KR100627474B1 - The precipitation hardening cold rolled steel sheet having excellent yield strength and yield ratio, and the method for manufacturing the same - Google Patents
The precipitation hardening cold rolled steel sheet having excellent yield strength and yield ratio, and the method for manufacturing the same Download PDFInfo
- Publication number
- KR100627474B1 KR100627474B1 KR1020040111413A KR20040111413A KR100627474B1 KR 100627474 B1 KR100627474 B1 KR 100627474B1 KR 1020040111413 A KR1020040111413 A KR 1020040111413A KR 20040111413 A KR20040111413 A KR 20040111413A KR 100627474 B1 KR100627474 B1 KR 100627474B1
- Authority
- KR
- South Korea
- Prior art keywords
- less
- steel sheet
- cold rolled
- strength
- ratio
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
본 발명은 자동차용 시트레일(seat rail)용 구조부재로 주로 사용되는 강판에 관한 것이다.The present invention relates to a steel plate mainly used as a structural member for a seat rail for automobiles.
본 발명은 중량%로, C: 0.08~0.12%, Mn: 1.8~2.2%, P: 0.02% 이하, S: 0.005% 이하, N: 0.005% 이하, Si: 0.1% 이하, 산가용Al: 0.1~0.15%, Nb: 0.06~0.09%, B: 0.0005~0.001%, Mo: 0.05×Mn[%], 잔부 Fe 및 기타 불가피한 불순물로 조성되며, 재결정비가 65~75%인 것을 특징으로 하는 항복강도 및 항복비가 우수한 석출강화형 냉연강판 및 그 제조방법을 제공한다.In the present invention, by weight%, C: 0.08 to 0.12%, Mn: 1.8 to 2.2%, P: 0.02% or less, S: 0.005% or less, N: 0.005% or less, Si: 0.1% or less, acid value Al: 0.1 ~ 0.15%, Nb: 0.06 ~ 0.09%, B: 0.0005 ~ 0.001%, Mo: 0.05 × Mn [%], balance Fe and other unavoidable impurities, yield strength, characterized in that the recrystallization ratio is 65-75%. And it provides a precipitation strengthening cold rolled steel sheet excellent in yield ratio and a method of manufacturing the same.
본 발명은 항복강도 750MPa 이상, 그리고 항복비 75% 이상의 석출강화형 냉연강판을 제공할 수 있는 효과가 있다.The present invention has the effect of providing a precipitation-reinforced cold rolled steel sheet of 750 MPa or more, and yield ratio of 75% or more.
석출강화, 냉연강판, 항복강도, 항복비, 회복 재결정소둔, 통판속도Precipitation strengthening, cold rolled steel, yield strength, yield ratio, recovery recrystallization annealing, mailing speed
Description
본 발명은 자동차용 시트레일(seat rail)용 구조부재로 주로 사용되는 강판에 관한 것으로, 보다 상세하게는 750MPa급 이상의 항복강도와 75% 이상의 항복비를 확보할 수 있는 석출강화형 냉연강판 및 그 제조방법에 관한 것이다.The present invention relates to a steel sheet mainly used as a structural member for a seat rail for automobiles, and more particularly, a precipitation-reinforced cold rolled steel sheet capable of securing a yield strength of at least 750 MPa and a yield ratio of at least 75%, and its It relates to a manufacturing method.
최근 자동차의 충격 안전성 규제가 확산되면서 차체의 내충격성 향상을 위하여 멤버(Member), 시트레일(Seat rail) 및 필라(Pillar) 등의 구조부재에는 석출경화형 고강도 강판이 널리 이용되고 있다. 석출경화형 고강도 강판은 자동차의 충돌에너지를 흡수하기 위하여 설계되었기 때문에, 인장강도 대비 항복강도가 높은, 즉 항복비(TS/TS)가 높은 것을 특징으로 하고 있다. Recently, as the impact safety regulations of automobiles are spreading, precipitation hardening type high strength steel sheets are widely used in structural members such as members, seat rails, and pillars to improve impact resistance of the vehicle body. Since the precipitation hardening type high strength steel sheet is designed to absorb the collision energy of the automobile, the yield strength is high, that is, the yield ratio (TS / TS) is high.
통상 강을 강화하는 방법은 고용강화, 석출강화, 결정립 미세화에 의한 강화 및 변태강화 방법으로 요약할 수 있다. 하지만 고용강화 및 결정립 미세화에 의한 강화 방법은 인장강도 기준 490MPa급 이상의 고강도강을 제조하기가 매우 어렵고, 변태강화 방법은 강도확보 및 변태조직 형성을 위해 다량의 합금 성분이 필요할 뿐만 아니라 그 하부 조직이 베이나이트 혹은 마르텐사이트로 이루어져 있기 때문에 인장강도 대비 항복강도가 낮아지는, 즉 항복비가 낮아 자동차 충돌시 내충격성이 요구되는 부품에는 적절하지 못하다는 결점을 안고 있다. In general, the method of reinforcing steel can be summarized as the method of strengthening solid solution, strengthening precipitation, strengthening by transformation of grains, and transformation. However, the strengthening method by solid solution strengthening and grain refinement is very difficult to manufacture high strength steel of 490MPa or more based on tensile strength, and the transformation strengthening method requires a large amount of alloy components to secure strength and form transformation structure, Since it is made of bainite or martensite, the yield strength is lower than the tensile strength, that is, the yield ratio is low, which is not suitable for parts requiring impact resistance in a car crash.
반면, 석출강화형 고강도 강은 주로 Cu, Nb, Ti, V 등과 같은 탄, 질화물 형성원소의 첨가에 의한 석출강화 효과 및 결정립 미세화 효과에 의해 강도를 향상 시키는 강으로 낮은 제조 원가로도 고강도화를 쉽게 이룰 수 있다는 장점을 가지고 있다. 석출강화 방법은 우선 강을 고온에서 용체화처리를 행한 다음, 냉각 중에 미세한 석출물들을 다수 형성시켜 석출물 주변의 응력장에 의해 강화되는 현상이다. 통상 이러한 미세 석출물들은 열간압연 후 권취 중에 다량 형성되므로 냉간압연 후 소둔시 미세 석출물들에 의해 재결정온도가 매우 급격히 상승하여 고온 소둔을 실시하여야 하는 부담을 갖고 있다. 또한, 미세 석출물에 의한 강화 효과와 더불어 Mn, P 등을 첨가하여 고용강화 효과를 얻고자 다량의 합금원소를 첨가하여야 하는데, 강중 인(P)은 자동차사 금형 가공시 2차가공취성을 야기시켜 최근 자동차사에서 그 함량을 엄격히 제한시키기 때문에 강도 기여에 크게 기여하지 못하는 실정이다. 한편 강중 망간(Mn)은 다량 첨가시 소둔시 재결정 온도를 상승시켜 고온 소둔이 절대적으로 필요하나 표면에 고온 소둔에 따른 Mn계 산화물이 용출되어 표면 결함을 야기시키는 주요인으로 작용된다. On the other hand, precipitation-reinforced high-strength steel is a steel that improves its strength by the precipitation strengthening effect by the addition of carbon and nitride forming elements such as Cu, Nb, Ti, V, etc. and the grain refinement effect. It has the advantage that it can be achieved. The precipitation strengthening method is a phenomenon in which steel is first subjected to solution treatment at a high temperature, and then a large number of fine precipitates are formed during cooling to be strengthened by the stress field around the precipitate. Usually, since these fine precipitates are formed in a large amount during winding after hot rolling, the recrystallization temperature is very rapidly increased by the fine precipitates during annealing after cold rolling, and thus has a burden of high temperature annealing. In addition, a large amount of alloying elements should be added in order to obtain a solid solution effect by adding Mn and P together with the reinforcing effect by fine precipitates. Recently, since the automobile company strictly limits its content, it does not contribute significantly to the strength contribution. On the other hand, manganese (Mn) in steel increases the recrystallization temperature at the time of annealing when a large amount is added, it is absolutely necessary for high temperature annealing, but Mn-based oxides are eluted by the high temperature annealing on the surface to act as a main cause of surface defects.
석출강화형 고강도 강에 대한 대표적인 종래기술로는 일본 공개특허공보 소 56-84422호, 평4-221015호, 평3-140412호 및 평11-241119호가 있다.Representative prior arts for precipitation-reinforced high strength steels include Japanese Patent Application Laid-open No. 56-84422, Hei 4-221015, Hei 3-140412 and Hei 11-241119.
상기 종래기술들중 일본 공개특허공보 소56-84422호는 0.15%이하의 C를 함유하는 저탄소강을 기본 성분계로 하여 Ti, Nb, V 등을 1종 혹은 2종 이상 함유하고, 최종 열간압연 마무리 온도를 750~950℃로 하고, 권취온도를 450℃ 이하로 관리하여 석출강화형 고강도강을 제조하고 있다. 그러나, 상기 종래기술은 권취온도가 너무 낮음으로 인해 극미세 석출물을 형성하여 강도 기여 효과는 매우 높음에도 불구하고 750MPa 이상의 항복강도를 확보하지 못했을 뿐만 아니라, 석출물 주변의 잔류응력의 증가로 냉간압연시 과부하 현상이 종종 발생되는 문제점을 가지고 있다.Japanese Laid-Open Patent Publication No. 56-84422 of the prior arts contains one or two or more kinds of Ti, Nb, V, etc., based on low carbon steel containing 0.15% or less of C as a basic component system, and final hot rolling finish. The temperature is set at 750 to 950 ° C. and the winding temperature is controlled at 450 ° C. or less to produce precipitation strengthened high strength steel. However, the prior art has not only obtained a yield strength of more than 750MPa despite the extremely high strength contribution effect by forming a very fine precipitate due to the winding temperature is too low, cold rolling due to the increase of the residual stress around the precipitate Overload is often a problem that occurs.
또한, 상기 종래기술들중 일본 공개특허공보 평4-221015호는 Nb 혹은 V의 석출물 형성원소를 이용하고 열간압연 후 가속 냉각에 의해 강도상승 효과가 우수한 석출강화강의 제조방법을 제시하고 있다. 그러나, 이 경우도 권취온도가 400℃ 이하로 설정되어 있어서 앞서 언급한 문제가 발생될 뿐만 아니라 균일한 페라이트 조직의 형성 대신 베이나이트 혹은 마르텐사이트 조직이 형성되어 항복비(항복강도/인장강도)가 저하되는 문제점을 가지고 있다.In addition, Japanese Patent Application Laid-open No. Hei 4-221015 discloses a method for producing a precipitation-reinforced steel having an excellent strength increase effect by accelerated cooling after hot rolling using Nb or V precipitate formation elements. In this case, however, the coiling temperature is set to 400 ° C. or lower, so that not only the above-mentioned problem occurs but also bainite or martensite structure is formed instead of uniform ferrite structure, so that the yield ratio (yield strength / tensile strength) is increased. It has a problem of deterioration.
또한, 상기 종래기술들중 일본 공개특허공보 평3-140412호와 평11-241119호는 Cu석출물을 이용한 석출강화형 고강도강 제조방법을 제시하고 있다. 그러나, 상기 종래기술은 Cu계 석출물에 의한 도금 강판의 합금화 불량을 야기할 뿐만 아니라 용접성도 열악하여 현장 적용에 많은 문제점이 있다.In addition, Japanese Patent Laid-Open Nos. Hei 3-140412 and Hei 11-241119 among the related arts suggest a method of manufacturing a precipitation strengthening high strength steel using Cu precipitates. However, the prior art not only causes poor alloying of the coated steel sheet by Cu-based precipitates, but also has poor weldability, which causes many problems in field applications.
본 발명은 상기 종래기술들의 문제점을 해결하기 위한 것으로, 적정 수준의 Nb, Mo, B을 첨가하고, 권취온도 및 소둔시 회복 재결정 온도를 적절히 제어함에 의하여 항복강도 및 항복비가 우수한 석출강화형 냉연강판 및 그 제조방법을 제공하는데, 그 목적이 있다.
The present invention is to solve the problems of the prior art, the precipitation-reinforced cold-rolled steel sheet excellent in yield strength and yield ratio by adding the appropriate level of Nb, Mo, B, and appropriately control the winding temperature and recovery recrystallization temperature during annealing And to provide a method for manufacturing the same, there is a purpose.
상기 목적을 달성하기 위한 본 발명은, 중량%로, C: 0.08~0.12%, Mn: 1.8~2.2%, P: 0.02% 이하, S: 0.005% 이하, N: 0.005% 이하, Si: 0.1% 이하, 산가용Al: 0.1~0.15%, Nb: 0.06~0.09%, B: 0.0005~0.001%, Mo: 0.05×Mn[%], 잔부 Fe 및 기타 불가피한 불순물로 조성되며,
재결정비가 65~75%인 것을 특징으로 하는 항복강도 및 항복비가 우수한 석출강화형 냉연강판에 관한 것이다.The present invention for achieving the above object, in weight%, C: 0.08 ~ 0.12%, Mn: 1.8 ~ 2.2%, P: 0.02% or less, S: 0.005% or less, N: 0.005% or less, Si: 0.1% Hereinafter, the acid-soluble Al: 0.1 ~ 0.15%, Nb: 0.06 ~ 0.09%, B: 0.0005 ~ 0.001%, Mo: 0.05 × Mn [%], the balance Fe and other unavoidable impurities,
It relates to a precipitation strengthening cold rolled steel sheet excellent in yield strength and yield ratio, characterized in that the recrystallization ratio is 65 ~ 75%.
또한, 본 발명은 중량%로, C: 0.08~0.12%, Mn: 1.8~2.2%, P: 0.02% 이하, S: 0.005% 이하, N: 0.005% 이하, Si: 0.1% 이하, 산가용Al: 0.1~0.15%, Nb: 0.06~0.09%, B: 0.0005~0.001%, Mo: 0.05×Mn[%], 잔부 Fe 및 기타 불가피한 불순물로 조성되는 강 슬라브를 Ar3변태점 이상에서 열간압연을 종료한 다음 550~600℃에서 권취하고, 50% 이상의 압하율로 냉간압연하며, 이어 연속소둔로에서 통판속도 150~200mpm 및 소둔온도 770~810℃로 회복 재결정소둔하는 것을 포함하여 이루어지며,
재결정비가 65~75%인 것을 특징으로 하는 항복강도 및 항복비가 우수한 석출강화형 냉연강판의 제조방법에 관한 것이다.In addition, the present invention is in weight%, C: 0.08 to 0.12%, Mn: 1.8 to 2.2%, P: 0.02% or less, S: 0.005% or less, N: 0.005% or less, Si: 0.1% or less, acid-soluble Al : 0.1 ~ 0.15%, Nb: 0.06 ~ 0.09%, B: 0.0005 ~ 0.001%, Mo: 0.05 × Mn [%], the balance Fe and other end of hot rolling a steel slab which is the composition as inevitable impurities in more than Ar 3 transformation point It is then wound at 550 ~ 600 ℃, cold rolling at a rolling rate of 50% or more, followed by recrystallization annealing at a continuous sheet annealing speed 150 ~ 200mpm and annealing temperature 770 ~ 810 ℃,
It relates to a method for producing a precipitation-reinforced cold rolled steel sheet having excellent yield strength and yield ratio, characterized in that the recrystallization ratio is 65 to 75%.
이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명은 적정 수준의 Nb, Mo, B을 첨가하고, 권취온도 및 소둔시 회복 재결정 온도를 적절히 제어함에 의하여 항복강도 및 항복비가 우수한 석출강화형 냉연강판 및 그 제조방법을 제공하는데 특징이 있으며, 먼저 본 발명의 성분제한 이유부터 살펴본다.The present invention is characterized by providing a precipitation-reinforced cold rolled steel sheet having excellent yield strength and yield ratio by adding appropriate levels of Nb, Mo, and B, and appropriately controlling the coiling temperature and the recovery recrystallization temperature upon annealing. First, look at the reasons of the limited ingredients of the present invention.
C: 0.08~0.12중량%(이하, 단지 '%'로 기재함)C: 0.08 to 0.12% by weight (hereinafter referred to as '%' only)
상기 C는 본 발명에서 석출물 형성 원소로 중요한 역할을 하며, 그 함량이 0.08% 미만인 경우 충분한 석출 효과를 얻을 수 없어 목적하는 항복강도를 확보하기가 곤란할 뿐만 아니라 NbC 탄화물이 조대해지는 경향이 높아져 항복비가 낮아지는 문제점이 있으며, 0.12%를 초과하게 되면 제강연주 공정에서 주편에 크랙이 발생될 가능성이 높아질 뿐만 아니라 열간압연 후 코일 권취시에 베이나이트 조직이 형성되어 열연판의 강도를 현저히 상승시킴으로써 냉간압연시 부하를 가져오는 문제점이 있다. 따라서, 상기 C의 함량은 0.08~0.12%로 제한하는 것이 바람직하다.The C plays an important role as a precipitate forming element in the present invention, and if the content is less than 0.08%, it is difficult to obtain a sufficient precipitation effect, and it is difficult to secure the desired yield strength, and the yield ratio is increased since NbC carbides tend to be coarse. If it exceeds 0.12%, there is a high possibility that cracks will occur in the cast steel during the steelmaking process, as well as bainite structure is formed during coil winding after hot rolling, which significantly increases the strength of the hot rolled sheet. There is a problem that brings load at the time. Therefore, the content of C is preferably limited to 0.08 to 0.12%.
Mn: 1.8~2.2%Mn: 1.8-2.2%
상기 Mn은 고용강화 원소로 강도 상승에 기여할 뿐만 아니라 강중 S를 MnS로 석출시켜 열간압연시 S에 의한 판파단 발생 및 고온취화를 억제시키는데 중요한 역할을 한다. 상기 Mn의 함량이 1.8% 미만의 경우 회복 소둔을 행할 지라도 목적하는 항복강도 750MPa급을 확보하기 곤란하고, 2.2%를 초과하게 되면 목적하는 강도 확보에는 유리하나 소둔 중에 Mn계 개재물이 강판 표면에 용출되어 강의 표면 특성을 현저히 저하시킬 뿐만 아니라 C당량 용접지수 (C + Mn/6)가 증가하여 용접성에 문제가 발생되므로, 그 함량을 1.8~2.2%로 제한하는 것이 바람직하다.The Mn not only contributes to the strength increase as a solid solution element, but also precipitates S in MnS and plays an important role in suppressing plate breakage and high temperature embrittlement caused by S during hot rolling. When the content of Mn is less than 1.8%, even if recovery annealing is performed, it is difficult to secure a target yield strength of 750 MPa. When the content of Mn exceeds 2.2%, Mn inclusions are eluted to the surface of the steel sheet during annealing. In addition, the surface properties of the steel are not only significantly reduced, but the C equivalent welding index (C + Mn / 6) is increased to cause problems in weldability. Therefore, the content is preferably limited to 1.8 to 2.2%.
P: 0.02% 이하P: 0.02% or less
상기 P는 성형성을 크게 해치지 않으면서 강도 확보에 가장 유리한 원소이지만, 그 함량이 0.02%를 초과하면 취성파괴 발생 가능성을 현저히 높여 열간압연 도중 슬라브에 판파단을 발생시킬 가능성이 증가될 뿐만 아니라, 강판 표면 특성도 저해하는 문제점이 있으므로 그 함량을 0.02% 이하로 제한하는 것이 바람직하다.The P is the most advantageous element to secure the strength without significantly deteriorating the formability, but if the content exceeds 0.02%, the possibility of brittle fracture is significantly increased to increase the possibility of generating plate break in the slab during hot rolling. Since there is a problem that also inhibits the surface properties of the steel sheet, it is preferable to limit the content to 0.02% or less.
S: 0.005% 이하, N: 0.005% 이하S: 0.005% or less, N: 0.005% or less
상기 S 및 N은 강중 불순물 원소로써 불가피하게 첨가되는 원소들이기 때문에 가능한 한 낮게 관리하는 것이 바람직하다. 또한, 우수한 용접 특성을 확보하기 위하여 그 함량을 가능한 한 낮게 관리함이 바람직하나 그 함량을 낮추기 위해서는 강의 정련 비용이 높아지는 문제점이 있다. 따라서, 조업조건이 가능한 범위인 S: 0.005% 이하, N: 0.005% 이하로 제한하는 것이 바람직하다.Since S and N are inevitably added elements as impurity elements in steel, it is preferable to manage them as low as possible. In addition, it is preferable to manage the content as low as possible in order to secure excellent welding properties, but there is a problem in that the refining cost of the steel is increased to lower the content. Therefore, it is preferable to limit to S: 0.005% or less and N: 0.005% or less, which are the ranges in which operating conditions are possible.
Si: 0.1% 이하Si: 0.1% or less
상기 Si의 함량이 0.1%를 초과하면 강판의 표면특성에 매우 불리하므로, 그 함량을 0.1% 이하로 제한하는 것이 바람직하다.If the content of Si exceeds 0.1%, it is very disadvantageous to the surface properties of the steel sheet, it is preferable to limit the content to 0.1% or less.
산가용Al: 0.1~0.15%Acid value Al: 0.1 ~ 0.15%
상기 산가용Al은 강의 입도 미세화와 탈산을 위해서 첨가되는 원소이다. 그 함량이 0.1% 미만의 경우 미세한 AlN석출물이 형성되지 않아 강도 상승 기여 효과가 부족하며, 0.15%를 초과하게 되면 결정립 미세화 효과로 강도 상승에는 매우 유리하지만 제강연주 조업시 개재물이 과다하게 형성되어 강판 표면에 불량이 발생될 가능성이 높아질 뿐만 아니라 제조원가를 상승시키는 문제점이 있으므로, 그 함량을 0.1~0.15%로 제한하는 것이 바람직하다. The acid soluble Al is an element added to refine the particle size of the steel and deoxidation. If the content is less than 0.1%, fine AlN precipitates are not formed and thus the effect of increasing strength is insufficient. If the content exceeds 0.15%, the grain refinement effect is very advantageous to increase the strength, but excessive inclusions are formed during steelmaking operation. In addition to increasing the likelihood that a defect will occur on the surface, there is a problem that increases the manufacturing cost, it is preferable to limit the content to 0.1 ~ 0.15%.
Nb: 0.06~0.09%Nb: 0.06-0.09%
상기 Nb는 본 발명에서 B과 결합하여 회복 재결정 소둔을 행하는데 중요한 성분이다. 본 발명에서 첨가된 Nb는 열간압연중 고용 C와 작용하여 매우 미세한 NbC 석출물을 결정입내에 다량 형성시키게 되는데, 이때 B과의 상호작용(Interaction)을 함으로써 에시큘라 페라이트(Aciqular Ferrite) 결정조직을 형성하게 된다. 이러한 에시큘라 페라이트 조직은 소둔중에 재결정 온도를 증가시키는 주요인으로 작용한다. 상기 Nb의 함량이 0.06% 미만의 경우에는 강도 확보를 위한 미세 석출물들이 충분히 석출되지 못하여 목적하는 강도를 확보할 수 없을 뿐만 아니라 소둔시 저온 소둔을 행하여야 하는 부담을 안게 되며, 0.09%를 초과하게 되면 강판 표면 특성 확보에 불리하고 냉간압연시 다량의 미세 석출물들에 의해 압연 부 하가 증가되므로, 그 함량을 0.06~0.09%로 제한하는 것이 바람직하다.Nb is an important component in performing recovery recrystallization annealing in combination with B in the present invention. Nb added in the present invention is to form a large amount of very fine NbC precipitates in the crystal grains by working with the solid solution C during hot rolling, whereby the interaction with B (Aciqular Ferrite) crystal structure is formed Done. These ecuculal ferrite tissues act as a major factor in increasing the recrystallization temperature during annealing. When the content of Nb is less than 0.06%, the fine precipitates for securing strength are not sufficiently precipitated, so that the desired strength cannot be obtained, and the annealing is carried out at low temperature annealing, and exceeds 0.09%. When it is disadvantageous to secure the surface properties of the steel sheet and the rolling load is increased by a large amount of fine precipitates during cold rolling, it is preferable to limit the content to 0.06 ~ 0.09%.
B: 0.0005~0.001%B: 0.0005-0.001%
상기 B은 결정립을 미세화하여 용접인성을 향상시키는 원소이다. 상기 B의 함량이 0.0005% 미만이면 결정립 미세화 효과가 적어 용접인성 향상에 영향을 미치지 못하고, 0.001%를 초과하면 제강 성분제어시 원가상승의 부담이 있을 뿐만 아니라 연신율의 저하를 수반하므로, 그 함량을 0.0005~0.001%로 제한하는 것이 바람직하다.B is an element which refines crystal grains and improves weld toughness. When the content of B is less than 0.0005%, the effect of grain refinement is small, and thus it does not affect the improvement of the weld toughness. When the content of B is more than 0.001%, there is a burden of cost increase when controlling the steelmaking components, and it is accompanied by a decrease in elongation. It is preferable to limit to 0.0005 to 0.001%.
Mo: 0.05×Mn[%]Mo: 0.05 × Mn [%]
상기 Mo는 일부 고용강화 효과를 위하여 첨가하게 되는데, 그 함량은 0.05×Mn[%]가 만족되도록 제한하는 것이 바람직하다. Mo함량이 0.05×Mn[%] 미만의 경우 재결정 온도를 충분히 올리지 못하여 목적하는 강도를 확보하기 위해서는 저온 소둔을 행하여 하기 때문에 소둔시 연결 코일과의 부정합성으로 인해 작업성을 현저히 저하시키며, 0.05×Mn[%]를 초과하는 경우 재결정 온도는 상승시키는 효과는 있으나 제조원가가 상승되는 부담이 있고 연신율의 감소를 동시에 수반하게 된다.The Mo is added for some solid solution strengthening effect, the content is preferably limited to satisfy 0.05 × Mn [%]. If the Mo content is less than 0.05 × Mn [%], the recrystallization temperature is not sufficiently raised and low temperature annealing is performed to secure the desired strength. Therefore, the workability is significantly reduced due to mismatch with the connecting coil during annealing. If Mn [%] is exceeded, the recrystallization temperature is effective to increase, but there is a burden of increasing manufacturing cost and accompanied with a decrease in elongation.
본 발명은 상기한 성분 이외에 나머지는 Fe 및 기타 불가피한 불순물로 조성된다.The present invention is composed of Fe and other unavoidable impurities in addition to the above components.
이하, 본 발명의 제조방법에 대하여 상세하게 설명한다.Hereinafter, the manufacturing method of this invention is demonstrated in detail.
먼저, 상기와 같이 조성되는 강 슬라브를 통상의 열간 압연 조건인 Ar3 이상의 온도에서 열간압연을 종료하고 550~600℃에서 권취한다. 상기 권취온도가 550℃ 미만인 경우 강중 미세한 NbC석출물 형성에는 보다 유리하지만 판 형상의 뒤틀림 현상이 자주 발생하여 설비 트러블을 야기시킬 가능성이 매우 높고, 600℃를 초과하게 되면 열연 코일의 좌굴 결함이 발생되므로, 상기 권취온도는 550~600℃로 제한하는 것이 바람직하다.First, the steel slab formed as described above is hot rolled at a temperature of Ar 3 or more, which is normal hot rolling conditions, and wound up at 550 to 600 ° C. When the coiling temperature is less than 550 ℃, it is more advantageous for the formation of fine NbC precipitate in the steel, but the distortion of the plate-like frequently occurs, which is very likely to cause equipment trouble, and if it exceeds 600 ℃, the buckling defect of the hot rolled coil is generated , The winding temperature is preferably limited to 550 ~ 600 ℃.
이후, 상기 권취된 열연판을 50% 이상의 압하율로 냉간압연한다. 본 발명의 기초 실험에 의하면 냉간압하율이 증가함에 따라 미세 석출물 형성이 보다 용이하여 강도 상승에는 유리하게 작용한다. 그러나, 상기 냉간압하율이 50% 미만이면 회복 재결정시 결정립 핵생성 사이트가 적어 재결정온도를 상승시키므로, 상기 냉간압하율은 50% 이상으로 제한하는 것이 바람직하다.Thereafter, the wound hot rolled sheet is cold rolled at a rolling reduction ratio of 50% or more. According to the basic experiment of the present invention, as the cold reduction rate is increased, the formation of fine precipitates is more easily performed, which advantageously increases the strength. However, when the cold reduction rate is less than 50%, since the grain nucleation site is small during recovery recrystallization, the recrystallization temperature is increased. Therefore, the cold reduction rate is preferably limited to 50% or more.
이어 상기 냉연판을 연속소둔로에서 통판속도(Line speed) 150~200mpm, 소둔온도 770~810℃으로 회복 재결정소둔한다. 상기 통판속도가 150mpm 미만이면 저온 소둔을 행하여도 소둔 조직이 완전하게 재결정되려는 경향이 매우 높아 목적하는 750MPa급 항복강도가 확보되지 못하는 경향이 높으며, 200mpm을 초과하게 되면 부분 재결정, 즉 회복 소둔에 의한 강도 확보에는 보다 유리하지만 설비 능력에 부하를 주게 된다. 또한, 상기 소둔온도가 770℃ 미만의 경우 강도는 확보되나 연신율이 급격히 저하되고 810℃를 초과하게 되면 완전 재결정으로 인해 목적하는 항복강 도를 확보할 수 없게 된다.Subsequently, the cold rolled sheet is recrystallized and annealed in a continuous annealing furnace at a line speed of 150 to 200 mpm and an annealing temperature of 770 to 810 ° C. If the mailing speed is less than 150mpm, the annealing structure is very likely to be completely recrystallized even at low temperature annealing, so that the target 750MPa yield strength is highly secured. It is more advantageous for strength, but it puts a load on the facility capacity. In addition, when the annealing temperature is less than 770 ℃ the strength is secured, but the elongation is sharply lowered and exceeds 810 ℃ can not secure the desired yield strength due to complete recrystallization.
본 발명에서 재결정비(소둔시 조직이 완전하게 재결정되는 비율)를 65~75%로 제한하면 750MPa급 이상의 항복강도와 동시에 우수한 연신율을 확보하는 것이 가능하다.In the present invention, if the recrystallization ratio (the rate at which the tissue is completely recrystallized during annealing) is limited to 65 to 75%, it is possible to secure an excellent elongation at the same time as the yield strength of 750 MPa or more.
이하, 실시예를 통하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.
[실시예]EXAMPLE
하기 표 1과 같이 조성되는 발명강(A, B) 및 비교강(A, B)을 이용하여 하기 표 2의 조건으로 시편을 제조하였다. 이후, 상기 제조된 시편의 강판 재질 특성을 평가하였으며, 그 결과는 하기 표 3과 같다. 이때 인장시험은 DIN규격을 이용하여 C방향으로 실험을 행하였다.The specimens were prepared under the conditions shown in Table 2 below using the inventive steels (A, B) and comparative steels (A, B) as shown in Table 1 below. Then, the steel sheet material properties of the prepared specimens were evaluated, and the results are shown in Table 3 below. At this time, the tensile test was conducted in the C direction using the DIN standard.
상기 표 2에서, 본 발명의 성분범위를 만족하는 발명강(A, B)를 이용하여 본 발명의 제조방법에 따라 제조된 발명재(1~6)의 경우, 항복강도 750MPa 이상, 그리고 항복비 75% 이상의 확보가 가능하였다. 또한, 재결정비가 65~75%인 발명재의 경우, 10% 이상의 연신율의 확보가 가능함을 알 수 있었다.In Table 2, in the case of the invention materials (1-6) manufactured according to the production method of the present invention using the invention steel (A, B) satisfying the component range of the present invention, the yield strength of 750MPa or more, and yield ratio More than 75% could be secured. In addition, it was found that in the case of the invention material having a recrystallization ratio of 65 to 75%, an elongation of 10% or more can be secured.
그러나, 본 발명의 성분범위를 만족하지 않는 비교강(A, B)를 이용하거나, 본 발명의 성분범위를 만족하는 발명강(A, B)를 이용하더라도 본 발명의 제조방법에 따라 제조되지 않은 비교재(1~8)의 경우, 750MPa 이상의 항복강도를 확보할 수 없거나 75% 이상의 항복비를 확보할 수가 없었다. 또한, 비교재3의 경우 재결정비가 본 발명이 제한하는 범위보다 작아 연신율이 급격하게 감소됨을 확인할 수 있었 다.However, even when using the comparative steel (A, B) that does not satisfy the component range of the present invention, or using the invention steel (A, B) that satisfies the component range of the present invention is not produced according to the manufacturing method of the present invention In the case of the comparative materials (1-8), the yield strength of 750 MPa or more could not be secured, or the yield ratio of 75% or more could not be secured. In addition, in the case of Comparative Material 3, the recrystallization ratio was smaller than the limit of the present invention was confirmed that the elongation is sharply reduced.
상술한 바와 같이, 본 발명에 따르면 항복강도 750MPa 이상, 그리고 항복비 75% 이상의 석출강화형 냉연강판을 제공할 수 있는 효과가 있다.As described above, according to the present invention has an effect that can provide a precipitation-reinforced cold rolled steel sheet yielding strength of 750MPa or more and yield ratio of 75% or more.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040111413A KR100627474B1 (en) | 2004-12-23 | 2004-12-23 | The precipitation hardening cold rolled steel sheet having excellent yield strength and yield ratio, and the method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040111413A KR100627474B1 (en) | 2004-12-23 | 2004-12-23 | The precipitation hardening cold rolled steel sheet having excellent yield strength and yield ratio, and the method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20060072701A KR20060072701A (en) | 2006-06-28 |
KR100627474B1 true KR100627474B1 (en) | 2006-09-25 |
Family
ID=37165855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020040111413A KR100627474B1 (en) | 2004-12-23 | 2004-12-23 | The precipitation hardening cold rolled steel sheet having excellent yield strength and yield ratio, and the method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100627474B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070038730A (en) | 2005-10-06 | 2007-04-11 | 주식회사 포스코 | The precipitation hardening cold rolled steel sheet having excellent yield ratios, and the method for manufacturing the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001081533A (en) * | 1999-09-16 | 2001-03-27 | Sumitomo Metal Ind Ltd | High tensile strength cold rolled steel sheet and its manufacture |
JP2005105367A (en) | 2003-09-30 | 2005-04-21 | Nippon Steel Corp | High yield ratio and high strength cold-rolled steel plate and high yield ratio and high strength galvanized steel plate excellent in weldability and ductility, and high yield ratio and high strength alloyed galvanized steel plate and its manufacturing method |
-
2004
- 2004-12-23 KR KR1020040111413A patent/KR100627474B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001081533A (en) * | 1999-09-16 | 2001-03-27 | Sumitomo Metal Ind Ltd | High tensile strength cold rolled steel sheet and its manufacture |
JP2005105367A (en) | 2003-09-30 | 2005-04-21 | Nippon Steel Corp | High yield ratio and high strength cold-rolled steel plate and high yield ratio and high strength galvanized steel plate excellent in weldability and ductility, and high yield ratio and high strength alloyed galvanized steel plate and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
KR20060072701A (en) | 2006-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101674751B1 (en) | Precipitation hardening steel sheet having excellent hole expandability and method for manufacturing the same | |
KR102109265B1 (en) | Ultra high strength and high ductility steel sheet having excellent yield ratio and manufacturing method for the same | |
KR20180074284A (en) | Tempered martensitic steel having low yield ratio and excellent uniform elongation property, and method for manufacturing the same | |
CN113242912A (en) | Cold-rolled steel sheet having excellent workability, hot-dip galvanized steel sheet, and method for producing same | |
KR102312424B1 (en) | Manufacturing method of galvanized steel sheet with excellent weldability and galvanized steel sheet | |
KR100957967B1 (en) | High Strength Cold Rolled Steel Sheet, Galvanized Steel Sheet having Excellent Yield Strength Anisotropic Properties | |
KR102470747B1 (en) | A method of preparing utlra high strength cold-rolled steel sheet having excellent yield ratio and ductility and utlra high strength cold -rolled steel sheet using the same | |
KR101988760B1 (en) | Ultra-high strength steel sheet having excellent formability, and method for manufacturing thereof | |
US8864922B2 (en) | Method for manufacturing a precipitation-hardening cold-rolled steel sheet having excellent yield ratios | |
KR20150001469A (en) | High strength cold-rolled steel sheet and method of manufacturing the cold-rolled steel sheet | |
KR100627474B1 (en) | The precipitation hardening cold rolled steel sheet having excellent yield strength and yield ratio, and the method for manufacturing the same | |
KR101076082B1 (en) | Hot-rolled steel sheet having ultra-high strength, and method for producing the same | |
KR20090011619A (en) | Method of manufacturing high-strength steel sheet | |
KR20090069880A (en) | High-strength hot rolled steel sheet having excellent stretch flangeability, ductility,and method for manufacturing the same | |
KR101079383B1 (en) | The precipitation hardening cold rolled steel sheet having excellent yeild strength and ductility and method for manufacturing the same | |
KR101412365B1 (en) | High strength steel sheet and method of manufacturing the same | |
KR101455469B1 (en) | Thick steel sheet and method of manufacturing the same | |
KR100961379B1 (en) | Method for manufacturing steel sheet having high yield ratio and strength | |
KR20240098246A (en) | Ultra high-strength cold-rolled steel sheet having excellent formability and method of manufacturing the same | |
KR100605721B1 (en) | Method for manufacturing high strength low-alloy steel sheet by precipitation hardening | |
KR101417225B1 (en) | High strength cold rolled steel sheet with excellent stretch flangeability and method of manufacturing the same | |
KR20240061234A (en) | Cold rolled steel sheet having high yield ratio and high yield strength and method of manufacturing the same | |
KR20230004237A (en) | Cold-rolled steel sheet and method of manufacturing the same | |
KR20240003211A (en) | Cold-rolled steel sheet and method of manufacturing the same | |
KR20240098674A (en) | Steel sheet and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120904 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20130902 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20140915 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20150908 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20160906 Year of fee payment: 11 |