JP4271311B2 - Ferritic heat resistant steel - Google Patents

Ferritic heat resistant steel Download PDF

Info

Publication number
JP4271311B2
JP4271311B2 JP24795399A JP24795399A JP4271311B2 JP 4271311 B2 JP4271311 B2 JP 4271311B2 JP 24795399 A JP24795399 A JP 24795399A JP 24795399 A JP24795399 A JP 24795399A JP 4271311 B2 JP4271311 B2 JP 4271311B2
Authority
JP
Japan
Prior art keywords
content
less
heat resistant
resistant steel
ferritic heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24795399A
Other languages
Japanese (ja)
Other versions
JP2001073091A (en
Inventor
司 東
泰彦 田中
徹 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP24795399A priority Critical patent/JP4271311B2/en
Publication of JP2001073091A publication Critical patent/JP2001073091A/en
Application granted granted Critical
Publication of JP4271311B2 publication Critical patent/JP4271311B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はフェライト系耐熱鋼に関するものであり、さらに詳しくは高温におけるクリープ破断特性、靱性ならびに耐水蒸気酸化特性に優れ、ボイラ鋼管等に好適なフェライト系高Cr鋼に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
火力発電システムのボイラ管のように高温特性が要求される用途では、比較的安価で高温特性に優れたフェライト系高Cr鋼が構成材料として多く採用されている。
ところで、上記システムでは発電効率を向上させるために蒸気条件の高温化が進められており、例えば630℃あるいは650℃(すなわち630℃以上)の温度条件が想定されている。このような動向に伴いボイラ管等に用いられる材料には、高温クリープ強度、靱性、および耐水蒸気酸化特性について一層の改善が要求されている。
近年、上記要求に従って高温強度を向上させるべく、WあるいはB等を添加した耐熱材料が開発されており、例えば特開平7−286246号、特開平8−85847号等には、高温クリープ強度、靱性ならびに耐酸化特性を向上させた耐熱鋼が提案されている。
【0003】
しかし、従来の改良鋼種においても上記高温特性は十分といえるものではなく、さらなる改良が望まれている。
本発明は上記事情を背景としてなされたものであり、従来材に比べ高温特性、特にクリープ特性、靱性、耐高温腐食特性、耐水蒸気酸化特性をさらに向上させたフェライト系耐熱鋼を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明は上記課題を解決するため、合金元素の最適化をはかるとともにREM、Caを積極添加し、さらに脱酸剤、脱硫剤としてのSi、Mn、Al量を低減することにより、優れた耐酸化特性を有し、かつ高い高温強度、高靱性を維持した鋼を得ようとするものである。
【0005】
すなわち、上述の目的を達成するため、本発明のフェライト系耐熱鋼のうち第1の発明は、重量%で、C:0.07〜0.14%、Si:0.10〜0.25%、Ni:0.8%以下、Cr:9.5〜13.0%、Mo:0.1〜0.6%、V:0.14〜0.24%、Nb:0.03〜0.08%、W:1.8〜2.8%、Co:2.0〜3.5%、B:0.002〜0.008%、N:0.025%以下を含有し、さらに希土類元素:0.001〜0.03%、Ca:0.001〜0.03%の一種以上を含有し、残部がFeおよび不可避的不純物からなり、希土類元素含有量: REM(%) 、Ca含有量: Ca(%) 、Si含有量: Si(%) 、Mn含有量: Mn(%) 、Al含有量: Al(%) が下記関係式を満たす成分範囲にあることを特徴とする。
47 × REM(%) 33 × Ca(%) )/( 1.5 × Si(%) 0.9 × Mn(%) 8 × Al(%) )≧1.0
【0006】
第2の発明のフェライト系耐熱鋼は、第1の発明のフェライト系耐熱鋼において、不可避的不純物のうち、Mn:0.25%以下、Al:0.010%以下を許容含有量とすることを特徴とする。
【0007】
第3の発明のフェライト系耐熱鋼は、第1または第2の発明のフェライト系耐熱鋼において、不可避的不純物のうち、S:0.010%以下、O:0.0050%以下を許容含有量とすることを特徴とする。
【0009】
以下に、本発明の成分限定理由を説明する。
C:0.07〜0.14%
Cは、炭化物生成元素と結びついて炭化物を形成し、高温強度を向上させるが0.07%未満であると強度が不十分であり、一方、0.14%を超えると炭化物が粗大化し高温性質を低下させるので、その範囲を0.07〜0.14%とする。なお、同様の理由で、下限を0.08%、上限を0.11%とするのが望ましい。
【0010】
Si:0.10〜0.25%
Siは、耐水蒸気酸化特性を向上させる作用があるので含有させる。ただし、Si含有量が高いと鋼塊内部の偏析が増加するため、靭性が低下し、さらに高温長時間保持により炭化物、Laves相の凝集粗大化を促進させクリープ強度が低下するので含有量の上限は0.25%とする。なお、同様の理由で上限を0.15%未満とするのが望ましい。下限0.10%とする。
なお、Siを積極的に含有させる場合、耐水蒸気酸化特性に有効に働くSiが脱酸に使用されないように、酸化当量比(後述する)を厳密に管理する
【0011】
Ni:0.8%以下
Niは焼入れ性を向上させ、またデルタフェライトの生成を抑制し、靭性を改善するので含有させるが、過剰に含有すると高温クリープ強さが低下するので上限を0.8%とする。なお、上記作用を確実に得るためには、0.20%以上含有させるのが望ましい。
上記と同様の理由で、下限を0.25%、上限を0.45%とするのが望ましい。
【0012】
Cr:9.5〜13.0%
Crは、この鋼種において焼入性、高温強度を高める基本合金成分であるが、過剰に含有させるとδフェライトが晶出し、また、粗大なLaves相の析出を助長して高温性質および靭性を劣化させる。これらの観点から、下限を9.5%、上限を13.0%とし、望ましくは下限を11.0%、上限を12.5%とする。
【0013】
Mo:0.1〜0.6%
Moは、焼戻軟化抵抗を高め、また高温強度を改善するために0.1%以上の含有が必要であるが、0.6%を超えて含有させても、それ以上の効果は期待できず、また有害なδフェライトが生成されてクリープ破断強度が低下するため、含有量を0.1〜0.6%の範囲に限定した。なお、同様の理由で下限を0.2%、上限を0.4%とするのが望ましい。
【0014】
V:0.14〜0.24%
Vは、安定した炭化物を形成し、クリープ強度を向上させる作用を有しており、これら作用を得るため0.14%以上含有させる。一方、過剰に含有させると延靭性が低下するので上限を0.24%とする。なお、同様の理由で下限を0.16%、上限を0.2%とするのが望ましい。
【0015】
Nb:0.03〜0.08%
Nbは、微細な炭窒化物を形成して高温強度を向上させ、さらに、Bと複合添加させることにより、一層クリープ強度を向上させるので含有させる。ただし、0.03%未満の含有では効果はなく、一方、0.08%を越えて含有させると炭窒化物が増大して延靭性を低下させるので、その範囲を0.03〜0.08%とする。
【0016】
W:1.8〜2.8%
Wは、固溶強化として、また、炭化物あるいはLaves相の形態で析出して、高温強度の向上に寄与する。さらに、Bと複合添加することにより、高温クリープ強度を向上させる。しかし、過剰に含有させると偏析傾向が増大するとともに延靭性を低下させる。
上記作用を考慮した上で、下限を1.8%、上限を2.8%とし、さらに望ましくは、下限を2.0%、上限を2.5%とする。
【0017】
Co:2.0〜3.5%
Coは、δフェライトの析出を抑えることで衝撃性質を向上させ、またクリープ破断強度を向上させるために含有させる。
上記作用を考慮して、Coを2.0%以上含有させる。但し、3.5%を越えて含有させてもその効果が飽和するので、上限は3.5%とする。なお、同様の理由で下限を2.5%、上限を3.0%とするのが望ましい。
【0018】
B:0.002〜0.008%
Bは、微量の含有で焼入れ性が増大し、靭性を向上させるとともに粒界および粒内の炭化物の析出凝集を抑え、高温クリープ強さを高める。さらに、適量のNb、W、Nと複合添加することにより、高温クリープ強さの向上に寄与する。しかし、0.002%未満の含有では上記効果が不十分である。また、0.008%を越えて含有すると高温クリープ延性を低下させ、さらに溶接性を悪化させるためその含有量を0.002〜0.008%に限定した。なお、同様の理由で下限を0.004%、上限を0.006%とするのが望ましい。
【0019】
N:0.025%以下
Nは、基地を強化するとともに、V、あるいはNbと炭窒化物を形成し、また、Bとの複合添加効果によりクリープ強度の向上に有効に作用する。ただし、過剰に含有すると粗大な窒化物を形成して、延靱性、及び高温クリープ強度が低下するので、その上限を0.025%とする。なお、同様の理由で上限を0.021%とするのが望ましい。また、上記作用を確実に得るためには0.014%以上含有させるのが望ましい。
【0020】
希土類元素:0.001〜0.03%
Ca :0.001〜0.03%の一種以上
REM(希土類元素)およびCaは、脱酸ならびに脱硫作用を有し、金属溶湯に単独あるいは複合添加することにより、鋼に内在する非金属介在物の低減、微細化、均一分散化を図ることができることから、靱性の向上および高温長時間でのクリープ延性の向上に寄与する。さらに、粒界の優先酸化、及び粒内への酸素の拡散を抑制し、高温で安定な酸化皮膜の形成を促進して耐高温腐食特性、及び耐水蒸気酸化特性の向上に寄与する。
上記効果を得るためには、各元素で0.001%以上の添加が必要であるが、0.03%を越えて含有させると酸化物が過剰に生成されてかえって靱性が低下するため、REMおよびCaの含有量を上記範囲に限定した。なお、同様の理由でそれぞれ下限を0.003%、上限を0.025%とするのが望ましく、さらに下限を0.01%、上限を0.015%とするのが一層望ましい。
【0021】
(不可避不純物)
Mn:0.25%以下
Mnは、一般的な鋼製造において脱酸、脱硫剤として使用されるが、MnはSと結合し粗大な非金属介在物を形成して靱性を低下させるとともに、靱性の経時劣化を助長させ、さらにクリープ強度を低下させるため、本願発明では積極的には添加せず、不純物として取り扱う。したがって、その含有量を極力低減するのが望ましいが、精錬技術の限界を考慮して、上限を0.25%に定めるのが望ましい。より好ましくは、0.10%未満に限定する。
【0022】
Al:0.010%以下
Alは、一般には脱酸剤として使用されるが、Alは靱性を低下させ、さらに窒素と結合して高温強化に寄与するVならびにNb炭窒化物を減少させてクリープ強度を低下させるので、本願発明では積極的には添加せず、不純物として取り扱う。したがってその含有量は極力低減するのが望ましいが、精錬技術の限界を考慮して、0.010%以下に制限するのを望ましいものとした。より好ましくは、0.005%以下に限定する。
【0023】
S:0.010%以下
Sはマクロ偏析の生成を助長し、また、Mn、Fe、Nb、V等と硫化物を形成して靱性を劣化させるものであり、また脱硫に必要なREM、Caの含有を過剰にしないという点からS含有量は極力低減させるのが好ましい。ただし、精錬技術の限界を考慮して、許容含有量として0.010%以下を望ましいものとした。
【0024】
O:0.0050%以下
OはSi、Mn、Al等と酸化物を形成して延靱性を劣化させるものであり、また脱酸に必要なREM、Caの含有を過剰にしないという点からO含有量は極力低減させることが好ましい。ただし精錬技術の限界を考慮して、その許容含有量として0.0050%以下を望ましいものとした。より好ましくは、0.0030%以下である。
【0025】
酸化当量比≧1.0
本願発明鋼では、脱酸、脱硫をSi、Mn、Alを用いず、REM、Caで行うことに特徴がある。その脱酸、脱硫効果は、酸化当量比が1.0未満になるとSi、Mn、Alによる脱酸、脱硫効果が相対的に大きくなり、Si、Mn、Alによる上記弊害が生じるとともにREM、Caによる上記効果が得られなくなる。また、REM、Caは、Si等よりも優先的に脱酸、脱硫に寄与する性質があるので、REM、Caの相対量を多くすることによりSi等の上記弊害の発生を抑制する作用がある。このため、上記比が1.0以上になるように上記成分の含有量を調整するなお、上記比は大きいほどREM、Caの作用が相対的に大きくなるので、さらに2.0以上が望ましく、さらには3.0以上が一層望ましく、5.0以上がより一層望ましい。
ただし、酸化当量比は、(47×REM(%)+33×Ca(%))/(1.5×Si(%)+0.9×Mn(%)+8×Al(%))で示されるものとする。
【0026】
【発明の実施の形態】
本発明は、上記した成分に従って溶解、精錬、鋳込み等が行われるが、精錬に際しては、脱酸、脱硫をSi、Mn、Alを用いず、REM、Caで行う。その他工程においては常法を採用することができる。
鋳込まれた鋼には、熱間鍛錬あるいは圧延により所望の形状に加工した後、適宜の熱処理が施される。例えば、1000〜1150℃で焼鈍し、1000〜1200℃に加熱し強制冷却する焼準を行い、その後700〜800℃で焼戻を行う。
なお、焼鈍および焼準温度は、炭窒化物の固溶およびδフェライトの分解を行うために1000℃以上とするのが望ましい。この温度が高すぎると結晶粒の粗大化やδフェライトへの再変態が起きるので上限温度1150℃或いは1200℃とする。また焼戻により、均一な焼戻しマルテンサイト組織が得られ、さらに炭窒化物を微細析出させクリープ破断強度を向上させることができる。
【0027】
なお、本発明鋼は溶接性にも優れており、必要に応じて溶接を行うことができ、例えば、上記した一連の熱処理後、溶接を行い、その後、650℃〜760℃の応力除去焼鈍を行う。
得られた耐熱鋼は、高温クリープ破断特性、靱性、耐高温腐食特性ならびに耐水蒸気酸化特性に優れており、例えば火力発電システムのボイラ管に好適な材料としてに使用することができる。
なお、本発明鋼は、上記したように高温蒸気に晒されるボイラ管用の材料に好適であるが、本発明の適用がこの用途に限定されるものではなく、上記特性が全てまたは一部要求される各種の用途に適用することができ、該用途に従って上記の優れた特性が顕著なものとして得られる。
【0028】
【実施例】
実施例に供する試験材として表1に示す組成を有する合金(実施例および比較例)を用意した。これらの合金は溶解炉にて溶解後、REM、Ca(実施例または比較例)またはSi、Mn、Al(比較例)を用いて脱酸、脱硫を行い、その後、溶湯を型に鋳込んでそれぞれ25kg鋼塊を試験材として用意した。これらの試験材に熱間鍛造および所定の熱処理を施した。
なお、熱処理は、1070℃で20時間保持後炉冷の焼鈍を行い、1070℃で10時間保持後強制冷却の焼準を行い、さらに焼戻として740℃で16時間保持後炉冷した。
【0029】
得られた供試材について、機械的性質および高温クリープ強度を評価し、その結果を表2に示した。
なお、クリープ特性試験は、630℃、196MPaの条件で行った。
【0030】
【表1】

Figure 0004271311
【0031】
【表2】
Figure 0004271311
【0032】
表2から明らかなように本発明鋼は、高温クリープ特性および靱性がバランスよく、いずれも優れた特性を有している。
一方、比較鋼は、高温クリープ特性と靱性とのバランスが悪く、いずれか一方において明らかに劣っている。
【0033】
【発明の効果】
以上説明したように、本願発明のフェライト系耐熱鋼は、重量%で、C:0.07〜0.14%、Si:0.10〜0.25%、Ni:0.8%以下、Cr:9.5〜13.0%、Mo:0.1〜0.6%、V:0.14〜0.24%、Nb:0.03〜0.08%、W:1.8〜2.8%、Co:2.0〜3.5%、B:0.002〜0.008%、N:0.025%以下を含有し、さらに希土類元素:0.001〜0.03%、Ca:0.001〜0.03%の一種以上を含有し、残部がFeおよび不可避的不純物からなり、希土類元素含有量: REM(%) 、Ca含有量: Ca(%) 、Si含有量: Si(%) 、Mn含有量: Mn(%) 、Al含有量: Al(%) が、( 47 × REM(%) 33 × Ca(%) )/( 1.5 × Si(%) 0.9 × Mn(%) 8 × Al(%) )≧1.0の関係式を満たす成分範囲にあるので、高温クリープ特性および靱性においてバランスよく優れた特性が得られるとともに高温腐食特性および水蒸気酸化特性においても優れた特性が得られ、より優れた高温特性が要求される火力発電システム等に好適な材料として提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ferritic heat resistant steel, and more particularly to a ferritic high Cr steel which is excellent in creep rupture characteristics at high temperatures, toughness and steam oxidation resistance, and suitable for boiler steel pipes and the like.
[0002]
[Background Art and Problems to be Solved by the Invention]
In applications that require high temperature characteristics such as boiler tubes of thermal power generation systems, ferritic high Cr steels that are relatively inexpensive and excellent in high temperature characteristics are often used as constituent materials.
By the way, in the above system, steam conditions have been increased in temperature in order to improve power generation efficiency. For example, a temperature condition of 630 ° C. or 650 ° C. (that is, 630 ° C. or higher) is assumed. With these trends, materials used for boiler tubes and the like are required to be further improved in terms of high-temperature creep strength, toughness, and steam oxidation resistance.
In recent years, in order to improve high temperature strength in accordance with the above requirements, heat resistant materials to which W or B is added have been developed. In addition, heat resistant steels with improved oxidation resistance have been proposed.
[0003]
However, even the conventional improved steel types cannot be said to have sufficient high temperature characteristics, and further improvements are desired.
The present invention has been made against the background of the above circumstances, and provides a ferritic heat resistant steel having further improved high temperature characteristics, particularly creep characteristics, toughness, high temperature corrosion resistance, and steam oxidation resistance compared to conventional materials. Objective.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention optimizes the alloy elements, actively adds REM and Ca, and further reduces the amount of Si, Mn, and Al as deoxidizers and desulfurizers, thereby providing excellent acid resistance. It is an object of the present invention to obtain a steel having a tempering property and maintaining a high temperature strength and a high toughness.
[0005]
That is, in order to achieve the above-described object, the first invention of the ferritic heat resistant steel of the present invention is weight percent, C: 0.07 to 0.14%, Si: 0.10 to 0.25%. Ni: 0.8% or less, Cr: 9.5-13.0%, Mo: 0.1-0.6%, V: 0.14-0.24%, Nb: 0.03-0. Contains 0.8%, W: 1.8-2.8%, Co: 2.0-3.5%, B: 0.002-0.008%, N: 0.025% or less, and further rare earth elements : 0.001 to 0.03%, Ca: 0.001 to 0.03%, containing the balance of Fe and inevitable impurities , rare earth element content: REM (%) , Ca content : Ca (%) , Si content: Si (%) , Mn content: Mn (%) , Al content: Al (%) are in a component range satisfying the following relational expression.
( 47 x REM (%) + 33 x Ca (%) ) / ( 1.5 x Si (%) + 0.9 x Mn (%) + 8 x Al (%) ) ≥ 1.0
[0006]
The ferritic heat-resistant steel of the second invention is the ferritic heat-resistant steel of the first invention, and among the inevitable impurities, Mn: 0.25% or less, Al: 0.010% or less is allowed content It is characterized by.
[0007]
The ferritic heat resistant steel of the third invention is the ferritic heat resistant steel of the first or second invention, and among the inevitable impurities, S: 0.010% or less, O: 0.0050% or less allowable content It is characterized by.
[0009]
The reasons for limiting the components of the present invention will be described below.
C: 0.07 to 0.14%
C forms a carbide in combination with a carbide-forming element and improves the high-temperature strength. However, if it is less than 0.07%, the strength is insufficient. On the other hand, if it exceeds 0.14%, the carbide becomes coarse and the high-temperature properties are increased. Therefore, the range is made 0.07 to 0.14%. For the same reason, it is desirable that the lower limit is 0.08% and the upper limit is 0.11%.
[0010]
Si: 0.10 to 0.25%
Si, because an effect of improving the steam oxidation resistance, is contained. However, since the Si content is high segregation inside the steel ingot increases, toughness lowers, further carbides by high temperature for a long time holding, since the creep strength to promote aggregation and coarsening of the Laves phase is reduced, the content of The upper limit is 0.25%. For the same reason, the upper limit is preferably less than 0.15% . The lower limit is 0.10% .
When Si is positively contained, the oxidation equivalent ratio (described later) is strictly controlled so that Si that works effectively in the steam oxidation resistance is not used for deoxidation .
[0011]
Ni: 0.8% or less Ni improves the hardenability and suppresses the formation of delta ferrite and improves toughness. However, if it is excessively contained, the high temperature creep strength decreases, so the upper limit is 0.8. %. In addition, in order to acquire the said effect | action reliably, it is desirable to make it contain 0.20% or more.
For the same reason as described above, it is desirable to set the lower limit to 0.25% and the upper limit to 0.45%.
[0012]
Cr: 9.5 to 13.0%
Cr is a basic alloy component that enhances hardenability and high-temperature strength in this steel type. However, if excessively contained, δ ferrite crystallizes out, and promotes precipitation of coarse Laves phases, which deteriorates high-temperature properties and toughness. Let From these viewpoints, the lower limit is 9.5% and the upper limit is 13.0%, preferably the lower limit is 11.0% and the upper limit is 12.5%.
[0013]
Mo: 0.1-0.6%
Mo needs to be contained in an amount of 0.1% or more in order to increase the temper softening resistance and improve the high temperature strength. However, even if it exceeds 0.6%, further effects can be expected. Moreover, since harmful δ ferrite is generated and the creep rupture strength is lowered, the content is limited to the range of 0.1 to 0.6%. For the same reason, it is desirable to set the lower limit to 0.2% and the upper limit to 0.4%.
[0014]
V: 0.14-0.24%
V has the effect of forming stable carbides and improving the creep strength. To obtain these effects, V is contained in an amount of 0.14% or more. On the other hand, if it is contained excessively, the ductility decreases, so the upper limit is made 0.24%. For the same reason, it is desirable to set the lower limit to 0.16% and the upper limit to 0.2%.
[0015]
Nb: 0.03 to 0.08%
Nb is included because it forms fine carbonitrides to improve the high temperature strength, and further added in combination with B to further improve the creep strength. However, if the content is less than 0.03%, there is no effect. On the other hand, if the content exceeds 0.08%, carbonitrides increase and ductility decreases, so the range is 0.03 to 0.08. %.
[0016]
W: 1.8-2.8%
W precipitates as a solid solution strengthening or in the form of a carbide or a Laves phase, and contributes to an improvement in high temperature strength. Furthermore, the high temperature creep strength is improved by adding B together. However, when it contains excessively, the segregation tendency will increase and ductility will fall.
In consideration of the above action, the lower limit is 1.8% and the upper limit is 2.8%, and more preferably the lower limit is 2.0% and the upper limit is 2.5%.
[0017]
Co: 2.0-3.5%
Co is contained in order to improve the impact properties by suppressing the precipitation of δ ferrite and to improve the creep rupture strength.
In consideration of the above action, Co is contained by 2.0% or more. However, since the effect is saturated even if it contains over 3.5%, the upper limit is made 3.5%. For the same reason, it is desirable to set the lower limit to 2.5% and the upper limit to 3.0%.
[0018]
B: 0.002 to 0.008%
B contains a trace amount to increase hardenability, improve toughness, suppress precipitation and aggregation of carbides in grain boundaries and grains, and increase high-temperature creep strength. Furthermore, the composite addition of an appropriate amount of Nb, W, and N contributes to the improvement of the high temperature creep strength. However, if the content is less than 0.002%, the above effect is insufficient. Further, if the content exceeds 0.008%, the high temperature creep ductility is lowered and the weldability is further deteriorated, so the content is limited to 0.002 to 0.008%. For the same reason, it is desirable that the lower limit is 0.004% and the upper limit is 0.006%.
[0019]
N: 0.025% or less N strengthens the base, forms carbonitrides with V or Nb, and effectively acts to improve creep strength by the combined addition effect with B. However, if it is excessively contained, coarse nitrides are formed, and ductility and high temperature creep strength are lowered. Therefore, the upper limit is made 0.025%. For the same reason, it is desirable to set the upper limit to 0.021%. Moreover, in order to acquire the said effect | action reliably, it is desirable to make it contain 0.014% or more.
[0020]
Rare earth elements: 0.001 to 0.03%
Ca: 0.001 to 0.03% of one or more REMs (rare earth elements) and Ca have deoxidation and desulfurization actions, and are added to a molten metal alone or in combination, thereby adding non-metallic inclusions inherent in steel. Can be reduced, refined, and uniformly dispersed, which contributes to improved toughness and creep ductility at high temperatures and for a long time. Furthermore, it suppresses the preferential oxidation of the grain boundaries and the diffusion of oxygen into the grains, promotes the formation of an oxide film that is stable at high temperatures, and contributes to the improvement of the high temperature corrosion resistance and the steam oxidation resistance.
In order to obtain the above effect, 0.001% or more of each element is required to be added. However, if the content exceeds 0.03%, an oxide is excessively generated, and the toughness is lowered. And Ca content was limited to the said range. For the same reason, it is desirable to set the lower limit to 0.003% and the upper limit to 0.025%, respectively, and it is more desirable to set the lower limit to 0.01% and the upper limit to 0.015%.
[0021]
(Inevitable impurities)
Mn: 0.25% or less Mn is used as a deoxidizing and desulfurizing agent in general steel production, but Mn combines with S to form coarse non-metallic inclusions to reduce toughness and toughness. In order to promote the deterioration with time and further lower the creep strength, the present invention does not actively add them but treats them as impurities. Therefore, it is desirable to reduce the content as much as possible, but it is desirable to set the upper limit to 0.25% in consideration of the limit of the refining technology. More preferably, it is limited to less than 0.10%.
[0022]
Al: 0.010% or less Al is generally used as a deoxidizing agent, but Al decreases toughness and further reduces creep of V and Nb carbonitrides that combine with nitrogen and contribute to high temperature strengthening. Since the strength is lowered, in the present invention, it is not positively added but is handled as an impurity. Therefore, it is desirable to reduce the content as much as possible, but considering the limit of the refining technology, it is desirable to limit it to 0.010% or less. More preferably, it is limited to 0.005% or less.
[0023]
S: 0.010% or less S promotes the generation of macrosegregation, forms sulfides with Mn, Fe, Nb, V, etc., and deteriorates toughness. Also, REM, Ca necessary for desulfurization It is preferable to reduce the S content as much as possible from the viewpoint of not containing excessive amount of. However, considering the limit of refining technology, the allowable content is preferably 0.010% or less.
[0024]
O: 0.0050% or less O is an oxide that forms oxides with Si, Mn, Al, etc. to deteriorate the ductility, and is not O in view of not containing excessive REM and Ca necessary for deoxidation. The content is preferably reduced as much as possible. However, considering the limitation of refining technology, the allowable content is preferably 0.0050% or less. More preferably, it is 0.0030% or less.
[0025]
Oxidation equivalent ratio ≧ 1.0
The present invention steel is characterized in that deoxidation and desulfurization are performed by REM and Ca without using Si, Mn, and Al. As for the deoxidation and desulfurization effect, when the oxidation equivalent ratio is less than 1.0, the deoxidation and desulfurization effect due to Si, Mn, and Al becomes relatively large, and the above-mentioned adverse effects due to Si, Mn, and Al occur and REM, Ca The above effect cannot be obtained. Moreover, since REM and Ca have the property of preferentially contributing to deoxidation and desulfurization over Si and the like, there is an effect of suppressing the above-described adverse effects such as Si by increasing the relative amount of REM and Ca. . For this reason, content of the said component is adjusted so that the said ratio may be 1.0 or more . In addition, since the effect | action of REM and Ca becomes comparatively large, so that the said ratio is large, 2.0 or more are further more desirable, 3.0 or more are still more desirable, and 5.0 or more are still more desirable.
However, the oxidation equivalent ratio is represented by (47 × REM (%) + 33 × Ca (%)) / (1.5 × Si (%) + 0.9 × Mn (%) + 8 × Al (%)) .
[0026]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, melting, refining, casting, and the like are performed according to the above-described components. In refining, deoxidation and desulfurization are performed using REM and Ca without using Si, Mn, and Al. Conventional methods can be employed in other processes.
The cast steel is processed into a desired shape by hot forging or rolling and then subjected to an appropriate heat treatment. For example, annealing is performed at 1000 to 1150 ° C., heating to 1000 to 1200 ° C. and forced cooling is performed, and then tempering is performed at 700 to 800 ° C.
It is desirable that the annealing and normalizing temperatures be 1000 ° C. or higher in order to perform solid solution of carbonitride and decomposition of δ ferrite. If this temperature is too high, the crystal grains become coarse and retransformation into δ ferrite occurs, so the upper limit temperature is set to 1150 ° C or 1200 ° C. Further, by tempering, a uniform tempered martensite structure can be obtained, and further, carbonitride can be finely precipitated and the creep rupture strength can be improved.
[0027]
The steel of the present invention is also excellent in weldability, and can be welded as necessary. For example, after the above-described series of heat treatments, welding is performed, and then stress-relieving annealing at 650 ° C. to 760 ° C. is performed. Do.
The obtained heat-resistant steel is excellent in high-temperature creep rupture characteristics, toughness, high-temperature corrosion resistance and steam oxidation resistance, and can be used as a material suitable for a boiler tube of a thermal power generation system, for example.
The steel of the present invention is suitable for boiler tube materials exposed to high-temperature steam as described above, but the application of the present invention is not limited to this application, and all or part of the above characteristics are required. It can be applied to various uses, and the above-mentioned excellent characteristics can be obtained according to the use.
[0028]
【Example】
Alloys (Examples and Comparative Examples) having the compositions shown in Table 1 were prepared as test materials used in the Examples. These alloys are melted in a melting furnace, deoxidized and desulfurized using REM, Ca (Example or Comparative Example) or Si, Mn, Al (Comparative Example), and then the molten metal is cast into a mold. Each 25 kg steel ingot was prepared as a test material. These test materials were subjected to hot forging and predetermined heat treatment.
The heat treatment was carried out by annealing at 2070 ° C. for 20 hours, followed by annealing in furnace cooling, holding at 1070 ° C. for 10 hours, performing normal cooling, and further holding at 740 ° C. for 16 hours followed by furnace cooling.
[0029]
The obtained specimens were evaluated for mechanical properties and high temperature creep strength, and the results are shown in Table 2.
The creep property test was performed under the conditions of 630 ° C. and 196 MPa.
[0030]
[Table 1]
Figure 0004271311
[0031]
[Table 2]
Figure 0004271311
[0032]
As is apparent from Table 2, the steel of the present invention has a good balance between high temperature creep characteristics and toughness, and both have excellent characteristics.
On the other hand, the comparative steel has a poor balance between high temperature creep properties and toughness, and is clearly inferior in either one.
[0033]
【The invention's effect】
As described above, the ferritic heat resistant steel of the present invention is, by weight, C: 0.07 to 0.14%, Si: 0.10 to 0.25%, Ni: 0.8% or less, Cr : 9.5 to 13.0%, Mo: 0.1 to 0.6%, V: 0.14 to 0.24%, Nb: 0.03 to 0.08%, W: 1.8 to 2 0.8%, Co: 2.0 to 3.5%, B: 0.002 to 0.008%, N: 0.025% or less, and further rare earth elements: 0.001 to 0.03%, Ca: comprise one or more from 0.001 to 0.03%, Ri Do from the balance Fe and unavoidable impurities, rare earth elements content: REM (%), Ca content: Ca (%), Si content : Si (%) , Mn content: Mn (%) , Al content: Al (%) is ( 47 × REM (%) + 33 × Ca (%) ) / ( 1.5 × Si (%) + 0.9 × Mn (%) + 8 × Al (%)) formed satisfying ≧ 1.0 relations Since the range, excellent characteristics are obtained even in high-temperature corrosion properties and water vapor oxidation property with well-balanced excellent properties in high-temperature creep characteristics and toughness is obtained, thermal power systems such as more excellent high temperature properties are required It can be provided as a suitable material.

Claims (3)

重量%で、C:0.07〜0.14%、Si:0.10〜0.25%、Ni:0.8%以下、Cr:9.5〜13.0%、Mo:0.1〜0.6%、V:0.14〜0.24%、Nb:0.03〜0.08%、W:1.8〜2.8%、Co:2.0〜3.5%、B:0.002〜0.008%、N:0.025%以下を含有し、さらに希土類元素:0.001〜0.03%、Ca:0.001〜0.03%の一種以上を含有し、残部がFeおよび不可避的不純物からなり、希土類元素含有量: REM(%) 、Ca含有量: Ca(%) 、Si含有量: Si(%) 、Mn含有量: Mn(%) 、Al含有量: Al(%) が下記関係式を満たす成分範囲にあることを特徴とするフェライト系耐熱鋼。
47 × REM(%) 33 × Ca(%) )/( 1.5 × Si(%) 0.9 × Mn(%) 8 × Al(%) )≧1.0
るフェライト系耐熱鋼
By weight, C: 0.07 to 0.14%, Si: 0.10 to 0.25%, Ni: 0.8% or less, Cr: 9.5 to 13.0%, Mo: 0.1 -0.6%, V: 0.14-0.24%, Nb: 0.03-0.08%, W: 1.8-2.8%, Co: 2.0-3.5%, B: 0.002 to 0.008%, N: 0.025% or less, rare earth elements: 0.001 to 0.03%, Ca: 0.001 to 0.03% or more And the balance is Fe and inevitable impurities , rare earth element content: REM (%) , Ca content: Ca (%) , Si content: Si (%) , Mn content: Mn (%) , Al Content: A ferritic heat resistant steel characterized in that Al (%) is in a component range satisfying the following relational expression.
( 47 x REM (%) + 33 x Ca (%) ) / ( 1.5 x Si (%) + 0.9 x Mn (%) + 8 x Al (%) ) ≥ 1.0
Ferritic heat resistant steel
不可避的不純物のうち、Mn:0.25%以下、Al:0.010%以下を許容含有量とすることを特徴とする請求項1記載のフェライト系耐熱鋼  The ferritic heat resistant steel according to claim 1, characterized in that, among inevitable impurities, Mn: 0.25% or less and Al: 0.010% or less are allowed. 不可避的不純物のうち、S:0.010%以下、O:0.0050%以下を許容含有量とすることを特徴とする請求項1または2に記載のフェライト系耐熱鋼  The ferritic heat resistant steel according to claim 1 or 2, wherein, among inevitable impurities, S: 0.010% or less and O: 0.0050% or less are allowed.
JP24795399A 1999-09-01 1999-09-01 Ferritic heat resistant steel Expired - Fee Related JP4271311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24795399A JP4271311B2 (en) 1999-09-01 1999-09-01 Ferritic heat resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24795399A JP4271311B2 (en) 1999-09-01 1999-09-01 Ferritic heat resistant steel

Publications (2)

Publication Number Publication Date
JP2001073091A JP2001073091A (en) 2001-03-21
JP4271311B2 true JP4271311B2 (en) 2009-06-03

Family

ID=17171016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24795399A Expired - Fee Related JP4271311B2 (en) 1999-09-01 1999-09-01 Ferritic heat resistant steel

Country Status (1)

Country Link
JP (1) JP4271311B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103320673B (en) * 2013-06-05 2015-08-26 西安交通大学 Steel alloy of a kind of resistance to high temperature oxidation and preparation method thereof
CN109943783B (en) * 2017-12-20 2021-11-19 上海电气电站设备有限公司 High-temperature casting material for steam turbine

Also Published As

Publication number Publication date
JP2001073091A (en) 2001-03-21

Similar Documents

Publication Publication Date Title
KR19990022987A (en) Steel with excellent toughness of weld heat affected zone
JPWO2019189871A1 (en) Duplex stainless clad steel sheet and its manufacturing method
JP4222705B2 (en) Manufacturing method of high purity high Cr ferritic heat resistant steel and high purity high Cr ferritic heat resistant steel
CN115011876B (en) Steel for high-temperature sulfuric acid dew point corrosion resistance and manufacturing method
CN111433381B (en) High Mn steel and method for producing same
CN106435396B (en) A kind of steel heavy plate for pressure vessels and its manufacturing method of high temperature resistant hydrogen sulfide corrosion resistant
JP7009278B2 (en) Ferritic stainless steel sheets with excellent heat resistance and exhaust parts and their manufacturing methods
JP3543366B2 (en) Austenitic heat-resistant steel with good high-temperature strength
JP3982069B2 (en) High Cr ferritic heat resistant steel
JP2006241551A (en) Thick steel plate having excellent weldability and low temperature toughness
JP3269799B2 (en) Ferritic stainless steel for engine exhaust parts with excellent workability, intergranular corrosion resistance and high-temperature strength
JP2510206B2 (en) High strength austenitic heat resistant steel with low Si content
TW201538746A (en) Steel material for welding
JP3684895B2 (en) Manufacturing method of high toughness martensitic stainless steel with excellent stress corrosion cracking resistance
JP4271311B2 (en) Ferritic heat resistant steel
JP3848463B2 (en) High strength austenitic heat resistant steel with excellent weldability and method for producing the same
JP3744403B2 (en) Soft Cr-containing steel
JP3591486B2 (en) High Cr ferritic heat resistant steel
JP4271310B2 (en) Ferritic heat resistant steel
JP3572152B2 (en) Low Cr ferritic cast steel with excellent high temperature strength and weldability
JP2705946B2 (en) Manufacturing method of high strength steel sheet with excellent SSC resistance
JP3775371B2 (en) Low alloy steel
JP3481418B2 (en) Thick steel plate with excellent toughness of weld heat affected zone
JP3756795B2 (en) High-tensile steel with excellent toughness of weld heat-affected zone subjected to multiple thermal cycles
JP2743765B2 (en) Cr-Mo steel plate for pressure vessel and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees