
P筒体の層構成を示しており、とくに後述のプルワイン
ド法に適用して好適な例を示している。
FIG. 3 shows an FR according to another embodiment of the present invention.
The layer structure of the P cylinder is shown, and an example suitable for application to the pullwind method described later is shown.

【0023】本実施態様においては、内層側から順に、
0°層11、+θ°層12、−θ°層13、0°層1
4、−θ’°層15、+θ’°層16、0°層17が配
置されている。θとθ’は、同じ角度であっても、異な
る角度であってもよい。但し、いずれの場合にも、θを
45°以上90°未満の範囲とすることが好ましい。
In this embodiment, from the inner layer side,
0 ° layer 11, + θ ° layer 12, −θ ° layer 13, 0 ° layer 1
4, −θ ′ ° layer 15, + θ ′ ° layer 16, and 0 ° layer 17 are arranged. θ and θ ′ may have the same angle or different angles. However, in any case, it is preferable that θ be in the range of 45 ° or more and less than 90 °.

【0024】また、図2に示した層構成において、さら
に外層に0°層を設けておくこともできる。本発明にあ
っては、いずれの場合にも、少なくとも0°層、+θ°
層、−θ°層の3層を有する。0°層、+θ°層、−θ
°層の配置順は、とくに限定されない。
Further, in the layer structure shown in FIG. 2, a 0 ° layer may be further provided as an outer layer. In the present invention, in any case, at least a 0 ° layer, + θ °
It has three layers, a layer and a -θ ° layer. 0 ° layer, + θ ° layer, −θ layer
The arrangement order of the layers is not particularly limited.

【0025】本発明に係るFRP筒体は、いわゆる引抜
成形法によって製造できる。とくに、+θ°層、−θ°
層の補強繊維を連続的に巻き付けながら引抜成形する、
プルワインド法が好適である。
The FRP cylinder according to the present invention can be manufactured by a so-called pultrusion method. Especially, + θ ° layer, −θ °
Pultrusion molding while continuously winding layers of reinforcing fiber,
The pullwind method is preferred.

【0026】このプルワインド法による成形を、図3に
示した態様のFRP筒体について、図4を参照して説明
する。
Molding by the pull wind method will be described with reference to FIG. 4 for the FRP cylinder of the embodiment shown in FIG.

【0027】図4において、31は片持支持されたマン
ドレルを示しており、マンドレル31の先端部は、金型
32の出口まで延びている。マンドレル31上に先ず0
°層11形成用の補強繊維41が引き揃えられて配置さ
れ、矢印Aの方向に引っ張られて移動する。
In FIG. 4, reference numeral 31 denotes a candrel supported in a cantilever manner, and the tip of the mandrel 31 extends to the outlet of the die 32. 0 on the mandrel 31
The reinforcing fibers 41 for forming the ° layer 11 are aligned and arranged, and are pulled and moved in the direction of arrow A.

【0028】この移動中の0°層11の上に、+θ°層
12形成用の補強繊維42が、所定の角度(+θ°)で
巻き付けられ、0°層11とともにA方向に引っ張られ
て移される。巻き付けは、補強繊維42用のクリール5
2を矢印の方向に回動させるか、あるいは、別に配置さ
れたクリールから引き出されてきた補強繊維42を、同
じ矢印の方向に回動するガイドを介してマンドレル周囲
に案内することにより行われる。
On the moving 0 ° layer 11, the reinforcing fiber 42 for forming the + θ ° layer 12 is wound at a predetermined angle (+ θ °), and is pulled and transferred in the A direction together with the 0 ° layer 11. Be done. Winding is done by the creel 5 for the reinforcing fiber 42.
2 is rotated in the direction of the arrow, or the reinforcing fiber 42 pulled out from the creel arranged separately is guided around the mandrel through a guide which rotates in the same arrow direction.

【0029】移動中の+θ°層の上に、−θ°層13形
成用の補強繊維43が、所定の角度(−θ°)で巻き付
けられ、その内側の補強繊維層11、12とともにA方
向に引っ張られて移動される。巻き付けは、補強繊維4
3用のクリール53を、上記クリール52とは反対方向
に回動させるか、あるいは上記同様のガイドをその方向
に回動させることにより行われる。
On the moving + θ ° layer, the reinforcing fibers 43 for forming the −θ ° layer 13 are wound at a predetermined angle (−θ °), and along with the reinforcing fiber layers 11 and 12 inside thereof, the A direction. Is moved by being pulled by. Winding is reinforcement fiber 4
This is performed by rotating the 3rd creel 53 in the opposite direction to the creel 52, or by rotating a guide similar to the above in that direction.

【0030】移動中の−θ°層13の上に、0°層14
形成用の補強繊維44が、引き揃えられて配置され、矢
印Aの方向に、その内側の補強繊維層11、12、13
とともに引っ張られて移動される。
On the moving -θ ° layer 13, a 0 ° layer 14 is formed.
The reinforcing fibers 44 for forming are arranged in a line, and the reinforcing fiber layers 11, 12, 13 inside the reinforcing fibers 44 are arranged in the direction of arrow A.
With it is pulled and moved.

【0031】この移動中の0°層14の上に、−θ’°
15形成用の補強繊維45が、所定の角度(−θ’°)
で巻き付けられ、その内側の補強繊維層11〜14とと
もにA方向に引っ張られて移動される。巻き付けは、ク
リール55あるいはガイドを矢印方向に回動させること
により行われる。
On this moving 0 ° layer 14, -θ '°
The reinforcing fiber 45 for forming 15 has a predetermined angle (-θ '°)
Is wound around, and is pulled and moved in the A direction together with the reinforcing fiber layers 11 to 14 inside thereof. The winding is performed by rotating the creel 55 or the guide in the arrow direction.

【0032】この移動中の−θ’°層の上に、+θ’°
形成用の補強繊維46が、所定の角度(+θ’°)で巻
き付けられ、その内側の補強繊維層11〜15とともに
A方向に引っ張られて移動される。巻き付けは、クリー
ル56あるいはガイドを、上記補強繊維層15形成とは
逆の方向に回動させることにより行われる。
On the moving -θ '° layer, + θ' °
The reinforcing fiber 46 for forming is wound at a predetermined angle (+ θ ′ °), and is pulled and moved in the A direction together with the reinforcing fiber layers 11 to 15 inside thereof. The winding is performed by rotating the creel 56 or the guide in a direction opposite to the direction in which the reinforcing fiber layer 15 is formed.

【0033】さらに移動中の+θ’°層の上に、0°層
17形成用の補強繊維47が引き揃えられて配置され、
矢印A方向に、その内側の補強繊維層11〜16ととも
に引っ張られて移動される。
Further, on the moving + θ '° layer, the reinforcing fibers 47 for forming the 0 ° layer 17 are aligned and arranged,
It is pulled and moved in the direction of arrow A along with the reinforcing fiber layers 11 to 16 inside thereof.

【0034】本実施態様では、上記のように配置された
補強繊維層11〜17からなる、マンドレル31上をそ
の軸方向に移動中の各補強繊維層に、樹脂が含浸され
る。ただし、樹脂の含浸は、補強繊維をマンドレル31
上に供給する前に補強繊維に付与しておくことも可能で
ある。
In this embodiment, a resin is impregnated into each of the reinforcing fiber layers 11 to 17 arranged as described above and moving on the mandrel 31 in the axial direction thereof. However, for the resin impregnation, the reinforcing fiber is used for the mandrel 31
It is also possible to add it to the reinforcing fiber before feeding it above.

【0035】樹脂は、本実施態様では、金型32の入口
側に延びる含浸型33中に供給され、含浸型33の内周
面側から補強繊維層11〜17内に含浸される。この樹
脂の含浸は、たとえばマンドレル31内に、その軸方向
に延び、しかる後に径方向に延びてマンドレル31周面
上に開口する樹脂流路(図示略)を設けておき、マンド
レル31側から供給するようにしてもよい。また、含浸
型33とマンドレル31の両側から供給するようにして
もよい。
In the present embodiment, the resin is supplied into the impregnating mold 33 extending toward the inlet side of the mold 32 and impregnated into the reinforcing fiber layers 11 to 17 from the inner peripheral surface side of the impregnating mold 33. The resin impregnation is supplied from the mandrel 31 side, for example, by providing in the mandrel 31 a resin flow path (not shown) that extends in the axial direction and then extends in the radial direction and opens on the peripheral surface of the mandrel 31. You may do it. Alternatively, the impregnation mold 33 and the mandrel 31 may be supplied from both sides.

【0036】樹脂が含浸されたマンドレル31上の筒状
複合材は、所定の筒状吐出口を備えた金型32を通さ
れ、金型32で加熱されて樹脂が硬化され、金型32の
出口から所定の筒状成形品34として、連続的に引き抜
かれる。引き抜かれた成形品34は、必要に応じて所定
長に切断され、目標とするFRP筒体が得られる。
The cylindrical composite material on the mandrel 31 impregnated with the resin is passed through a mold 32 having a predetermined cylindrical discharge port, heated by the mold 32 to cure the resin, and the mold 32 A predetermined tubular molded product 34 is continuously drawn out from the outlet. The molded product 34 that has been pulled out is cut into a predetermined length as necessary, and a target FRP cylinder is obtained.

【0037】このようなプルワインド法により成形され
たFRP筒体は、金型32の出口段階で、外周形状が所
定形状に整えられているため、極めて真円度が高い。し
たがって、外周面の切削加工なしで、5/100以下の
真円度が容易に得られる。切削加工が不要となるので、
加工工数を大幅に削減できる。また、切削加工による補
強繊維の切断も発生しないから、局部的な強度欠陥も発
生しない。また、切削加工しないので、使用材料に無駄
が生じない。さらに、シートワインディング法の場合の
ようなラッピングテープ巻きも不要であるから、工数が
少なくてすむとともに、正確に所定形状の外周面が得ら
れ、かつ、外観も美麗である。
The FRP cylinder formed by such a pull wind method has an extremely high roundness because the outer peripheral shape is adjusted to a predetermined shape at the exit stage of the die 32. Therefore, a roundness of 5/100 or less can be easily obtained without cutting the outer peripheral surface. Since cutting work is unnecessary,
Processing man-hours can be significantly reduced. Further, since the reinforcing fiber is not cut by the cutting process, no local strength defect occurs. Further, since the cutting process is not performed, the used materials are not wasted. Further, since it is not necessary to wrap a wrapping tape as in the case of the sheet winding method, the number of steps is small, the outer peripheral surface having a predetermined shape can be obtained accurately, and the appearance is beautiful.

【0038】また、上記のようなプルワインド法では、
成形されるFRP筒体の最外層に、マトリックス樹脂の
みからなる薄い表面層が形成されやすい。この樹脂表面
層は、FRP筒体の絶縁性向上や耐湿性向上に寄与す
る。また、マトリックス樹脂の種類によっては、撥水性
等をもたせることもできる。
In the pull wind method as described above,
A thin surface layer made of only the matrix resin is likely to be formed on the outermost layer of the molded FRP cylinder. This resin surface layer contributes to the improvement of the insulating property and the moisture resistance of the FRP cylinder. In addition, depending on the type of matrix resin, it can have water repellency and the like.

【0039】上記のように作製された本発明に係るFR
P筒体は、0°層の存在により高い軸方向曲げ剛性を有
するとともに、連続補強繊維で形成された±θ°層の存
在により、高い強度、弾性率、径方向圧縮強度等を有
し、かつ、表面加工なしで優れた真円度を有する。ま
た、連続補強繊維を使用しているので、筒体全体にわた
って均一な高い機械的特性を有し、強度等のばらつきが
極めて小さい。
FR according to the present invention produced as described above
The P tubular body has high axial bending rigidity due to the presence of the 0 ° layer, and also has high strength, elastic modulus, radial compressive strength, etc. due to the presence of the ± θ ° layers formed of the continuous reinforcing fibers, Moreover, it has excellent roundness without surface treatment. Further, since the continuous reinforcing fiber is used, it has uniform and high mechanical properties over the entire tubular body, and variations in strength and the like are extremely small.

【0040】なお本発明に係るFRP筒体は、図1〜図
4に示した層構成を有するものに限らず、たとえば外層
や内層、さらには中間層に他の層、たとえば補強繊維の
マット層や樹脂のみの層を有するものであってもよく、
さらに表面保護層等を有するものであってもよい。ま
た、筒体表面等に塗装を施したり、蒸着層を設けたりし
てもよい。
The FRP cylinder according to the present invention is not limited to the one having the layer structure shown in FIGS. 1 to 4, but may be, for example, an outer layer, an inner layer, an intermediate layer, or another layer, for example, a reinforcing fiber mat layer. Or may have a layer of resin only,
Further, it may have a surface protective layer or the like. Further, the surface of the cylinder or the like may be coated or a vapor deposition layer may be provided.

【0041】[0041]

【発明の効果】以上説明したように、本発明のFRP筒
体によれば、筒体全体にわたって均一に高強度、高弾性
率特性を発現でき、かつ、表面加工なしで高い真円度を
実現できる。したがって、機械的に高性能でかつ外観に
優れたFRP筒体を容易に安価に製造できる。
As described above, according to the FRP cylinder of the present invention, high strength and high elastic modulus characteristics can be uniformly expressed over the entire cylinder, and high roundness can be realized without surface processing. it can. Therefore, it is possible to easily and inexpensively manufacture the FRP cylindrical body having mechanically high performance and excellent appearance.

【0042】このような高性能のFRP筒体は、とくに
軽量でかつ均一な高機械特性と高い真円度が要求される
用途に好適であり、ボビンやローラ、さらには刈払機の
操作捍用主管等の各種伝動軸に用いて最適なものであ
る。
Such a high-performance FRP cylinder is particularly suitable for applications that require light weight and uniform high mechanical properties and high roundness, and is used for bobbins and rollers, and further for operating bushes. It is most suitable for various transmission shafts such as main pipes.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施態様に係るFRP筒体の部分構
成図である。
FIG. 1 is a partial configuration diagram of an FRP cylinder according to an embodiment of the present invention.

【図2】図1のII部の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of section II of FIG.

【図3】本発明の別の実施態様に係るFRP筒体の層構
成を示す部分断面図である。
FIG. 3 is a partial cross-sectional view showing a layer structure of an FRP cylinder according to another embodiment of the present invention.

【図4】図3のFRP筒体を作製する方法の一例を示す
概略斜視図である。
4 is a schematic perspective view showing an example of a method for producing the FRP cylinder of FIG.

【符号の説明】[Explanation of symbols]

1 FRP筒体 2 筒軸 3 0°層 4 +θ°層 5 −θ°層 11、14、17 0°層 12 +θ°層 13 −θ°層 15 −θ’°層 16 +θ’°層 31 マンドレル 32 金型 33 含浸型 34 成形品 41、42、43、44、45、46、47 補強繊維 52、53、55、56 クリール 1 FRP cylindrical body 2 Cylindrical axis 30 ° layer 4 + θ ° layer 5 −θ ° layer 11, 14, 170 ° layer 12 + θ ° layer 13 −θ ° layer 15 −θ ′ ° layer 16 + θ ′ ° layer 31 Mandrel 32 mold 33 impregnated mold 34 molded product 41, 42, 43, 44, 45, 46, 47 reinforcing fiber 52, 53, 55, 56 creel

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29L 31:32 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location B29L 31:32

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 繊維軸が筒軸方向の補強繊維層と、繊維
軸が筒軸方向に対し+θ°および−θ°をなす補強繊維
層との少なくとも3層の補強繊維層を有し、かつ、筒軸
方向に対し+θ°および−θ°をなす補強繊維層が連続
補強繊維から形成されていることを特徴とするFRP筒
体。
1. A reinforcing fiber layer having at least three layers, a reinforcing fiber layer whose fiber axis is in the cylinder axis direction and a reinforcing fiber layer whose fiber axis is + θ ° and −θ ° with respect to the cylinder axis direction, and The FRP tubular body, wherein the reinforcing fiber layer forming + θ ° and −θ ° with respect to the tubular axis direction is formed of continuous reinforcing fibers.
【請求項2】 θ°が45°以上90°未満である、請
求項1のFRP筒体。
2. The FRP cylinder according to claim 1, wherein θ ° is 45 ° or more and less than 90 °.
【請求項3】 引抜成形により形成された、請求項1ま
たは2のFRP筒体。
3. The FRP cylinder body according to claim 1, which is formed by pultrusion.
【請求項4】 真円度が5/100以下である、請求項
3のFRP筒体。
4. The FRP cylinder according to claim 3, which has a circularity of 5/100 or less.
【請求項5】 補強繊維に炭素繊維を含む、請求項1な
いし4のいずれかに記載のFRP筒体。
5. The FRP cylinder according to claim 1, wherein the reinforcing fiber contains carbon fiber.
【請求項6】 ボビンである、請求項1ないし5のいず
れかに記載のFRP筒体。
6. The FRP cylinder according to claim 1, which is a bobbin.
【請求項7】 ローラである、請求項1ないし5のいず
れかに記載のFRP筒体。
7. The FRP cylinder according to claim 1, which is a roller.
【請求項8】 刈払機の操作捍用主管である、請求項1
ないし5のいずれかに記載のFRP筒体。
8. The main pipe for operation and handling of a brush cutter, claim 1.
The FRP cylinder according to any one of 1 to 5.
JP8153127A 1996-05-23 1996-05-23 Frp cylindrical body Pending JPH09314687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8153127A JPH09314687A (en) 1996-05-23 1996-05-23 Frp cylindrical body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8153127A JPH09314687A (en) 1996-05-23 1996-05-23 Frp cylindrical body

Publications (1)

Publication Number Publication Date
JPH09314687A true JPH09314687A (en) 1997-12-09

Family

ID=15555580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8153127A Pending JPH09314687A (en) 1996-05-23 1996-05-23 Frp cylindrical body

Country Status (1)

Country Link
JP (1) JPH09314687A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001219474A (en) * 1999-12-15 2001-08-14 Xerox Corp Pultrusion method
KR20010091378A (en) * 2000-03-15 2001-10-23 윤문수 A GFRP rod and fabricating method thereof
KR100366066B1 (en) * 2000-04-11 2003-01-09 대원토질 주식회사 A fiber reinforced plastic pipe manufactured by the wrapping and filament winding process using uni-direction fiber and a method for preparing the same
JP2008506551A (en) * 2004-07-15 2008-03-06 エプシロン コンポジット Composite tube obtained by pultrusion and manufacturing method thereof
WO2009078387A1 (en) * 2007-12-14 2009-06-25 Zeon Corporation Frp pipe
JP2012201002A (en) * 2011-03-25 2012-10-22 Shikibo Ltd Dry preform, annular structure made of composite material and method of manufacturing annular structure
JP2013095112A (en) * 2011-11-04 2013-05-20 Shikibo Ltd Dry preform of composite material and method for manufacturing the same
JP2016527100A (en) * 2013-06-05 2016-09-08 ハチンソン Composite connecting rod, method for manufacturing such a rod, and aircraft ceiling or floor structure incorporating the same
JP2016528063A (en) * 2013-06-05 2016-09-15 ハチンソン Connecting rod, method for manufacturing the same, and aircraft floor structure including the same
JP2018510795A (en) * 2015-03-12 2018-04-19 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Method and apparatus for producing preformed product

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001219474A (en) * 1999-12-15 2001-08-14 Xerox Corp Pultrusion method
KR20010091378A (en) * 2000-03-15 2001-10-23 윤문수 A GFRP rod and fabricating method thereof
KR100366066B1 (en) * 2000-04-11 2003-01-09 대원토질 주식회사 A fiber reinforced plastic pipe manufactured by the wrapping and filament winding process using uni-direction fiber and a method for preparing the same
JP2008506551A (en) * 2004-07-15 2008-03-06 エプシロン コンポジット Composite tube obtained by pultrusion and manufacturing method thereof
WO2009078387A1 (en) * 2007-12-14 2009-06-25 Zeon Corporation Frp pipe
JP2012201002A (en) * 2011-03-25 2012-10-22 Shikibo Ltd Dry preform, annular structure made of composite material and method of manufacturing annular structure
US9481442B2 (en) 2011-03-25 2016-11-01 Shikibo Ltd. Dry preform, annular structure made of a composite material, and manufacturing method for the annular structure
JP2013095112A (en) * 2011-11-04 2013-05-20 Shikibo Ltd Dry preform of composite material and method for manufacturing the same
JP2016527100A (en) * 2013-06-05 2016-09-08 ハチンソン Composite connecting rod, method for manufacturing such a rod, and aircraft ceiling or floor structure incorporating the same
JP2016528063A (en) * 2013-06-05 2016-09-15 ハチンソン Connecting rod, method for manufacturing the same, and aircraft floor structure including the same
JP2018510795A (en) * 2015-03-12 2018-04-19 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh Method and apparatus for producing preformed product

Similar Documents

Publication Publication Date Title
EP3271132B1 (en) A fiber-reinforced composite sports article and its method of manufacture
US4273601A (en) Method for the production of elongated resin impregnated filament composite structures
JP3296328B2 (en) Fiber reinforced plastic pipe
US20060185218A1 (en) Two piece bonded fishing rod blank and fishing rod
US20190290978A1 (en) Fiber-reinforced composite tubular shafts and manufacture thereof
JPH09314687A (en) Frp cylindrical body
JP3475808B2 (en) Method of manufacturing fiber reinforced plastic pipe
JPH08290487A (en) Manufacture of frp cylinder
JP4085780B2 (en) Pressure vessel manufacturing method and fiber bundle array device
JPH08187797A (en) Method and apparatus for producing cylindrical fiber reinforced plastic
JP2005154908A (en) Yarn-feeding unit for filament winding apparatus, filament winding apparatus and method for producing structure
US20060214049A1 (en) Non-round profiled pultruded tube
JPH07329196A (en) Synthetic resin tube reinforced by fiber
EP3966022A1 (en) Fibre-reinforced composite tubular shafts and manufacture thereof
JP2004121402A (en) Golf club shaft
JP2000108212A (en) Fiber supply head and fiber supply head unit
JP3278097B2 (en) Tubular body
JP3216855B2 (en) Apparatus and method for manufacturing FRP tubular body
JP2562805B2 (en) Fiber reinforced thermoplastic resin hollow molding
JP2003001716A (en) Method for producing fiber-reinforced plastic pipe
JP3339161B2 (en) Apparatus and method for manufacturing FRP tubular body
JPS58167122A (en) Continuous manufacture of fiber reinforced plastic tubular article
JP7193440B2 (en) Curved body for fishing equipment
JPS63205326A (en) Production of cordlike or rodlike prepreg
JP3268105B2 (en) Apparatus and method for producing FRP tubular body