KR20190076412A - Non-heat treated steel and method of manufacturing the same - Google Patents

Non-heat treated steel and method of manufacturing the same Download PDF

Info

Publication number
KR20190076412A
KR20190076412A KR1020170178187A KR20170178187A KR20190076412A KR 20190076412 A KR20190076412 A KR 20190076412A KR 1020170178187 A KR1020170178187 A KR 1020170178187A KR 20170178187 A KR20170178187 A KR 20170178187A KR 20190076412 A KR20190076412 A KR 20190076412A
Authority
KR
South Korea
Prior art keywords
steel
present
weight
mpa
strength
Prior art date
Application number
KR1020170178187A
Other languages
Korean (ko)
Other versions
KR102021205B1 (en
Inventor
이혁중
최재경
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to KR1020170178187A priority Critical patent/KR102021205B1/en
Publication of KR20190076412A publication Critical patent/KR20190076412A/en
Application granted granted Critical
Publication of KR102021205B1 publication Critical patent/KR102021205B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

According to the present invention, provided is a non-heat treated steel material comprising: 0.24-0.30 wt% of carbon (C); 0.15-0.35 wt of silicon (Si); 1.40-1.70 wt% of manganese (Mn); more than 0 and no more than 0.03 wt% of phosphorus (P); 0.04-0.07 wt% of sulfur (S); more than 0 and no more than 0.25 wt% of copper (Cu); 0.20-0.40 wt% of chromium (Cr); 0.10-0.20 wt% of vanadium (V); 0.02-0.04 wt% of aluminum (Al); 0.01-0.02 wt% of niobium (Nb); 0.010-0.025 wt% of nitrogen (N); and the remaining of iron (Fe) and inevitable impurities. Therefore, the present invention is capable of minimizing a deterioration in tension while having high strength.

Description

비조질 강재 및 그 제조방법{NON-HEAT TREATED STEEL AND METHOD OF MANUFACTURING THE SAME}TECHNICAL FIELD [0001] The present invention relates to a non-tempered steel and a method of manufacturing the same.

본 발명은 강재 및 그 제조방법에 관한 것으로서, 더욱 상세하게는, 비조질 강재 및 그 제조방법에 관한 것이다.The present invention relates to a steel material and a method of manufacturing the same, and more particularly, to a non-tempered steel material and a manufacturing method thereof.

프론트 액슬은 차량의 무게 분담, 방향 조절, 구동력 전달 등의 역할을 하는 부품이다. 따라서 차체의 하중 및 진동에 견딜 수 있도록 고강도가 요구되어진다. 그러나 일반적으로 강도를 높힐수록 인성이 저하되기 쉬워진다. 이러한 인성 저하는 프론트 액슬 제품 수명 저하의 원인이 된다.The front axle is a component that plays a role of weight distribution, direction adjustment, driving force transmission, etc. of the vehicle. Therefore, high strength is required to withstand the load and vibration of the vehicle body. In general, however, the higher the strength, the lower the toughness. This decrease in toughness causes a reduction in the life of the front axle product.

선행기술로는 대한민국 공개특허공보 제2012-0063199호(공개일 : 2012.06.15, 발명의 명칭 : 강도 및 충격인성이 우수한 강재 및 그 제조방법)가 있다.As prior arts, Korean Patent Publication No. 2012-0063199 (published on Jun. 15, 2012, entitled "Steels Excellent in Strength and Shock Toughness and Method for Manufacturing the Same").

본 발명은 높은 강도를 가지면서 인성 저하를 최소화하는 비조질 강재 및 그 제조방법을 제공한다.The present invention provides a non-tempered steel material having a high strength and minimizing toughness degradation, and a method of manufacturing the same.

본 발명의 일 실시예에 따른 비조질 강재는, 중량%로, 탄소(C) : 0.24 ~ 0.30 %, 실리콘(Si) : 0.15 ~ 0.35 %, 망간(Mn) : 1.40 ~ 1.70 %, 인(P) : 0 초과 0.03 % 이하, 황(S) : 0.04 ~ 0.07 %, 구리(Cu) : 0 초과 0.25 % 이하, 크롬(Cr) : 0.20 ~ 0.40 %, 바나듐(V) : 0.10 ~ 0.20 %, 알루미늄(Al) : 0.02 ~ 0.04 %, 니오븀(Nb) : 0.01 ~ 0.02 %, 질소(N) : 0.010 ~ 0.025 %, 나머지 철(Fe)과 불가피한 불순물로 이루어진다. The non-tempered steel according to one embodiment of the present invention is characterized by containing, by weight%, 0.24 to 0.30% of carbon (C), 0.15 to 0.35% of silicon (Si), 1.40 to 1.70% of manganese (Mn) ): More than 0 to 0.03%, sulfur (S): 0.04 to 0.07%, copper (Cu): more than 0 to 0.25%, chromium (Cr): 0.20 to 0.40%, vanadium (V) (Al): 0.02 to 0.04%, niobium (Nb): 0.01 to 0.02%, nitrogen (N): 0.010 to 0.025%, and the balance of iron (Fe) and unavoidable impurities.

상기 비조질 강재는 미세경도가 260 ~ 320 HV이고, 인장강도가 870 ~ 970 MPa이고, 항복강도가 620 ~ 700 MPa이고, 신율이 16 % 이상이고, 충격인성값이 80 J/cm2 이상일 수 있다. The non-adjustable quality steel is fine hardness of 260 ~ 320 HV, and a tensile strength of 870 ~ 970 MPa, and yield strength of 620 ~ 700 MPa, and the elongation is more than 16%, and the impact toughness value of 80 J / cm 2 be equal to or greater than have.

상기 비조질 강재는 봉강 형태일 수 있다. The non-tempered steel may be in the form of a bar.

본 발명의 다른 실시예에 따른 프론트 액슬 빔은 상술한 비조질 강재로 이루어진 부품을 포함한다. A front axle beam according to another embodiment of the present invention includes a component made of non-tempered steel as described above.

본 발명의 일 실시예에 따른 비조질 강재의 제조방법은 (a) 탄소(C) : 0.24 ~ 0.30 %, 실리콘(Si) : 0.15 ~ 0.35 %, 망간(Mn) : 1.40 ~ 1.70 %, 인(P) : 0 초과 0.03 % 이하, 황(S) : 0.04 ~ 0.07 %, 구리(Cu) : 0 초과 0.25 % 이하, 크롬(Cr) : 0.20 ~ 0.40 %, 바나듐(V) : 0.10 ~ 0.20 %, 알루미늄(Al) : 0.02 ~ 0.04 %, 니오븀(Nb) : 0.01 ~ 0.02 %, 질소(N) : 0.010 ~ 0.025 %, 나머지 철(Fe)과 불가피한 불순물로 이루어진 주조재를 제공하는 단계; (b) 상기 주조재를 재가열한 후에 1150 ~ 1250 ℃의 온도에서 마무리 열간압연하는 단계; 및 (c) 상기 압연된 주조재를 공랭시키는 단계;를 포함한다. A method for producing a non-tempered steel material according to an embodiment of the present invention includes the steps of (a) 0.24 to 0.30% carbon (C), 0.15 to 0.35% silicon (Si), 1.40 to 1.70% manganese (Mn) P: more than 0 to 0.03%, sulfur (S): 0.04 to 0.07%, Cu: more than 0 to 0.25%, chromium (Cr): 0.20 to 0.40%, vanadium (V) Providing a cast material made of 0.02-0.04% aluminum (Al), 0.01-0.02% niobium (Nb), 0.010-0.025% nitrogen (N), balance iron (Fe) and unavoidable impurities; (b) subjecting the cast material to reheating and then subjecting to a finish hot rolling at a temperature of 1150 to 1250 占 폚; And (c) air-cooling the rolled cast material.

상기 비조질 강재의 제조방법에서, 상기 (a) 내지 (c) 단계를 수행하여 구현된 상기 강재는 미세경도가 260 ~ 320 HV이고, 인장강도가 870 ~ 970 MPa이고, 항복강도가 620 ~ 700 MPa이고, 신율이 16 % 이상이며, 충격인성값이 80 J/cm2 이상일 수 있다. In the method for producing a non-tempered steel, the steel material realized by performing the steps (a) to (c) has a micro hardness of 260 to 320 HV, a tensile strength of 870 to 970 MPa, a yield strength of 620 to 700 MPa, elongation of 16% or more, and impact toughness value of 80 J / cm 2 or more.

본 발명의 실시예에 따르면, 높은 강도를 가지면서 인성 저하를 최소화하는 비조질 강재 및 그 제조방법을 구현할 수있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.According to an embodiment of the present invention, a non-tempered steel material having a high strength and minimizing toughness deterioration and a manufacturing method thereof can be realized. Of course, the scope of the present invention is not limited by these effects.

도 1은 본 발명의 일 실시예에 따르는 비조질 강재의 제조방법을 도해하는 순서도이다. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart illustrating a method for producing a non-tempered steel according to an embodiment of the present invention. FIG.

이하에서는 본 발명의 실시예에 따른 비조질 강재 및 그 제조방법을 상세하게 설명한다. 후술되는 용어들은 본 발명에서의 기능을 고려하여 적절하게 선택된 용어들로서, 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a non-tempered steel according to an embodiment of the present invention and a method of manufacturing the same will be described in detail. The terms used below are appropriately selected terms in consideration of functions in the present invention, and definitions of these terms should be made based on the contents throughout this specification.

본 발명의 일 실시예에 따른 비조질 강재 및 그 제조방법에 의하면 높은 강도를 가지면서 인성 저하를 최소화하는 비조질 강재 및 그 제조방법을 확보하였는 바, 이하에서 이를 설명한다. According to the non-tempered steel material and the method of manufacturing the same according to an embodiment of the present invention, a non-tempered steel material having a high strength and minimizing toughness degradation and a method for manufacturing the same are secured.

강재Steel

본 발명의 일 실시예에 따르는 비조질 강재는, 중량%로, 탄소(C) : 0.24 ~ 0.30 %, 실리콘(Si) : 0.15 ~ 0.35 %, 망간(Mn) : 1.40 ~ 1.70 %, 인(P) : 0 초과 0.03 % 이하, 황(S) : 0.04 ~ 0.07 %, 구리(Cu) : 0 초과 0.25 % 이하, 크롬(Cr) : 0.20 ~ 0.40 %, 바나듐(V) : 0.10 ~ 0.20 %, 알루미늄(Al) : 0.02 ~ 0.04 %, 니오븀(Nb) : 0.01 ~ 0.02 %, 질소(N) : 0.010 ~ 0.025 %, 나머지 철(Fe)과 불가피한 불순물로 이루어진다. 상기 비조질 강재는 미세경도가 260 ~ 320 HV이고, 인장강도가 870 ~ 970 MPa이고, 항복강도가 620 ~ 700 MPa이고, 신율이 16 % 이상이고, 충격인성값이 80 J/cm2 이상일 수 있다. 상기 비조질 강재는 봉강 형태일 수 있다. The non-tempered steel according to one embodiment of the present invention comprises 0.24 to 0.30% of carbon (C), 0.15 to 0.35% of silicon (Si), 1.40 to 1.70% of manganese (Mn) ): More than 0 to 0.03%, sulfur (S): 0.04 to 0.07%, copper (Cu): more than 0 to 0.25%, chromium (Cr): 0.20 to 0.40%, vanadium (V) (Al): 0.02 to 0.04%, niobium (Nb): 0.01 to 0.02%, nitrogen (N): 0.010 to 0.025%, and the balance of iron (Fe) and unavoidable impurities. The non-adjustable quality steel is fine hardness of 260 ~ 320 HV, and a tensile strength of 870 ~ 970 MPa, and yield strength of 620 ~ 700 MPa, and the elongation is more than 16%, and the impact toughness value of 80 J / cm 2 be equal to or greater than have. The non-tempered steel may be in the form of a bar.

이하에서는, 본 발명의 일 실시예에 따른 비조질 강재에 포함되는 각 성분의 역할 및 함량에 대하여 설명한다.Hereinafter, the role and content of each component included in the non-tempered steel according to one embodiment of the present invention will be described.

탄소(C) : 0.24 ~ 0.30 중량%Carbon (C): 0.24 to 0.30 wt%

본 발명에서 탄소(C)는 제조되는 강재의 강도를 확보하기 위해 첨가된다. 또한 상기 탄소(C)는 강의 강도 및 경도를 결정하는 주요 원소로 함량이 높을수록 강도가 증가하며, 냉간가공도의 증가에 따라 인장강도와 항복점은 증가한다. 또한 황(S)과 결합하여 탄유화물을 형성하며 피삭성을 높인다. 상기 탄소는 본 발명에 따른 강재 전체 중량의 0.24 ~ 0.30 중량%로 첨가되는 것이 바람직하다. 탄소가 0.24 중량% 미만으로 첨가되면 강도 확보가 불충분하다. 반대로, 탄소의 첨가량 0.30 중량%를 초과할 경우 충격인성이 급격히 저하되는 문제점이 있다.In the present invention, carbon (C) is added to secure the strength of the steel to be produced. The carbon (C) is a main element that determines the strength and hardness of the steel. The higher the content, the higher the strength, and the tensile strength and yield point increase with increasing cold workability. It also combines with sulfur (S) to form an emulsion of carbon and increase machinability. The carbon is preferably added in an amount of 0.24 to 0.30% by weight based on the total weight of the steel according to the present invention. When carbon is added in an amount of less than 0.24% by weight, securing strength is insufficient. On the contrary, when the addition amount of carbon is more than 0.30% by weight, impact toughness is drastically lowered.

실리콘(Si) : 0.15 ~ 0.35 중량%Silicon (Si): 0.15-0.35 wt%

본 발명에서 실리콘(Si)은 강 중의 산소를 제거하기 위한 탈산제로 첨가되며, 또한 고용 강화 효과를 향상시키는 역할을 한다. 상기 실리콘은 본 발명에 따른 강재 전체 중량의 0.15 ~ 0.35 중량%로 첨가되는 것이 바람직하다. 실리콘의 첨가량이 0.15 중량% 미만일 경우 실리콘 첨가에 따른 탈산 효과 및 고용 강화 효과가 불충분하다. 반대로, 실리콘의 함량이 0.35 중량%를 초과할 경우 제조되는 강재의 인성을 저하시키는 문제점이 있다.In the present invention, silicon (Si) is added as a deoxidizer to remove oxygen in the steel, and also serves to improve the solid solution strengthening effect. The silicon is preferably added in an amount of 0.15 to 0.35% by weight based on the total weight of the steel material according to the present invention. When the addition amount of silicon is less than 0.15% by weight, deoxidation effect and solid solution strengthening effect by the addition of silicone are insufficient. On the other hand, when the content of silicon exceeds 0.35% by weight, the toughness of the steel material to be produced is deteriorated.

망간(Mn) : 1.40 ~ 1.70 중량%Manganese (Mn): 1.40 to 1.70 wt%

본 발명에서 망간(Mn)은 열간단조 후 공랭시 미세조직을 강화시키는 원소이다. 또한, 베이나이트 조직을 미세화하여 강도를 향상시키는데 매우 효과적인 원소이다. 또한 망간(Mn)은 고온에서 소성을 증가시켜 주조성을 좋게 한다. 그리고 망간은 황(S)과 결합하여 MnS를 형성함으로서 적열취성을 방지하고 절삭가공성을 향상시킨다. 상기 망간은 본 발명에 따른 강재에서 1.40 ~ 1.70 중량%로 첨가되는 것이 바람직하다. 상기 망간이 1.40 중량% 미만으로 첨가될 경우, 망간 첨가에 따른 고용강화 효과 및 강도 확보 효과가 불충분하다. 반대로, 상기 망간이 1.70 중량%를 초과할 경우 인성을 저하시키며, 강재의 제조 원가를 크게 상승시키는 문제점이 있다.In the present invention, manganese (Mn) is an element that strengthens the microstructure upon air cooling after hot forging. In addition, it is an extremely effective element for improving the strength by refining bainite structure. In addition, manganese (Mn) increases sintering at high temperature to improve casting. And, manganese is combined with sulfur (S) to form MnS, thereby preventing the embrittlement of brittleness and improving cutting workability. The manganese is preferably added in an amount of 1.40 to 1.70 wt% in the steel according to the present invention. When manganese is added in an amount of less than 1.40 wt%, the effect of strengthening solubility and securing strength by manganese addition is insufficient. On the other hand, when the content of manganese exceeds 1.70% by weight, the toughness is lowered and the production cost of the steel is increased.

인(P) : 0 초과 0.03 중량% 이하Phosphorus (P): more than 0 and not more than 0.03% by weight

인(P)은 절삭성의 향상을 위하여 첨가된다. 다만, 본 발명에 따른 강재에서 인(P)의 함량이 0.03 중량%를 초과하여 첨가되면 2차 가공 취성 발생 및 편석에 의한 표면 결함 우려가 있으며, 인성이나 내피로성 등이 악화되는 문제가 있다. 따라서, 인(P)의 함량은 본 발명에 따른 강재 전체 중량의 0.03 중량% 이하의 범위로 제한하는 것이 바람직하다.Phosphorus (P) is added for improving cutting ability. However, if the content of phosphorus (P) is more than 0.03 wt% in the steel material according to the present invention, there is a fear of occurrence of secondary processing brittleness and surface defects due to segregation, and toughness and fatigue resistance are deteriorated. Therefore, the content of phosphorus (P) is preferably limited to a range of 0.03% by weight or less based on the total weight of the steel material according to the present invention.

황(S) : 0.04 ~ 0.07 중량%Sulfur (S): 0.04 to 0.07 wt%

황(S)은 강재에서 절삭성 혹은 가공성을 향상시키기 위하여 첨가된다. 상기 황(S)은 본 발명에 따른 강재 전체 중량의 0.04 ~ 0.07 중량%의 함량비로 첨가되는 것이 바람직하다. 황(S)의 함량이 0.04 중량% 미만일 경우 강재의 절삭성 등이 불충분한 문제점이 있다. 반대로, 황(S)의 함량이 0.07 중량%를 초과할 경우 적열취성의 우려가 있다. 또한, 과다 첨가시 길게 연신된 MnS를 형성하게 되고, 길게 연신된 MnS는 압연이나 단조 공정 중에 고주파열처리 및 파팅라인부에 위치하여 제품의 품질을 저하시키는 요인이 된다. 또한, 열간 가공성을 떨어뜨리고, 찢어짐을 유발하며, 거대 개재물 형성에 의한 표면처리시 결함의 원인이 되는 문제점이 있다.Sulfur (S) is added in steel to improve machinability or workability. The sulfur (S) is preferably added in an amount of 0.04 to 0.07% by weight based on the total weight of the steel according to the present invention. When the content of sulfur (S) is less than 0.04% by weight, there is a problem that the cutting property of the steel is insufficient. On the other hand, when the content of sulfur (S) exceeds 0.07% by weight, there is a fear of heat and brittleness. In addition, the MnS is elongated when it is added in excess, and the elongated MnS is located in the portion of the high frequency heat treatment and parting line during the rolling or forging process, thereby deteriorating the quality of the product. In addition, there is a problem that the hot workability is lowered, tearing is caused, and defects are caused in the surface treatment by formation of large inclusions.

구리(Cu) : 0 초과 0.25 중량% 이하Copper (Cu): more than 0 and not more than 0.25% by weight

구리(Cu)는 미세 석출물을 조장하여 강도 상승에 기여하며, 강재의 절삭성을 향상시키는 역할을 한다. 구리(Cu)는 본 발명에 따른 강재 전체 중량의 0.25 중량% 이하의 함량비로 첨가되는 것이 바람직하다. 구리의 첨가량이 0.25 중량%를 초과하는 경우 입계에 편중되어 표면균열을 유발할 수 있으며, 인성의 현저한 저하와 열간가공에 의한 열화를 초래하는 문제점이 있다.Copper (Cu) promotes fine precipitates and contributes to the increase of strength and improves the cutting performance of the steel. Copper (Cu) is preferably added at a content ratio of 0.25% by weight or less based on the total weight of the steel material according to the present invention. If the addition amount of copper exceeds 0.25% by weight, it may be concentrated on the grain boundaries to cause surface cracking, and there is a problem that remarkable decrease in toughness and deterioration due to hot working are caused.

크롬(Cr) : 0.20 ~ 0.40 중량%Cr (Cr): 0.20 to 0.40 wt%

크롬(Cr)은 망간(Mn)과 더불어 베이나이트 조직의 미세화를 통한 강도 향상에 기여한다. 상기 크롬(Cr)은 본 발명에 따른 강재 전체 중량의 0.20 ~ 0.40 중량%의 함량비로 첨가되는 것이 바람직하다. 크롬의 첨가량이 0.20 중량% 미만일 경우 저탄소에 따른 강도 보상 효과가 불충분하다. 반대로 크롬의 첨가량이 0.40 중량%를 초과할 경우 인성이 저하되고, 동시에 가공성이나 피삭성이 저하되는 문제점이 있다.Cr (Cr) contributes to enhancement of strength through minification of manganese (Mn) and bainite structure. The chromium (Cr) is preferably added at a content ratio of 0.20 to 0.40% by weight based on the total weight of the steel material according to the present invention. If the addition amount of chromium is less than 0.20% by weight, the effect of compensating the strength due to low carbon is insufficient. On the other hand, when the addition amount of chromium exceeds 0.40% by weight, the toughness is lowered and the workability and machinability are lowered.

바나듐(V) : 0.10 ~ 0.20 중량%Vanadium (V): 0.10 to 0.20 wt%

바나듐(V)은 석출 강화에 의하여 강도를 향상시키는 역할을 한다. 상기 바나듐은 강재 전체 중량의 0.10 ~ 0.20 중량%로 첨가되는 것이 바람직하다. 바나듐의 첨가량이 0.10 중량% 미만일 경우, 석출 강화 효과가 불충분하다. 반대로, 바나듐의 첨가량이 0.20 중량%를 초과하는 경우에는 가공성이 크게 저하될 수 있다.Vanadium (V) plays a role in improving the strength by precipitation strengthening. The vanadium is preferably added in an amount of 0.10 to 0.20% by weight based on the total weight of the steel material. If the addition amount of vanadium is less than 0.10 wt%, the precipitation strengthening effect is insufficient. On the contrary, when the addition amount of vanadium exceeds 0.20% by weight, the workability may be greatly lowered.

알루미늄(Al) : 0.02 ~ 0.04 중량%Aluminum (Al): 0.02 to 0.04 wt%

알루미늄(Al)은 우수한 탈산 효과를 제공하며, 또한 질소(N)와 결합하여 입자미세화에 기여한다. 상기 알루미늄은 강재 전체 중량의 0.02 ~ 0.04 중량%로 첨가되는 것이 바람직하다. 알루미늄의 첨가량이 0.02 중량% 미만일 경우 알루미늄 첨가 효과가 불충분하다. 알루미늄의 첨가량이 0.04 중량%를 초과하는 경우, 주조 시 노즐 막힘을 유발하고 강재의 인성을 저하할 수 있다.Aluminum (Al) provides an excellent deoxidizing effect and also contributes to particle refinement by bonding with nitrogen (N). The aluminum is preferably added in an amount of 0.02 to 0.04% by weight based on the total weight of the steel material. When the addition amount of aluminum is less than 0.02 wt%, the effect of adding aluminum is insufficient. If the added amount of aluminum exceeds 0.04% by weight, clogging of the nozzle may occur during casting and toughness of the steel may be lowered.

니오븀(Nb) : 0.01 ~ 0.02 중량%Niobium (Nb): 0.01 to 0.02 wt%

니오븀(Nb)은 열간압연 중에 미세한 탄질화물로 석출하여 재결정 및 결정립 성장을 억제하여 오스테나이트 결정립을 미세화시킴으로써 강도와 인성을 모두 향상시킨다. 상기 니오븀은 본 발명에 따른 후강판 전체 중량의 0.01 ~ 0.02 중량%의 함량비로 첨가되는 것이 바람직하다. 니오븀의 첨가량이 0.01 중량% 미만일 경우 상기의 니오븀 첨가 효과를 제대로 발휘할 수 없다. 반대로, 니오븀의 첨가량이 0.02 중량%를 초과할 경우 페라이트 내에 고용된 상태로 존재하여 오히려 제조되는 후강판의 충격인성을 저하시킬 위험이 있다. 또한 니오븀의 첨가량이 0.02 중량%를 초과할 경우, 후강판의 용접성을 저해할 수 있다.Niobium (Nb) precipitates as fine carbonitride during hot rolling, thereby reducing both recrystallization and grain growth, thereby finer austenite grains, thereby improving both strength and toughness. The niobium is preferably added in an amount of 0.01 to 0.02% by weight based on the total weight of the steel sheet according to the present invention. If the addition amount of niobium is less than 0.01% by weight, the effect of adding niobium can not be exhibited properly. On the other hand, if the amount of niobium exceeds 0.02% by weight, the niobium exists in a solid state in the ferrite, and there is a risk that the impact toughness of the steel sheet is lowered. When the addition amount of niobium exceeds 0.02% by weight, the weldability of the post-welded steel sheet can be impaired.

질소(N) : 0.010 ~ 0.025 중량%Nitrogen (N): 0.010 to 0.025 wt%

질소(N)는 석출 강화에 의한 강도상승 효과와 알루미늄 등과 결합하여 질화물을 형성함으로써 오스테나이트 결정립 미세화에 따른 기계적 특성 향상에 기여한다. 상기 질소는 강재 전체 중량의 0.010 ~ 0.025 중량%(100 ~ 250ppm)로 함유되는 것이 바람직하다. 질소의 함량이 0.010 중량% 미만일 경우 질화물 형성 효과가 불충분하다. 반대로, 질소의 함량이 0.025 중량%을 초과하는 경우 주조 시 노즐 막힘을 유발할 수 있으며 열간 단조성을 저해할 수 있다.Nitrogen (N) contributes to the enhancement of strength by precipitation strengthening and the formation of nitride by bonding with aluminum or the like, thereby contributing to the improvement of mechanical properties due to refinement of austenite grain size. The nitrogen is preferably contained in an amount of 0.010 to 0.025% by weight (100 to 250 ppm) of the total weight of the steel material. When the content of nitrogen is less than 0.010 wt%, the effect of nitride formation is insufficient. On the contrary, when the content of nitrogen exceeds 0.025 wt%, it may cause clogging of the nozzle during casting and may interfere with hot stripping.

본 발명의 일 실시예에 따른 비조질 강재는 알루미늄(Al) : 0.02 ~ 0.04 %, 니오븀(Nb) : 0.01 ~ 0.02 %, 질소(N) : 0.010 ~ 0.025 %를 첨가하여 결정립을 미세화하고 미세 석출물을 형성시켜 강도를 향상시킨다.The non-tempered steel according to one embodiment of the present invention is made by refining the crystal grains by adding 0.02 to 0.04% of aluminum (Al), 0.01 to 0.02% of niobium (Nb) and 0.010 to 0.025% of nitrogen (N) Thereby improving the strength.

비조질 강재의 제조방법Manufacturing method of non-tempered steel

본 발명의 일 실시예에 의한 비조질 강재의 제조방법을 이하에서 상술한다.A method for producing a non-tempered steel material according to an embodiment of the present invention will be described in detail below.

도 1은 본 발명의 일 실시예에 따르는 비조질 강재의 제조방법을 도해하는 순서도이다. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart illustrating a method for producing a non-tempered steel according to an embodiment of the present invention. FIG.

본 발명의 일 실시예에 따르는 비조질 강재의 제조방법은 (a) 중량%로, 탄소(C) : 0.24 ~ 0.30 %, 실리콘(Si) : 0.15 ~ 0.35 %, 망간(Mn) : 1.40 ~ 1.70 %, 인(P) : 0 초과 0.03 % 이하, 황(S) : 0.04 ~ 0.07 %, 구리(Cu) : 0 초과 0.25 % 이하, 크롬(Cr) : 0.20 ~ 0.40 %, 바나듐(V) : 0.10 ~ 0.20 %, 알루미늄(Al) : 0.02 ~ 0.04 %, 니오븀(Nb) : 0.01 ~ 0.02 %, 질소(N) : 0.010 ~ 0.025 %, 나머지 철(Fe)과 불가피한 불순물로 이루어진 주조재를 제공하는 단계(S100); (b) 상기 주조재를 재가열한 후에 1150 ~ 1250 ℃의 온도에서 마무리 열간압연하는 단계(S200); (c) 상기 압연된 주조재를 공랭시키는 단계(S300);를 포함한다. (A) 0.24 to 0.30% carbon, 0.15 to 0.35% silicon, and 1.40 to 1.70 manganese (Mn) in weight percent based on the total weight of the steel. (Cu): more than 0 and not more than 0.25%, chromium (Cr): 0.20 to 0.40%, vanadium (V): 0.10%, phosphorus (P): more than 0 and not more than 0.03% (Fe) and unavoidable impurities, in a range of 0.01 to 0.02% of aluminum (Al), 0.02 to 0.04% of aluminum (Al), 0.01 to 0.02% of niobium (Nb), 0.010 to 0.025% of nitrogen (S100); (b) a step (S200) of finishing hot rolling at a temperature of 1150 to 1250 占 폚 after reheating the cast material; (c) cooling the rolled cast material (S300).

상술한 비조질 강재의 제조방법에 의하면, 미세경도가 260 ~ 320 HV이고, 인장강도가 870 ~ 970 MPa이고, 항복강도가 620 ~ 700 MPa이고, 신율이 16 % 이상이고, 충격인성값이 80 J/cm2 이상일 수 있다. 상기 비조질 강재는 봉강 형태일 수 있다. 즉, 강판에 대해 성분 및 제조조건을 변화시킴으로써 높은 강도와 인성의 조합을 확보하고, 낮은 제조비용의 공정조건을 실현할 수 있음을 확인하였다. According to the method for producing a non-tempered steel described above, it is possible to produce a non-tempered steel having a microhardness of 260 to 320 HV, a tensile strength of 870 to 970 MPa, a yield strength of 620 to 700 MPa, an elongation of 16% J / cm < 2 >. The non-tempered steel may be in the form of a bar. That is, it has been confirmed that a combination of high strength and toughness can be ensured by changing the components and the manufacturing conditions for the steel sheet, and the process conditions with low manufacturing cost can be realized.

실험예Experimental Example

이하, 본 발명의 이해를 돕기 위해 바람직한 실험예를 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다.Hereinafter, preferred examples of the present invention will be described in order to facilitate understanding of the present invention. It should be understood, however, that the following examples are intended to aid in the understanding of the present invention and are not intended to limit the scope of the present invention.

CC SiSi MnMn PP SS CuCu CrCr VV AlAl NbNb NN 비교예Comparative Example 0.240.24 0.240.24 1.491.49 0.0180.018 0.0550.055 0.050.05 0.260.26 0.130.13 0.0050.005 0.0020.002 0.00560.0056 실시예Example 0.270.27 0.300.30 1.511.51 0.0140.014 0.0540.054 0.050.05 0.250.25 0.130.13 0.0270.027 0.0160.016 0.01220.0122

미세경도(HV)Microhardness (HV) 인장강도(MPa)Tensile Strength (MPa) 항복강도(MPa)Yield strength (MPa) 신율Elongation 충격(J/cm2)Impact (J / cm2) 비교예Comparative Example 250250 858858 609609 18%18% 70.070.0 실시예Example 277277 896896 655655 16.9%16.9% 88.288.2

표 1은 본 발명의 실험예에 따른 강재의 조성(단위: 중량%)을 나타낸 표이다. 비교예의 경우, 열간 압연은 1240℃에서 진행되었으며, 실시예의 경우, 1190℃에서 진행되었다. 열간 압연 후에 공랭 처리하였다.Table 1 shows the composition (unit: wt%) of the steel material according to the experimental example of the present invention. In the case of the comparative example, hot rolling was carried out at 1240 占 폚, and in the case of the embodiment, at 1190 占 폚. After hot rolling, it was subjected to air cooling treatment.

표 2는 본 발명의 실험예에 따른 강재의 물성값을 나타낸 표이다. Table 2 shows the physical properties of the steel according to the experimental example of the present invention.

표 1 내지 표 2를 참조하면, 본 발명의 비교예에 따른 강재는, 중량%로, 탄소(C) : 0.24 %, 실리콘(Si) : 0.24 %, 망간(Mn) : 1.49 %, 인(P) : 0.018 %, 황(S) : 0.055 %, 구리(Cu) : 0.05 %, 크롬(Cr) : 0.26 %, 바나듐(V) : 0.13 %, 알루미늄(Al) : 0.005 %, 니오븀(Nb) : 0.002 %, 질소(N) : 0.00056 %, 나머지 철(Fe)로 이루어진, 비조질 강재이다. 즉, 본 발명의 비교예에 따른 강재는, 알루미늄(Al)이 0.02 ~ 0.04 % 범위를 만족하지 못하며, 니오븀(Nb)이 0.01 ~ 0.02 % 범위를 만족하지 못하며, 질소(N)가 0.010 ~ 0.025 % 범위를 만족하지 못한다. 이러한 조성을 가지는 본 발명의 비교예에 따른 강재는, 미세경도가 250 HV이고, 인장강도가 858 MPa이고, 항복강도가 609 MPa이고, 신율이 18 %이고, 충격인성값이 70 J/cm2 인 것으로 확인되었다. The steel material according to the comparative example of the present invention contains 0.24% by weight of carbon (C), 0.24% by weight of silicon (Si), 1.49% by weight of manganese (Mn) ): 0.018%, sulfur (S): 0.055%, copper (Cu): 0.05%, chromium (Cr): 0.26%, vanadium (V): 0.13%, aluminum (Al) 0.002%, nitrogen (N): 0.00056%, and the balance of iron (Fe). That is, the steel according to the comparative example of the present invention does not satisfy the range of 0.02 to 0.04% of aluminum (Al), does not satisfy the range of 0.01 to 0.02% of niobium (Nb) % Range. The steel material according to the comparative example of the present invention having such a composition had a microhardness of 250 HV, a tensile strength of 858 MPa, a yield strength of 609 MPa, an elongation of 18% and an impact toughness value of 70 J / cm 2 Respectively.

이에 반하여, 본 발명의 실시예에 따른 강재는, 중량%로, 탄소(C) : 0.27 %, 실리콘(Si) : 0.30 %, 망간(Mn) : 1.51 %, 인(P) : 0.014 %, 황(S) : 0.054 %, 구리(Cu) : 0.05 %, 크롬(Cr) : 0.25 %, 바나듐(V) : 0.13 %, 알루미늄(Al) : 0.027 %, 니오븀(Nb) : 0.016 %, 질소(N) : 0.0122 %, 나머지 철(Fe)로 이루어진, 비조질 강재이다. 즉, 본 발명의 실시예에 따른 강재는, 알루미늄(Al)이 0.02 ~ 0.04 % 범위를 만족하며, 니오븀(Nb)이 0.01 ~ 0.02 % 범위를 만족하며, 질소(N)가 0.010 ~ 0.025 % 범위를 만족한다. 이러한 조성을 가지는 본 발명의 실시예에 따른 강재는, 미세경도가 277 HV이고, 인장강도가 896 MPa이고, 항복강도가 655 MPa이고, 신율이 16.9 %이고, 충격인성값이 88.2 J/cm2 인 것으로 확인되었다. 상기 비교예 보다 상기 실시예에 따른 강재에서 미세경도, 인장강도 및 항복강도가 더 높으며, 충격인성 특성도 더 개선됨을 확인할 수 있다. 비교예 대비 알루미늄, 니오븀 및 질소를 더 첨가함으로써 결정립을 미세화하고 미세석출물을 형성시켜 강도를 향상시킬 수 있다. On the contrary, the steel material according to the embodiment of the present invention contains 0.27% of carbon, 0.30% of silicon, 1.51% of manganese (Mn), 0.014% of phosphorus (P) (Al): 0.027%, Niobium (Nb): 0.016%, nitrogen (N): 0.054%, copper (Cu): 0.05%, chromium (Cr): 0.25% ): 0.0122%, and the balance of iron (Fe). That is, the steel material according to the embodiment of the present invention is characterized in that aluminum (Al) is in a range of 0.02 to 0.04%, niobium (Nb) is in a range of 0.01 to 0.02%, nitrogen (N) is in a range of 0.010 to 0.025% . The steel material according to the embodiment of the present invention having such a composition had a microhardness of 277 HV, a tensile strength of 896 MPa, a yield strength of 655 MPa, an elongation of 16.9% and an impact toughness value of 88.2 J / cm 2 Respectively. It can be seen that the steel according to the above-mentioned Comparative Examples has higher microhardness, tensile strength and yield strength, and impact toughness characteristics are further improved. By adding aluminum, niobium and nitrogen to the comparative example, it is possible to make the crystal grains finer and form fine precipitates to improve the strength.

본 발명은 개시된 실시예 뿐만 아니라, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자가 개시된 실시예로부터 도출할 수 있는 다양한 변형 및 균등한 타 실시예를 포함한다는 점을 이해할 것이다. 따라서 본 발명의 기술적 보호범위는 아래의 특허청구범위에 의해서 정하여져야 할 것이다.It is to be understood that the invention includes various modifications and equivalent embodiments that can be derived from the disclosed embodiments as well as those of ordinary skill in the art to which the present invention pertains. Accordingly, the technical scope of the present invention should be defined by the following claims.

Claims (6)

중량%로, 탄소(C) : 0.24 ~ 0.30 %, 실리콘(Si) : 0.15 ~ 0.35 %, 망간(Mn) : 1.40 ~ 1.70 %, 인(P) : 0 초과 0.03 % 이하, 황(S) : 0.04 ~ 0.07 %, 구리(Cu) : 0 초과 0.25 % 이하, 크롬(Cr) : 0.20 ~ 0.40 %, 바나듐(V) : 0.10 ~ 0.20 %, 알루미늄(Al) : 0.02 ~ 0.04 %, 니오븀(Nb) : 0.01 ~ 0.02 %, 질소(N) : 0.010 ~ 0.025 %, 나머지 철(Fe)과 불가피한 불순물로 이루어진,
비조질 강재.
(P): more than 0 and not more than 0.03%, sulfur (S): not more than 0.10% 0.04 to 0.07%, Cu: more than 0 to 0.25%, chromium (Cr): 0.20 to 0.40%, vanadium (V): 0.10 to 0.20%, aluminum (Al): 0.02 to 0.04%, niobium (Nb) : 0.01 to 0.02%, nitrogen (N): 0.010 to 0.025%, balance of iron (Fe) and unavoidable impurities,
Non-tempered steel.
제 1 항에 있어서,
상기 강재는 미세경도가 260 ~ 320 HV이고, 인장강도가 870 ~ 970 MPa이고, 항복강도가 620 ~ 700 MPa이고, 신율이 16 % 이상이고, 충격인성값이 80 J/cm2 이상인 것을 특징으로 하는,
비조질 강재.
The method according to claim 1,
The steel has a microhardness of 260 to 320 HV, a tensile strength of 870 to 970 MPa, a yield strength of 620 to 700 MPa, an elongation of 16% or more, and an impact toughness value of 80 J / cm 2 or more doing,
Non-tempered steel.
제 1 항에 있어서,
상기 강재는 봉강 형태인 것을 특징으로 하는,
비조질 강재.
The method according to claim 1,
Characterized in that the steel material is in the shape of a bar.
Non-tempered steel.
제 1 항 내지 제 3 항 중 어느 한 항에 따른 상기 비조질 강재로 이루어진 부품을 포함하는, 프론트 액슬 빔.
A front axle beam comprising a component made of said non-tempered steel according to any one of claims 1 to 3.
(a) 탄소(C) : 0.24 ~ 0.30 %, 실리콘(Si) : 0.15 ~ 0.35 %, 망간(Mn) : 1.40 ~ 1.70 %, 인(P) : 0 초과 0.03 % 이하, 황(S) : 0.04 ~ 0.07 %, 구리(Cu) : 0 초과 0.25 % 이하, 크롬(Cr) : 0.20 ~ 0.40 %, 바나듐(V) : 0.10 ~ 0.20 %, 알루미늄(Al) : 0.02 ~ 0.04 %, 니오븀(Nb) : 0.01 ~ 0.02 %, 질소(N) : 0.010 ~ 0.025 %, 나머지 철(Fe)과 불가피한 불순물로 이루어진 주조재를 제공하는 단계;
(b) 상기 주조재를 재가열한 후에 1150 ~ 1250 ℃의 온도에서 마무리 열간압연하는 단계; 및
(c) 상기 압연된 주조재를 공랭시키는 단계;
를 포함하는, 비조질 강재의 제조방법.
(P): more than 0 to 0.03%, sulfur (S): 0.04% or less, and more preferably, 0.04 to 0.15% (Al): 0.02 to 0.04%, niobium (Nb): 0.07 to 0.07%, copper: more than 0 to 0.25%, chromium (Cr): 0.20 to 0.40%, vanadium (V) 0.01 to 0.02% of nitrogen (N), 0.010 to 0.025% of nitrogen (N), the balance of iron (Fe) and unavoidable impurities;
(b) subjecting the cast material to reheating and then subjecting to a finish hot rolling at a temperature of 1150 to 1250 占 폚; And
(c) air-cooling the rolled casting material;
Of the non-tempered steel.
제 5 항에 있어서,
상기 (a) 내지 (c) 단계를 수행하여 구현된 상기 강재는 미세경도가 260 ~ 320 HV이고, 인장강도가 870 ~ 970 MPa이고, 항복강도가 620 ~ 700 MPa이고, 신율이 16 % 이상이며, 충격인성값이 80 J/cm2 이상인 것을 특징으로 하는,
비조질 강재의 제조방법.
6. The method of claim 5,
The steel material realized by performing the steps (a) to (c) has a microhardness of 260 to 320 HV, a tensile strength of 870 to 970 MPa, a yield strength of 620 to 700 MPa, an elongation of 16% , And an impact toughness value of 80 J / cm < 2 > or more.
(JP) METHOD FOR MANUFACTURING COATED STEEL.
KR1020170178187A 2017-12-22 2017-12-22 Non-heat treated steel and method of manufacturing the same KR102021205B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170178187A KR102021205B1 (en) 2017-12-22 2017-12-22 Non-heat treated steel and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170178187A KR102021205B1 (en) 2017-12-22 2017-12-22 Non-heat treated steel and method of manufacturing the same

Publications (2)

Publication Number Publication Date
KR20190076412A true KR20190076412A (en) 2019-07-02
KR102021205B1 KR102021205B1 (en) 2019-09-11

Family

ID=67258508

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170178187A KR102021205B1 (en) 2017-12-22 2017-12-22 Non-heat treated steel and method of manufacturing the same

Country Status (1)

Country Link
KR (1) KR102021205B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116240454A (en) * 2022-12-12 2023-06-09 河南国泰铂固科技有限公司 Non-quenched and tempered weather-resistant steel, preparation method and fastener

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111412A (en) * 1995-10-19 1997-04-28 Sumitomo Metal Ind Ltd Non-heat treated steel having high strength, high yield ratio, and low ductility

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111412A (en) * 1995-10-19 1997-04-28 Sumitomo Metal Ind Ltd Non-heat treated steel having high strength, high yield ratio, and low ductility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116240454A (en) * 2022-12-12 2023-06-09 河南国泰铂固科技有限公司 Non-quenched and tempered weather-resistant steel, preparation method and fastener

Also Published As

Publication number Publication date
KR102021205B1 (en) 2019-09-11

Similar Documents

Publication Publication Date Title
KR101417231B1 (en) Ultra heavy steel plate for pressure vessel with excellent low-temperature toughness and tensile property and manufacturing method of the same
KR101978074B1 (en) High strength steel and method of manufacturing the same
KR20190111848A (en) Ultra high strength cold rolled steel sheet and method for manufacturing the same
KR20210147254A (en) Cold rolled steel sheet and method of manufacturing the same
CN108474089B (en) Thick steel plate having excellent low-temperature toughness and hydrogen-induced cracking resistance and method for manufacturing same
KR102166601B1 (en) Hot forming part and manufacturing method thereof
KR20190076412A (en) Non-heat treated steel and method of manufacturing the same
KR20190035422A (en) Method of manufacturing hot rolled steel sheet and hot rolled steel sheet manufactured thereby
KR101928198B1 (en) Manufacturing method for thick steel plate and thick steel plate thereof
KR101149249B1 (en) Method for producing of V-Free microalloyed steel having equality quality of quenching and tempered carbon steel
KR102012100B1 (en) Steel and method of manufacturing the same
KR101140911B1 (en) Method for producing of V-Free microalloyed steel having equality quality of quenching and tempered alloy steel
KR102366001B1 (en) High strength hot rolled steel and method of manufacturing the same
KR20150002958A (en) Steel and method of manufacturing the same
KR102012126B1 (en) Ultra high strength cold rolled steel sheet and method for manufacturing the same
KR101572317B1 (en) Shape steel and method of manufacturing the same
KR101455469B1 (en) Thick steel sheet and method of manufacturing the same
KR101424889B1 (en) Steel and method of manufacturing the same
KR101149258B1 (en) Steel with superior anisotropy for impact toughness and the method of producing the same
KR101482341B1 (en) Pressure vessel steel plate having excellent resustance property after post weld heat treatment and manufacturing method of the same
KR101797369B1 (en) Steel for pressure vessel and method for manufacturing the same
KR20220040532A (en) High strength hot rolled steel sheet for steel pipe and method of manufacturing the same
KR101149132B1 (en) Steel with superior impact characteristic at law temperature and the method of producing the same
KR20160115144A (en) Spring steel and method for manufacturing the same
KR100627474B1 (en) The precipitation hardening cold rolled steel sheet having excellent yield strength and yield ratio, and the method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant