KR100330453B1 - Cr-Mo-V Alloy Steel for Pressure Vessel - Google Patents

Cr-Mo-V Alloy Steel for Pressure Vessel Download PDF

Info

Publication number
KR100330453B1
KR100330453B1 KR1019990047097A KR19990047097A KR100330453B1 KR 100330453 B1 KR100330453 B1 KR 100330453B1 KR 1019990047097 A KR1019990047097 A KR 1019990047097A KR 19990047097 A KR19990047097 A KR 19990047097A KR 100330453 B1 KR100330453 B1 KR 100330453B1
Authority
KR
South Korea
Prior art keywords
less
high temperature
steel
pressure vessel
molybdenum
Prior art date
Application number
KR1019990047097A
Other languages
Korean (ko)
Other versions
KR20010038922A (en
Inventor
지병하
김동진
김정태
김병훈
공병욱
김민수
김진관
Original Assignee
윤영석
두산중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤영석, 두산중공업 주식회사 filed Critical 윤영석
Priority to KR1019990047097A priority Critical patent/KR100330453B1/en
Publication of KR20010038922A publication Critical patent/KR20010038922A/en
Application granted granted Critical
Publication of KR100330453B1 publication Critical patent/KR100330453B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Abstract

본 발명은 압력용기용 크롬-몰리브데늄-바나듐강에 관한 것으로서, 중량%로 C 0.10∼0.17%, Mn 0.30∼0.70%, Si 0.05∼0.20%, Cr 2.00∼3.50%, Mo 0.60∼1.20%, W 0.80% 이하, Ni 0.05∼0.25%, V 0.25∼0.35%, Nb 0.01초과 0.05% 이하, Ti 0.005∼0.03%, B 0.0005∼0.002%, Ca 0.0005∼0.015%, Al 0.01∼0.04%, P 0.015% 이하, S 0.01% 이하, 잔부는 Fe 및 기타 불가피한 불순물로 구성되며, 0.80wt% ≤Mo+0.5W ≤1.20wt% 포함하고 있어, 고온강도, 충격인성, 뜨임취성 및 수소침식에 대한 저항성이 높으므로 정유공장의 중질유분해 및 탈황 프로세스 등에서 450℃ 이상의 고온, 고압의 수소를 이용하는 압력용기의 소재로 적당하고, 용접성이 우수하므로 제작이 용이하다는 이점이 있는 압력용기용 크롬-몰리브데늄-바나듐강을 제공한다.The present invention relates to chromium-molybdenum-vanadium steel for pressure vessels, by weight% C 0.10 to 0.17%, Mn 0.30 to 0.70%, Si 0.05 to 0.20%, Cr 2.00 to 3.50%, Mo 0.60 to 1.20% , W 0.80% or less, Ni 0.05 to 0.25%, V 0.25 to 0.35%, Nb 0.01% or more and 0.05% or less, Ti 0.005 to 0.03%, B 0.0005 to 0.002%, Ca 0.0005 to 0.015%, Al 0.01 to 0.04%, P 0.015% or less, S 0.01% or less, the balance is composed of Fe and other unavoidable impurities, and contains 0.80wt% ≤ Mo + 0.5W ≤ 1.20wt%, high temperature strength, impact toughness, temper brittleness and resistance to hydrogen erosion Because of this high chromium-molybdenum for pressure vessel, which is suitable for pressure vessels using high temperature and high pressure hydrogen of 450 ℃ or higher in heavy oil decomposition and desulfurization process of oil refinery, and easy to manufacture because of excellent weldability. Provides vanadium steel.

Description

압력용기용 크롬-몰리브데늄-바나듐강{Cr-Mo-V Alloy Steel for Pressure Vessel}Chromium-molybdenum-vanadium steel for pressure vessels {Cr-Mo-V Alloy Steel for Pressure Vessel}

본 발명은 압력용기용 크롬-몰리브데늄-바나듐강에 관한 것으로서, 특히 석유정제, 중질유분해 등과 같은 고온ㆍ고압의 수소를 이용하는 압력용기용 강재로서 최저 450℃ 이상의 온도범위에서도 사용가능한 크롬-몰리브데늄-바나듐강에 관한 것이다.The present invention relates to chromium-molybdenum-vanadium steel for pressure vessels, and particularly, chromium-mol which can be used in a temperature range of at least 450 ° C as a steel for pressure vessels using high-temperature and high-pressure hydrogen such as petroleum refining and heavy oil decomposition. The present invention relates to a ribidenium-vanadium steel.

최근, 석유정제, 중질유분해 등의 수소화 프로세스를 이용하는 플랜트는, 보다 대형화, 고온화 및 고압화되어 효율향상을 꾀하는 추세에 있다. 이에 따라, 플랜트에서 종래 사용되는 크롬-몰리브데늄강재 압력용기는 보다 두껍게 설계될 필요가 있었다. 그러나, 설계조건을 만족시키기 위해서는 제작이 거의 불가능할 정도로 벽두께가 두꺼워지게 될 뿐만 아니라, 수소에 의한 재료손상(이하, '수소침식'이라 함)의 우려가 있어 사용에 많은 제한이 따르게 되었다.In recent years, plants using hydrogenation processes, such as petroleum refining and heavy oil decomposition, have tended to be more large, high temperature and high pressure to improve efficiency. Accordingly, the chromium-molybdenum steel pressure vessel conventionally used in the plant needed to be designed thicker. However, in order to satisfy the design conditions, not only the wall thickness becomes so thick that it is almost impossible to manufacture, but also there is a risk of material damage caused by hydrogen (hereinafter referred to as 'hydrogen erosion').

본 발명은 상기한 문제점을 해소하기 위해 안출된 것으로서, 발명의 목적은 크롬-몰리브데늄강에 바나듐 등의 원소를 적절히 첨가함으로써 수소침식저항과 고온강도를 획기적으로 향상시키고, 용접성을 향상시켜 제작을 용이하게 할 수 있는 압력용기용 크롬-몰리브데늄-바나듐강을 제공하는 데 있다.The present invention has been made to solve the above problems, the object of the invention is to improve the erosion resistance and high temperature strength significantly by adding an element such as vanadium to chromium-molybdenum steel, improve the weldability It is to provide a chromium-molybdenum- vanadium steel for the pressure vessel that can facilitate the.

본 발명강은 여러가지 합금원소의 상호 상승효과를 극대화하고 상호 억제효과를 최소화할 수 있도록 설계되어 있다. 그러므로 각 원소의 조성을 최적설계하면, 수소침식에 대한 저항성이 증대되고, 경화능이 증대되어 두께 450mm의 극후육재의 중심부까지 균일한 베이나이트 조직을 얻을 수 있으며, 용접성이 증대되어 생산성이 향상되고, 결정립이 미세하게 되어 인성이 확보되므로, 고온, 고압의 압력용기의 소재로 사용될 수 있는 것이다.The present invention steel is designed to maximize the mutual synergy of various alloying elements and minimize the mutual suppression effect. Therefore, if the composition of each element is optimally designed, the resistance to hydrogen erosion is increased, the hardenability is increased, and uniform bainite structure can be obtained up to the center of the ultra-thick material with a thickness of 450 mm, the weldability is increased, and the productivity is improved. Since the fineness is ensured toughness, it can be used as a material of the high-pressure, high-pressure vessel.

이를 위해, 본 발명의 합금강은 중량%로 C 0.10∼0.17%, Mn 0.30∼0.70%, Si 0.05∼0.20%, Cr 2.00∼3.50%, Mo 0.60∼1.20%, W 0.80% 이하, Ni 0.05∼0.25%, V 0.25∼0.35%, Nb 0.01초과 0.05% 이하, Ti 0.005∼0.03%, B 0.0005∼0.002%, Ca 0.0005∼0.015%, Al 0.01∼0.04%, P 0.015% 이하, S 0.01% 이하, 잔부는 Fe 및 기타 불가피한 불순물로 구성되며, 0.80wt% ≤Mo+0.5W ≤1.20wt% 포함하는 구성으로 되어 있다.To this end, the alloy steel of the present invention by weight% C 0.10 to 0.17%, Mn 0.30 to 0.70%, Si 0.05 to 0.20%, Cr 2.00 to 3.50%, Mo 0.60 to 1.20%, W 0.80% or less, Ni 0.05 to 0.25 %, V 0.25-0.35%, Nb 0.01% or more, 0.05% or less, Ti 0.005-0.03%, B 0.0005-0.002%, Ca 0.0005-0.015%, Al 0.01-0.04%, P 0.015% or less, S 0.01% or less The part is composed of Fe and other unavoidable impurities, and has a composition including 0.80 wt% ≦ Mo + 0.5W ≦ 1.20 wt%.

본 발명강을 구성하는 상기 원소의 특성 및 역할에 관하여 다음과 같이 설명한다.The characteristic and role of the said element which comprises this invention steel are demonstrated as follows.

1) 탄소(C)는 경화능을 개선시켜 두꺼운 강재의 중심부까지 균질한 기계적 성질을 확보하고, 열처리 과정에서 탄화물을 석출시켜 소재의 강도를 증대시키는 중요한 작용을 한다. 그러나, 그 함유량이 0.10wt% 미만일 경우에는 요구되는 고온강도를 얻을 수 없고, 0.17wt%를 초과하면 용접성을 저하시키므로 압력용기의 제작이 매우 어렵게 된다. 이러한 이유로 0.10∼0.17wt%의 범위로 한정시키는 것이 바람직하다.1) Carbon (C) improves the hardenability to ensure homogeneous mechanical properties to the center of thick steel, and precipitates carbide during heat treatment to increase the strength of the material. However, if the content is less than 0.10 wt%, the required high temperature strength cannot be obtained. If the content exceeds 0.17 wt%, the weldability is lowered, making the pressure vessel very difficult. For this reason, it is preferable to limit to 0.10 to 0.17 wt%.

2) 망간(Mn)은 강도유지와 열처리과정에 경화능을 향상시키는 합금원소로 중요한 역할을 한다. 그러므로 용접성확보 측면에서 탄소(C)함량을 줄이기 위해서도 최소 0.30wt% 이상 요구되나, 0.70wt% 를 초과하면 규소(Si)와 함께 뜨임취성에 대한 저항성을 해치게 되므로 0.30∼0.70wt% 범위가 바람직하다.2) Manganese (Mn) plays an important role as an alloying element to improve the hardenability during the maintenance of strength and heat treatment. Therefore, in order to secure weldability, at least 0.30wt% is required to reduce the carbon content, but if it exceeds 0.70wt%, the resistance to temper brittleness is impaired together with silicon (Si), so the range of 0.30 to 0.70wt% is preferable. .

3) 인(P)은 제강중 불가피하게 혼입되는 원소로 열처리과정 또는 고온사용시 뜨임취성을 일으키는 역할을 하므로 가능하면 낮은 함량으로 유지시키는 것이 바람직하나 제조공정상 경제적인 비용을 고려하여 최고치를 0.015wt%로 한다.3) Phosphorus (P) is an element that is inevitably mixed during steelmaking, which plays a role in tempering brittleness during heat treatment or high temperature use. Therefore, it is preferable to keep it as low as possible, but the maximum value is 0.015wt% in consideration of economic cost in manufacturing process. Shall be.

4) 황(S)은 제강중 불가피하게 혼입되는 원소로 충격인성을 저해하고, 용접성을 해치는 유해한 원소이므로 가능하면 낮은 함량으로 유지하는 것이 바람직하지만 제조공정상 경제적인 비용을 고려하여 최고치를 0.01wt%로 한다.4) Sulfur (S) is an element that is inevitably mixed during steelmaking. It is a harmful element that impairs impact toughness and harms weldability. Therefore, it is preferable to keep it as low as possible, but the maximum value is 0.01wt% in consideration of economic cost in the manufacturing process. Shall be.

5) 규소(Si)는 제강정련 동안에 용강중의 산소를 제거하는 탈산제 역할을 하는 원소로서, 0.05wt% 미만일 경우에는 탈산이 불충분할 우려가 있고, 0.2wt%을 초과할 경우에는 탄화물의 조대화를 조장하여 고온강도가 떨어지거나 뜨임취성이 증대되기 때문에 0.05∼0.20wt%의 범위가 바람직하다.5) Silicon (Si) is an element that acts as a deoxidizer to remove oxygen in molten steel during steelmaking. If it is less than 0.05 wt%, deoxidation may be insufficient, and if it exceeds 0.2 wt%, coarsening of carbides may occur. The range of 0.05-0.20 wt% is preferable because it promotes the drop in high temperature strength or the increase in temper brittleness.

6) 크롬(Cr)은 수소에 의한 침식작용을 억제하는데 중요한 역할을 담당한다. 450℃ 이상의 수소분위기에서 사용하기 위해서는 최저 2wt% 이상 요구되고, 3.5wt%를 초과하면 고온강도가 급격히 떨어지게 된다.6) Chromium (Cr) plays an important role in suppressing the erosion by hydrogen. In order to use in a hydrogen atmosphere of 450 ℃ or more is required at least 2wt%, and exceeds 3.5wt% high temperature strength is drastically dropped.

7) 몰리브덴(Mo)은 고온강도를 높이고, 뜨임취성에 대한 저항성을 높이는데효과적이다. 그러나 함량이 0.6wt% 미만이면 500℃ 근처에서 고온강도가 저하되고 1.2wt% 를 초과하면 용접성이 나빠지게 된다.7) Molybdenum (Mo) is effective in increasing the high temperature strength and resistance to temper brittleness. However, if the content is less than 0.6wt%, the high temperature strength is lowered at around 500 ° C, and if the content is more than 1.2wt%, the weldability is deteriorated.

8) 텅스텐(W)은 고온강도를 높이고, 뜨임취성에 대한 저항성을 높이는데 효과적인 원소로서 Mo과 유사한 역할을 수행한다. 즉, 몰리브데늄(Mo)과 텅스텐(W)은 원소 주기율표 상의 같은 족 원소로서, 페라이트계 강에 있어서 유사한 특성을 나타낸다. 그러나, 텅스텐은 원자량이 Mo의 2배 가량 무거워 동일한 효과를 나타내려면 중량%로 약 2배의 첨가량이 요구된다. 따라서, 당량(當量, Equivalent)의 의미에서 W에는 0.5의 계수가 요구된다.한편, 두 원소가 유사한 효과를 나타내기는 하나, 완전히 동일한 원소는 아니므로 고온에서 장기간 사용 중에 형성되는 석출물의 종류 및 성장속도가 약간씩 달라 장시간의 Creep 파단 강도 등에는 다소 상이한 효과를 나타낸다.이와 같이, 두 원소간의 상이점으로 인해서 적절한 효과를 나타내는 텅스텐과 Mo에 대한 각각의 최적적인 첨가 범위가 있는 한편, 두 원소간의 유사성으로 인해서 총합적인 개념에서의 최적 첨가범위도 존재하게 된다. 텅스텐 단독으로는 0.80wt% 이하로 해야 상기 효과를 충분히 나타내게 되며, 이를 초과하면 용접성을 해치게 된다. 또한, (Mo+0.5W)의 총합으로는 0.80∼1.20wt%로 제어하는 것이 필요하다. 이는, 0.8wt% 보다 적을 경우에는 상기 효과를 충분히 발휘하기 어려우며, 1.2wt%를 초과하면 용접성이 나빠지는 경향이 있기 때문이다.8) Tungsten (W) plays a role similar to Mo as an effective element in increasing high temperature strength and resistance to temper odor. That is, molybdenum (Mo) and tungsten (W) are the same group elements on the periodic table of elements, and show similar characteristics in ferritic steels. However, tungsten is about twice as heavy as Mo, so about twice as much weight is required to achieve the same effect. Therefore, a coefficient of 0.5 is required for W in the sense of equivalence. On the other hand, although the two elements show a similar effect, they are not exactly the same, and thus the type and growth of precipitates formed during long-term use at high temperatures. The speed is slightly different, resulting in a slightly different effect on long-term creep rupture strength, etc. As such, there is an optimum range of additions for tungsten and Mo, which show appropriate effects due to differences between the two elements, while similarities between the two elements. As a result, there is also an optimal range of addition in the overall concept. Tungsten alone is 0.80wt% or less to sufficiently exhibit the above effects, and if it exceeds this, the weldability is impaired. In addition, as a total of (Mo + 0.5W), it is necessary to control to 0.80-1.20 wt%. This is because when it is less than 0.8 wt%, the above effects are hardly exhibited sufficiently, and when it exceeds 1.2 wt%, the weldability tends to be deteriorated.

9) 니켈(Ni)은 Mn과 유사하게 열처리과정에서 경화능을 향상시키고 인성을 높이는 효과가 있으나 고온강도를 저해시키는 작용을 하므로 0.05∼0.25wt% 범위내로 유지하는 것이 바람직하다.9) Nickel (Ni) has the effect of improving the hardenability and toughness in the heat treatment process similar to Mn, but inhibits the high temperature strength, it is preferable to maintain within the range of 0.05 ~ 0.25 wt%.

10) 바나듐(V)은 미세한 탄화물을 석출시켜서 고온강도를 높이고 탄소를 고정하여 수소침식에 대한 저항성을 증대시키는 중요한 원소이다. 그러나 0.25wt% 미만에서는 이러한 효과가 미약하고, 고온강도증가에 기여하는 효과는 0.3wt%를 정점으로 감소하며, 다량 함유할 경우 용접시 고온균열이 발생되기 쉬우므로 0.25∼0.35wt%로 제한한다.10) Vanadium (V) is an important element that increases the high temperature strength by depositing fine carbides and fixes carbon to increase resistance to hydrogen erosion. However, if the amount is less than 0.25wt%, the effect is weak, and the effect of increasing the high temperature strength is reduced to the peak of 0.3wt%, and if it contains a large amount, hot cracking is likely to occur during welding, so it is limited to 0.25 ~ 0.35wt%. .

11) 니오븀(Nb)은 미세한 탄화물을 형성하여 고온에서의 열처리시 결정립 조대화로 인한 인성저하를 방지한다. 그러나, 0.01wt% 이하에서는 거의 효과가 없으며 과잉첨가시 용접성을 해치므로 0.01wt% 초과, 0.05wt% 이하의 범위로 함유하는 것이 좋다.11) Niobium (Nb) forms fine carbides to prevent toughness due to grain coarsening during heat treatment at high temperatures. However, since it is hardly effective at 0.01 wt% or less and impairs weldability when it is added, it is good to contain it in the range of 0.01 wt% or more and 0.05 wt% or less.

12) 티타늄(Ti)은 알루미늄(Al)과 함께 용강중에 포함된 질소(N)와 반응하여고용질소를 저감시켜 보론(B)에 의한 소재의 경화능을 향상시키는 데 간접적으로 작용한다. Ti함량이 0.005wt% 미만인 경우 효과를 기대하기 어렵고 0.03wt% 이상 함유되면 비금속개재물이 생성되어 충격인성이 나빠지므로 0.005∼0.03wt%로 제한하는 것이 바람직하다.12) Titanium (Ti) reacts with nitrogen (N) contained in molten steel together with aluminum (Al) to indirectly work to improve the hardenability of the material by boron (B) by reducing the nitrogen. If the Ti content is less than 0.005wt%, it is difficult to expect the effect, and if it contains 0.03wt% or more, nonmetallic inclusions are generated and the impact toughness worsens. Therefore, the Ti content is preferably limited to 0.005 to 0.03wt%.

13) 알루미늄(Al)은 산소와 친화력이 강하므로 용강중의 산소와 결합, 산화알루미늄의 형태로 산소를 제거할 목적으로 첨가되나 잔량의 일부는 티타늄(Ti)과 함께 질소와 반응해 미세한 질화물을 형성하여 결정립 미세화에 기여함과 동시에 고용질소를 저감시켜 보론(B)의 경화능 개선효과를 극대화 할 수 있다. 그러나 0.01wt% 미만이면 효과가 미미하고 지나치게 많으면 충격인성이 나빠지므로 0.04wt%를 넘지 않도록 한다.13) Since aluminum (Al) has strong affinity with oxygen, it is added for the purpose of combining oxygen with molten steel and removing oxygen in the form of aluminum oxide, but some of the remaining amount reacts with nitrogen together with titanium to form fine nitrides. By contributing to the refinement of grains and reducing the solid solution nitrogen, it is possible to maximize the effect of improving the hardenability of boron (B). However, if it is less than 0.01wt%, the effect is insignificant, and if too much, the toughness of the impact deteriorates, so it should not exceed 0.04wt%.

14) 보론(B)은 극미량 첨가하여 경화능을 획기적으로 개선시킬 수 있는 합금원소이다. 그러나 강중에 보론(B)의 함량이 0.0005wt% 미만이면 이러한 효과가 얻어지지 않고 0.002wt% 이상 함유하면 열간가공성과 용접성을 해치게 된다. 그러나 보론은 고용질소와 결합하여 질화물을 형성할 경우 효과를 기대할 수 없으므로, 반드시 보론보다 고용질소와의 결합력이 더 강한 Ti, Al 등을 복합첨가하여 고용 보론의 활동도를 증가시켜줄 필요가 있다.14) Boron (B) is an alloying element that can dramatically improve the hardenability by adding a very small amount. However, if the content of boron (B) in the steel is less than 0.0005wt%, this effect is not obtained. If the content is more than 0.002wt%, the hot workability and weldability are deteriorated. However, since boron cannot be expected to form nitrides in combination with solid nitrogen, it is necessary to increase the activity of solid boron by adding Ti, Al, etc., which are more strongly bonded to solid nitrogen than boron.

15) 칼슘(Ca)은 극미량의 첨가로 용접성을 획기적으로 개선시키는 원소이다. 그러나 0.0005wt% 미만에서는 효과를 거의 기대하기 어렵고 0.015wt%를 초과하면 강의 청정도를 저해하여 오히려 악영향을 미칠 우려가 있으므로 0.0005∼0.015wt%로 제한할 필요가 있다.15) Calcium (Ca) is an element that dramatically improves the weldability by adding a very small amount. However, if the effect is less than 0.0005wt%, the effect is hardly expected, and if it exceeds 0.015wt%, the cleanliness of the steel may be impaired and adversely affected. Therefore, it is necessary to limit the amount to 0.0005 ~ 0.015wt%.

이하, 본 발명강의 일실시예를 설명한다.Hereinafter, an embodiment of the present invention steel will be described.

우선, 전기로에서의 산화정련 후 ASEA-SKF 2차 레이들(ladle) 정련로에서 환원정련을 거쳐 진공 유적 탈가스법에 의해 80톤 인고트로 조괴하였다. 이 인고트를 1만톤 프레스로 내경 1,750mm, 외경 2,410mm, 길이 3,500mm 의 쉘(shell)형태로 단조하고 난 후, 1000∼1050℃에서 불림처리, 910∼960℃에서 담금질, 660℃에서 뜨임처리 하였다.First, after oxidation in an electric furnace, the ASEA-SKF secondary ladle refining furnace was subjected to reduction refining and coagulated into 80 tons ingot by vacuum oil removal degassing. The ingot was forged into a shell form of 1,750 mm, 2,410 mm and 3,500 mm in length by a 10,000-ton press, then quenched at 1000 to 1050 ° C, quenched at 910 to 960 ° C, and tempered at 660 ° C. Processed.

아래 표 1은 이와같이 제조된 시제품의 화학조성을 나타내고 표 2는 상기 시제품의 기계적 성능 및 용접성을 나타낸다. 상기 표 2에서 보듯이 고온ㆍ고압용 압력용기로 사용되기에 충분할 정도로 고온강도가 크고, 두께방향의 기계적성질이 균일하며 파괴인성이 크다는 것을 알 수 있다. 또, 용접성이 우수하므로 제작이 용이할 것임을 예상할 수 있다.Table 1 below shows the chemical composition of the prototype thus produced, and Table 2 shows the mechanical performance and weldability of the prototype. As shown in Table 2, it can be seen that the high temperature strength is large enough to be used as a pressure vessel for high temperature and high pressure, the mechanical properties in the thickness direction are uniform, and fracture toughness is large. In addition, since the weldability is excellent, the production can be expected to be easy.

상기한 바와 같은 구성의 본 발명에 따르면, 고온강도와 충격인성이 높고, 뜨임취성 및 수소침식에 대한 저항성이 높으므로 정유공장의 중질유분해 및 탈황 등 450℃ 이상의 고온, 고압의 수소를 이용하는 압력용기의 소재로 적당하고, 용접성이 우수하므로 제작이 용이하다는 이점이 있다.According to the present invention having the above-described configuration, since the high temperature strength and impact toughness is high, and the resistance to temper brittleness and hydrogen erosion is high, a pressure vessel using high-temperature, high-pressure hydrogen, such as heavy oil decomposition and desulfurization of the refinery, It is suitable as a material and has an advantage of being easy to manufacture because of its excellent weldability.

또한, 충분한 경화능을 확보할 수 있어서 열처리과정시 표면으로부터 중심부까지 균일한 베이나이트 조직이 생성되므로 최종제품의 품질이 균일하게 우수하다는 효과를 도모할 수 있다.In addition, it is possible to ensure a sufficient curing ability to produce a uniform bainite structure from the surface to the center during the heat treatment process can achieve the effect that the quality of the final product is uniformly excellent.

Claims (1)

중량%로 C 0.10∼0.17%, Mn 0.30∼0.70%, Si 0.05∼0.20%, Cr 2.00∼3.50%, Mo 0.60∼1.20%, W 0.80% 이하, Ni 0.05∼0.25%, V 0.25∼0.35%, Nb 0.01초과 0.05% 이하, Ti 0.005∼0.03%, B 0.0005∼0.002%, Ca 0.0005∼0.015%, Al 0.01∼0.04%, P 0.015% 이하, S 0.01% 이하, 잔부는 Fe 및 기타 불가피한 불순물로 구성되며, 0.80wt% ≤Mo+0.5W ≤1.20wt% 포함하는 압력용기용 크롬-몰리브데늄-바나듐강.By weight% C 0.10 to 0.17%, Mn 0.30 to 0.70%, Si 0.05 to 0.20%, Cr 2.00 to 3.50%, Mo 0.60 to 1.20%, W 0.80% or less, Ni 0.05 to 0.25%, V 0.25 to 0.35%, Nb greater than 0.01% and 0.05% or less, Ti 0.005 to 0.03%, B 0.0005 to 0.002%, Ca 0.0005 to 0.015%, Al 0.01 to 0.04%, P 0.015% or less, S 0.01% or less, the balance consisting of Fe and other unavoidable impurities And, chromium-molybdenum-vanadium steel for pressure vessels containing 0.80 wt% ≦ Mo + 0.5W ≦ 1.20wt%.
KR1019990047097A 1999-10-28 1999-10-28 Cr-Mo-V Alloy Steel for Pressure Vessel KR100330453B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990047097A KR100330453B1 (en) 1999-10-28 1999-10-28 Cr-Mo-V Alloy Steel for Pressure Vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990047097A KR100330453B1 (en) 1999-10-28 1999-10-28 Cr-Mo-V Alloy Steel for Pressure Vessel

Publications (2)

Publication Number Publication Date
KR20010038922A KR20010038922A (en) 2001-05-15
KR100330453B1 true KR100330453B1 (en) 2002-04-01

Family

ID=19617340

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990047097A KR100330453B1 (en) 1999-10-28 1999-10-28 Cr-Mo-V Alloy Steel for Pressure Vessel

Country Status (1)

Country Link
KR (1) KR100330453B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115852242B (en) * 2021-09-24 2024-03-08 宝山钢铁股份有限公司 High-temperature high-pressure hydrogen corrosion-resistant thick steel plate and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941076A (en) * 1995-08-02 1997-02-10 Mitsubishi Heavy Ind Ltd High strength and high toughness low alloy steel
JPH101737A (en) * 1996-06-10 1998-01-06 Nkk Corp Low alloy heat resistant steel, excellent in high temperature strength and toughness, and its production
KR19980073737A (en) * 1997-03-18 1998-11-05 박운서 High toughness cr-mo steel
JPH11193444A (en) * 1998-01-05 1999-07-21 Nkk Corp Low alloy heat resistant steel excellent in high temperature strength and oxidation resistance, and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941076A (en) * 1995-08-02 1997-02-10 Mitsubishi Heavy Ind Ltd High strength and high toughness low alloy steel
JPH101737A (en) * 1996-06-10 1998-01-06 Nkk Corp Low alloy heat resistant steel, excellent in high temperature strength and toughness, and its production
KR19980073737A (en) * 1997-03-18 1998-11-05 박운서 High toughness cr-mo steel
JPH11193444A (en) * 1998-01-05 1999-07-21 Nkk Corp Low alloy heat resistant steel excellent in high temperature strength and oxidation resistance, and its production

Also Published As

Publication number Publication date
KR20010038922A (en) 2001-05-15

Similar Documents

Publication Publication Date Title
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
EP0806490B1 (en) Heat resisting steel and steam turbine rotor shaft
KR20050077008A (en) Alloy tool steel
JP2002537486A (en) Heat-resistant austenitic stainless steel
EP3859035A1 (en) Ultrahigh-steel q960e slab and manufacturing method
EP0384433A1 (en) Ferritic heat resisting steel having superior high-temperature strength
CN111118398A (en) High-hardenability high-strength low-temperature-toughness spring steel and production method thereof
US20040101430A1 (en) Steel alloy plastic moulding tool and tough-hardened blank for plastic moulding tools
KR20140108431A (en) Steel sheet and manufacturing method of the same
CN114959442B (en) Steel for universal joint cross shaft for cold extrusion and manufacturing method thereof
KR100330453B1 (en) Cr-Mo-V Alloy Steel for Pressure Vessel
JP2528767B2 (en) Ferritic heat resistant steel with excellent high temperature strength and toughness
KR100209450B1 (en) High toughness cr-mo steel
EP3666910B1 (en) Low phosphorus, zirconium micro-alloyed, fracture resistant steel alloys
CN114351060A (en) Hot-rolled steel strip, preparation method thereof and application thereof in bimetal band saw backing material
JP6856083B2 (en) High Mn steel and its manufacturing method
JPH09310147A (en) Steel sheet excellent in heat affected zone toughness
KR102021205B1 (en) Non-heat treated steel and method of manufacturing the same
CN111893395A (en) High-strength die steel and heat treatment method thereof
KR100268708B1 (en) Method of manufacturing high cr ferritic heat resisting steel for high temperature,high pressure parts
JP4271311B2 (en) Ferritic heat resistant steel
JPH03236445A (en) Cold tool steel
JPH07166303A (en) High strength martensitic stainless steel excellent in stress corrosion cracking resistance and production thereof
JP2634961B2 (en) Manufacturing method of 80kgf / mm2 class high strength steel with excellent weldability
JP5371420B2 (en) Heat resistant cast steel and steam turbine main valves

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130201

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20131206

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20151208

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20161214

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20171204

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20190102

Year of fee payment: 18