JPH0941076A - High strength and high toughness low alloy steel - Google Patents

High strength and high toughness low alloy steel

Info

Publication number
JPH0941076A
JPH0941076A JP19758795A JP19758795A JPH0941076A JP H0941076 A JPH0941076 A JP H0941076A JP 19758795 A JP19758795 A JP 19758795A JP 19758795 A JP19758795 A JP 19758795A JP H0941076 A JPH0941076 A JP H0941076A
Authority
JP
Japan
Prior art keywords
strength
alloy steel
toughness
low
low alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19758795A
Other languages
Japanese (ja)
Inventor
Hisataka Kawai
久孝 河合
Yoshikuni Kadoya
好邦 角屋
Shingo Date
新吾 伊達
Ryutaro Umagoe
龍太郎 馬越
Ichiro Tsuji
一郎 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP19758795A priority Critical patent/JPH0941076A/en
Publication of JPH0941076A publication Critical patent/JPH0941076A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To develop a high-low pressure integrated rotor material for a steam turbine solo chamber excellent in creep fracture strength at a high temp. and usable at a high temp. by adding specified small amounts Co and Ti to a high strength and high toughness low alloy steel having a specified compsn. SOLUTION: A low alloy steel having a compsn. contg., by weight, 0.1 to 0.3% C, <0.6% Si, <0.1% Mn, 0.1 to 1.5% Ni, 0.5 to 3% Cr, 0.05 to 0.5% Mo, 0.1 to 0.35% V, 0.01 to 0.15% Nb, 0.5 to 2% W and 0.001 to 0.01% B, in which Mo equivalent expressed by Mo+1/2W(%) is regulated to 0.7 to 1.4, and the balance Fe or having a compsn. furthermore added with <2% Co and <0.05% Ti is melted in a vacuum melting furnace or the like to develop the high strength and high toughness low alloy steel suitable as a rotor material on the high pressure side and low pressure side of a steam turbine, a rotor material of a gas turbine and a disk material, having excellent high temp. strength in the high pressure part and excellent room temp. strength and toughness in the low pressure part and sufficiently usable in the high temp. region of 565 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高強度・高靱性低合
金鋼に関し、特に蒸気タービンの単車室、高低圧一体ロ
ータ材、蒸気タービンの高圧側、低圧側ロータ材及びガ
スタービン等のロータ材やディスク材に有利に適用でき
る同低合金鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength, high-toughness low-alloy steel, and more particularly to a turbine casing of a steam turbine, a high-low pressure integrated rotor material, a high-pressure side of a steam turbine, a low-pressure side rotor material, and a rotor material such as a gas turbine. The present invention relates to the same low alloy steel that can be advantageously applied to disc materials.

【0002】[0002]

【従来の技術】蒸気タービンのロータ材には低合金鋼の
大型鍛造品が用いられている。この場合、蒸気タービン
の容量にもよるが、ロータ材は高圧と低圧の2車室ある
いは大容量蒸気タービンでは、高圧、中圧と低圧の3車
室に分けられて製造される。高圧車室用ロータ材には高
温強度(例えば、クリープ破断強度)の優れた材料を使
用し、低圧車室用ロータ材には室温強度(例えば、耐
力)や靱性(例えば、Vシャルピー衝撃値)の優れた材
料が使用されている。
2. Description of the Related Art A large forged product of low alloy steel is used as a rotor material of a steam turbine. In this case, although depending on the capacity of the steam turbine, the rotor material is manufactured in two high-pressure and low-pressure compartments, or in a large-capacity steam turbine, divided into high-pressure, medium-pressure and low-pressure compartments. The rotor material for the high-pressure vehicle interior is made of a material having excellent high-temperature strength (for example, creep rupture strength), and the rotor material for the low-pressure vehicle interior is at room temperature strength (for example, yield strength) and toughness (for example, V Charpy impact value). Excellent materials are used.

【0003】しかし、上述のように蒸気タービンを2車
室あるいは3車室に分けて製造すると、蒸気タービンの
コスト高を招き、経済的に極めて不利である。特に50
〜200MWクラスの中小型の蒸気タービンでは、プラ
ントの小型化、機構の簡略化、立地面積の縮小などの見
地から、単車室とし高圧側と低圧側とを一体にしたロー
タが要求される。この高圧側と低圧側とを一体にしたロ
ータ材、すなわち、高低圧一体ロータ材では、高圧側の
優れた高温強度と低圧側の優れた室温強度と靱性を兼備
した材料である必要がある。この要求に答える材料とし
て、2・1/4CrMoV系の低合金鋼(例えば、特開
昭50−14527号、特開昭60−245772号公
報等)がある。
However, when the steam turbine is divided into two or three compartments as described above, the cost of the steam turbine increases, which is economically extremely disadvantageous. Especially 50
From the standpoints of downsizing of plant, simplification of mechanism, reduction of site area, etc., medium to small steam turbines of 200 MW class require a single-compartment rotor with a combination of high-pressure side and low-pressure side. The rotor material in which the high-pressure side and the low-pressure side are integrated, that is, the high-low pressure integrated rotor material needs to be a material having both excellent high temperature strength on the high pressure side and excellent room temperature strength and toughness on the low pressure side. As a material that meets this requirement, there is a 2.1 / 4 CrMoV-based low alloy steel (for example, JP-A-50-14527 and JP-A-60-245772).

【0004】近年、化石燃料の有効利用の観点から、熱
効率の高いガスタービン、排ガスボイラ、蒸気タービン
を組合せた複合発電プラントが注目され増設されてい
る。高効率化の観点よりガスタービン入口ガス温度が著
しく高くなり、現在では1350℃級のプラントも出現
しており、それに併ない蒸気タービン高圧側の蒸気温度
も従来の540℃級より高温化が検討されている。しか
し、従来の2・1/4CrMoV系高低圧一体ロータ材
は高温強度不足であり、一方12%Cr系ロータ材は強
度的には満足するが、コストが高く経済的にメリットが
ない。
In recent years, from the viewpoint of effective use of fossil fuels, a combined power generation plant combining a gas turbine, an exhaust gas boiler, and a steam turbine having high thermal efficiency has been noticed and added. From the viewpoint of high efficiency, the gas temperature at the gas turbine inlet has become extremely high, and at present, plants of 1350 ° C class have also appeared, and the steam temperature on the high-pressure side of the steam turbine is also considered to be higher than the conventional 540 ° C class. Has been done. However, the conventional 2/4 CrMoV system high / low pressure integrated rotor material lacks high temperature strength, while the 12% Cr system rotor material is satisfactory in strength, but is costly and economically ineffective.

【0005】[0005]

【発明が解決しようとする課題】蒸気タービン用高低圧
一体ロータ材として、2・1/4CrMoV鋼(特開昭
50−14527号公報)、2・1/4CrMoVNb
鋼(特開昭60−245772号公報)があり、高圧側
の蒸気温度として540℃級まで対応できる。しかしコ
ンバインドプラントの熱効率向上を図るため、高圧側の
蒸気温度を565℃級まで上げる要求があり、このよう
な使用条件に対しては上述の2・1/4CrMoV鋼、
2・1/4CrMoVNb鋼は高温強度不足で問題があ
る。これらの鋼は、微細なVあるいはVNb炭化物によ
る析出硬化とMoの固溶強化により高温強度を得ている
が、高温使用ではMo、Cr炭化物が析出するとともに
565℃と言った高温ではこれらの炭化物の粗大化が著
しく、又Moの固溶強化の寄与は少なくなり高温長時間
側での高温強度低下が大きい。
As a high / low pressure integrated rotor material for a steam turbine, 2.1 / 4CrMoV steel (Japanese Patent Laid-Open No. 50-14527), 2.1 / 4CrMoVNb is used.
Steel (Japanese Patent Laid-Open No. 60-245772) is available, and it can handle steam temperatures up to 540 ° C. on the high-pressure side. However, in order to improve the thermal efficiency of the combined plant, there is a demand to raise the steam temperature on the high-pressure side to 565 ° C class. For such usage conditions, the above-mentioned 2.1 / 4CrMoV steel,
The 2/4 CrMoVNb steel has a problem in that it lacks high-temperature strength. These steels obtain high temperature strength by precipitation hardening by fine V or VNb carbides and solid solution strengthening of Mo. However, when used at high temperature, Mo and Cr carbides precipitate and at high temperatures such as 565 ° C these carbides are precipitated. Is significantly coarsened, and the contribution of Mo to solid solution strengthening is reduced, resulting in a large decrease in high-temperature strength on a high-temperature long-term side.

【0006】本発明は上記技術水準に鑑み、最適なる合
金組成により、高圧部で優れた高温強度と低圧部で優れ
た室温強度と靱性を有し、565℃と言った高温域で十
分使用できる高強度・高靱性低合金鋼を提供しようとす
るものである。
In view of the above-mentioned state of the art, the present invention has excellent high temperature strength in the high pressure portion and excellent room temperature strength and toughness in the low pressure portion due to the optimum alloy composition, and can be sufficiently used in the high temperature region of 565 ° C. It is intended to provide a high strength / high toughness low alloy steel.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明はMo
による固溶強化に代えて、Moより原子半径が大きく、
拡散速度が遅いWによる固溶強化により、高温長時間側
での高温強度の低下を防ぎ、又高温強度を下げる傾向に
あるMn、Si、Niの添加量を制限し、これによる靱
性の低下は真空カーボン脱酸と取べ精錬の採用により著
しく不純物元素の少ない低合金鋼を溶製することにより
対処したものであり、本発明は(1)重量比で、C:
0.1〜0.3%、Si:0.05%以下、Mn:0.
1%以下、Ni:0.1〜1.5%、Cr:0.5〜3
%、Mo:0.05〜0.5%、V:0.1〜0.35
%、Nb:0.01〜0.15%、W:0.5〜2%、
B:0.001〜0.01%を含有し、残部がFe及び
不可避的不純物元素からなることを特徴とする高強度・
高靱性低合金鋼、(2)上記(1)の高強度・高靱性低
合金鋼において、Mo当量=Mo+1/2W(重量%)
が0.7〜1.4であることを特徴とする高強度・高靱
性低合金鋼及び(3)上記(1)または(2)の高強度
・高靱性低合金鋼において、重量比で、Coを2%以
下、Tiを0.05%以下添加してなることを特徴とす
る高強度・高靱性低合金鋼である。
That is, the present invention provides Mo
Instead of solid solution strengthening by, the atomic radius is larger than Mo,
The solid solution strengthening by W having a slow diffusion rate prevents the deterioration of the high temperature strength on the high temperature and long time side, and limits the addition amount of Mn, Si and Ni which tends to lower the high temperature strength. This is addressed by melting low-alloy steel having extremely few impurity elements by adopting vacuum carbon deoxidation and ladle refining, and the present invention (1) is a weight ratio of C:
0.1 to 0.3%, Si: 0.05% or less, Mn: 0.
1% or less, Ni: 0.1 to 1.5%, Cr: 0.5 to 3
%, Mo: 0.05 to 0.5%, V: 0.1 to 0.35
%, Nb: 0.01 to 0.15%, W: 0.5 to 2%,
B: High strength, containing 0.001 to 0.01%, the balance being Fe and inevitable impurity elements.
High toughness low alloy steel, (2) In the high strength / high toughness low alloy steel of (1) above, Mo equivalent = Mo + 1 / 2W (wt%)
Is 0.7 to 1.4, and the high strength / high toughness low alloy steel and (3) the high strength / high toughness low alloy steel of (1) or (2) above, in a weight ratio, A high-strength, high-toughness low-alloy steel characterized in that Co is added by 2% or less and Ti is added by 0.05% or less.

【0008】本発明の高強度・高靱性低合金鋼は、上記
(1)〜(3)に示した合金組成を有する低合金鋼を、
真空カーボン脱酸、取べ精錬あるいはエレクトロスラグ
溶解法を用いて溶製し、従来と同様の鍛錬及び合金組成
から目標強度を得るための最適な熱処理によって得られ
る。
The high-strength, high-toughness low-alloy steel of the present invention is a low-alloy steel having the alloy composition shown in (1) to (3) above.
It can be obtained by vacuum carbon deoxidation, ladle refining, or melting using electroslag melting method, and wrought as in the prior art and optimal heat treatment for obtaining the target strength from the alloy composition.

【0009】[0009]

【発明の実施の形態】以下に本発明の低合金鋼の組成及
びその含有量の限定理由を説明する。なお、以下の説明
において、%は重量%を意味する。
BEST MODE FOR CARRYING OUT THE INVENTION The composition of the low alloy steel of the present invention and the reasons for limiting the content thereof will be described below. In the following description,% means% by weight.

【0010】C(炭素): Cは焼入れ性を向上させ、
室温強度や靱性を確保するためには必要不可欠な元素で
あり、又、Nb、V、Cr等の炭化物を形成し高温強度
に寄与する。本発明に必要な室温強度、高温強度、靱性
を得るためには0.1%以上必要であるが、あまり多量
に添加すると、かえって靱性を害し加工性が悪くなるの
で、その含有量を0.1〜0.3%とした。
C (carbon): C improves hardenability,
It is an essential element for ensuring room temperature strength and toughness, and also forms carbides such as Nb, V and Cr and contributes to high temperature strength. In order to obtain the room temperature strength, high temperature strength and toughness necessary for the present invention, 0.1% or more is necessary. However, if added in a too large amount, the toughness is adversely affected and the workability deteriorates. It was set to 1 to 0.3%.

【0011】Si(けい素): Siは溶鋼の脱酸剤と
して有効な元素である。しかし、Siを多く添加すると
脱酸による生成物であるSiO2 が鋼中に残存し、鋼の
清浄度を害し靱性を低下させる。又高温使用中において
焼戻し脆化を助長するので、Siは必要最小限とした。
本発明鋼では、脱酸法として真空カーボン脱酸法を適用
するので、Si量を0.05%以下とした。これにより
鋼の清浄度向上と焼戻し脆化を防ぎ、靱性向上の達成を
図る。
Si (Si): Si is an element effective as a deoxidizing agent for molten steel. However, when a large amount of Si is added, SiO 2 which is a product of deoxidation remains in the steel, impairing the cleanliness of the steel and lowering the toughness. Further, since Si promotes temper embrittlement during use at high temperatures, Si is set to a necessary minimum.
In the present invention steel, since the vacuum carbon deoxidizing method is applied as the deoxidizing method, the Si content was set to 0.05% or less. This will improve the cleanliness of steel, prevent temper embrittlement, and improve toughness.

【0012】Mn(マンガン): Mnは溶鋼の脱酸・
脱硫剤として有効であり、又焼入れ性を向上させて強度
を高めるのに有効な元素である。しかし、あまり多く添
加すると靱性、延性を害する。本発明鋼では真空カーボ
ン脱酸法と取べ精錬を用いるので、Mnは少量でよく、
その含有量は最大0.1%とした。
Mn (manganese): Mn is deoxidation of molten steel
It is an element effective as a desulfurizing agent, and also effective in improving hardenability and strength. However, if too much is added, the toughness and ductility are impaired. Since the vacuum carbon deoxidizing method and ladle refining are used in the steel of the present invention, a small amount of Mn is sufficient.
The maximum content was 0.1%.

【0013】Ni(ニッケル): Niは鋼の焼入れ性
を向上させ、室温における強度及び靱性を高めるのに有
効な元素であり、特にロータ材のような大型鍛造品にお
いては必須の元素である。しかし、Niをあまり多く添
加すると、高温強度(クリープ破断強度)を害し焼戻し
脆性を助長するので、その含有量を0.1〜1.5%と
した。
Ni (Nickel): Ni is an element effective for improving the hardenability of steel and enhancing the strength and toughness at room temperature, and is an essential element particularly in large forged products such as rotor materials. However, if too much Ni is added, the high temperature strength (creep rupture strength) is impaired and temper brittleness is promoted, so the content was made 0.1 to 1.5%.

【0014】Cr(クロム): Crは通常のロータ材
用低合金鋼の添加元素として最も重要な元素である。C
rを添加すると耐食・耐酸化性を改善し、焼入れ性を向
上させて、室温における引張性質を向上させる。又Cr
はクリープ強度やクリープ破断強度などの高温強度の改
善にも有効な元素である。しかし、Crの添加量が3%
を越えると靱性は改善されるが、高温強度はかえって低
下する傾向にある。そこでCr量は0.5〜3%とし
た。
Cr (Chromium): Cr is the most important element as an additive element in a normal low alloy steel for rotor materials. C
Addition of r improves corrosion resistance and oxidation resistance, improves hardenability, and improves tensile properties at room temperature. Also Cr
Is an element effective for improving high temperature strength such as creep strength and creep rupture strength. However, the amount of Cr added is 3%
If it exceeds, the toughness is improved, but the high temperature strength tends to be rather lowered. Therefore, the amount of Cr is set to 0.5 to 3%.

【0015】Mo(モリブデン): MoはCrと同様
通常のロータ材用低合金鋼の添加元素として重要な元素
である。Moを鋼に添加すると焼入れ性が向上し、室温
強度増大に有効である上に焼戻し脆化を防ぐ作用があ
る。又Moは固溶体強化元素として、さらに炭化物を生
成することにより、クリープ破断強度等の高温強度の向
上に有効な元素である。これらの十分な効果を得るため
には0.05%以上必要である。又、MoはWとの同時
添加により効果が著しく、Wの添加量を考慮する必要が
ある。しかし、あまり多くMoを添加すると、それらの
効果は飽和し、かえって、靱性を害する。又Moは高価
な元素であるので、あまり多く添加するとコスト高とな
るので、0.5%以下とした。
Mo (Molybdenum): Like Cr, Mo is an important element as an additive element of ordinary low alloy steel for rotor materials. Addition of Mo to steel improves hardenability, is effective for increasing room temperature strength, and has an effect of preventing temper embrittlement. Further, Mo is an element effective as a solid solution strengthening element for improving high temperature strength such as creep rupture strength by further forming carbides. To obtain these sufficient effects, 0.05% or more is necessary. Further, Mo has a remarkable effect when added together with W, and it is necessary to consider the amount of W added. However, if too much Mo is added, those effects are saturated and the toughness is adversely affected. Further, since Mo is an expensive element, if too much is added, the cost will increase, so 0.5% or less was made.

【0016】V(バナジウム): Vは主にCと結合し
て微細なVC炭化物を形成し、クリープ破断強度等の高
温強度向上に寄与する。更にVの添加は結晶粒の微細化
に有効であり、室温強度及び靱性向上に有効である。し
かし、あまり多く添加すると、かえって高温強度、靱性
に有害であるので、その含有量は0.1〜0.35%と
した。
V (vanadium): V mainly combines with C to form fine VC carbides, which contributes to improvement of high temperature strength such as creep rupture strength. Further, the addition of V is effective for making the crystal grains finer, and is effective for improving the room temperature strength and toughness. However, if added too much, it is rather harmful to high temperature strength and toughness, so the content was made 0.1 to 0.35%.

【0017】Nb(ニオブ): NbはVと同様、結晶
粒の微細化に有効であり、室温強度及び靱性向上に有効
である。又微細なNbC炭化物を形成し、クリープ破断
強度等の高温強度向上に有効である。しかし、あまり多
く添加すると、靱性を害するので、その含有量は0.0
1〜0.15%とした。
Nb (niobium): Similar to V, Nb is effective for refining crystal grains, and is effective for improving room temperature strength and toughness. It also forms fine NbC carbides and is effective in improving high temperature strength such as creep rupture strength. However, if added too much, the toughness is impaired, so its content is 0.0
It was set to 1 to 0.15%.

【0018】W(タングステン): WはMoと同様、
固溶強化と微細な炭化物の生成によりクリープ破断強度
等の高温強度を向上させる。従来はMoを主体としたC
r−Mo鋼が一般的であったが、WはMoに比べ原子半
径が大きく拡散速度が小さいため、550℃以上の高温
で長時間クリープ強度を高める効果がMoより大きい。
この効果を得るためには0.5%以上のWが必要である
が、あまり多く添加すると、大型製品では凝固偏析等好
ましくない現象が生じ、又Wは高価な元素であるので、
その含有量は0.5〜2%とした。なお、MoとWが複
合添加されると、これらの効果は著しいが、その添加量
(Mo当量)Mo+1/2Wで0.7〜1.4が最適で
ある。
W (tungsten): W is the same as Mo.
Improves high temperature strength such as creep rupture strength by solid solution strengthening and generation of fine carbide. Conventionally, C mainly composed of Mo
r-Mo steel was generally used, but since W has a larger atomic radius and a smaller diffusion rate than Mo, it has a larger effect of increasing creep strength at a high temperature of 550 ° C or higher for a long time.
To obtain this effect, 0.5% or more of W is required, but if added in too large an amount, large-scale products may cause undesirable phenomena such as solidification segregation, and W is an expensive element.
The content was 0.5 to 2%. When Mo and W are added in combination, these effects are remarkable, but the added amount (Mo equivalent) Mo + 1 / 2W is optimally 0.7 to 1.4.

【0019】B(ホウ素): Bは極微量結晶粒界に溶
け込んで鋼の焼入れ性を向上させ、又炭化物を分散させ
安定化させるので、長時間クリープ破断強度の改善に寄
与する。この効果は0.001%未満では認められ難
く、0.01%を越えると鍛造性が著しく害されるの
で、0.001〜0.01%とした。
B (Boron): B dissolves in an extremely small amount of grain boundaries to improve the hardenability of steel and disperses and stabilizes carbides, thus contributing to the improvement of long-term creep rupture strength. This effect is hard to be recognized if it is less than 0.001%, and if it exceeds 0.01%, the forgeability is significantly impaired, so the content was made 0.001 to 0.01%.

【0020】Co(コバルト): Coは炭化物形成元
素(Nb、V、Mo等)の固溶限を増し、これらの元素
の均一析出に有効であるとともに、焼戻し軟化抵抗を増
大させるので高温強度改善に寄与する。しかし、あまり
多く添加すると鋼の焼入れ性を害するとともにCoは高
価な元素であるので、その添加量は2%以下とした。
Co (Cobalt): Co increases the solid solubility limit of carbide forming elements (Nb, V, Mo, etc.), is effective for uniform precipitation of these elements, and increases the temper softening resistance, thus improving the high temperature strength. Contribute to. However, if too much is added, the hardenability of the steel is impaired and Co is an expensive element, so the addition amount was made 2% or less.

【0021】Ti(チタン): TiはC及びNと結合
してTi(C,N)を形成する。特にNとの結合が強
く、Nの固定のために微量のTi添加が有効である。特
に、B添加鋼の高温強度改善と固溶N低減による靱性改
善に大きく寄与する。あまり多く添加すると、粗大なT
i(C,N)が形成され、強度、靱性を著しく害するの
で0.05%以下とした。
Ti (Titanium): Ti combines with C and N to form Ti (C, N). In particular, the bond with N is strong, and addition of a trace amount of Ti is effective for fixing N. In particular, it greatly contributes to the improvement of the high temperature strength of the B-added steel and the improvement of the toughness by reducing the solid solution N. If too much is added, coarse T
Since i (C, N) is formed and the strength and toughness are significantly impaired, the content is made 0.05% or less.

【0022】その他: 上記に含まれないFe以外のそ
の他の付随的不純物、たとえばP,S等は製鋼の原材料
として混入がさけられないものであるが、これらはでき
るだけ低い方が望ましい。しかし、原材料の厳選は製品
のコスト高につながるので、Pは0.015%以下、S
は0.01%以下とする。その他の不純物元素として、
Cu、Al、Sn、Sb、Pb、Asなどがある。
Others: Other incidental impurities other than Fe that are not included in the above, such as P and S, are unavoidable as raw materials for steelmaking, but it is desirable that these are as low as possible. However, since careful selection of raw materials leads to high product cost, P is 0.015% or less, S
Is 0.01% or less. As other impurity elements,
There are Cu, Al, Sn, Sb, Pb, As and the like.

【0023】[0023]

【実施例】以下、本発明の具体的な実施例をあげ、本発
明の高強度・高靱性低合金鋼の効果を明らかにする。表
1に示す化学組成の本発明低合金鋼(A〜E)を実験室
的規模の真空溶解炉にて溶解し、50kgの鋼塊を溶製
した。
EXAMPLES The effects of the high-strength, high-toughness low-alloy steel of the present invention will be clarified below by giving specific examples of the present invention. The low alloy steels (A to E) of the present invention having the chemical compositions shown in Table 1 were melted in a laboratory-scale vacuum melting furnace to produce a steel ingot of 50 kg.

【0024】[0024]

【表1】 [Table 1]

【0025】これらの鋼塊を実機ロータの加熱・鍛造工
程{据込:1/2.8U(鋼塊素材を1/2.8の高さ
まで鍛造する)、鍛伸:3.7S(据込みにより太くな
ったものを3.7倍の長さまで鍛造する)の鍛錬}を行
なって、小型鍛造材を製造した。その後、この鍛造材
に、予備熱処理(例えば、1050℃空冷及び720℃
空冷)を施した。次にこの鍛造材に高低圧一体ロータ材
製造にあたっての高圧部の最大径:1600mmの強制
空冷焼入れ、及び低圧部の最大径:2000mmの水焼
入れ時の中心部及び外周部の焼入れ冷却速度をシミュレ
ートした熱処理をそれぞれ行なった。すなわち、高圧部
にあたる部分の熱処理として950℃で加熱して完全に
オーステナイト化した後、高圧部中心部の焼入れ冷却速
度(950℃〜300℃の平均):約25℃/hr(熱
処理I)、高圧部外周部の焼入れ冷却速度(950℃〜
300℃の平均):約1600℃/hr(熱処理II)続
いて、熱処理I及び熱処理IIの後、650〜700℃の
温度範囲で焼戻しを行ない、高圧部に要求される室温の
耐力:70kg/mm2 になるように調整した。次に、
低圧部にあたる部分の熱処理条件として900℃で加熱
して完全にオーステナイト化後、低圧部中心部の焼入れ
冷却速度(900℃〜300℃の平均):約50℃/h
r(熱処理III )、低圧部外周部の焼入れ冷却速度(9
00℃〜300℃の平均):約1600℃/hr(熱処
理IV)の2通りの冷却速度で焼入れ後、600〜650
℃の温度範囲で焼戻しを行ない、低圧部に要求される室
温の耐力:75kg/mm2 になるように調整した。な
お、比較材F,Gについても上述と同じ熱処理を行なっ
た。
These steel ingots are heated and forged in a rotor of an actual machine (upset: 1 / 2.8U (forging steel ingot material to a height of 1 / 2.8)), forging: 3.7S (upset). The thickened one was forged to a length of 3.7 times)}, and a small forged material was manufactured. After that, the forged material is subjected to a preliminary heat treatment (for example, 1050 ° C. air cooling and 720 ° C.
Air-cooled). Next, in this high-pressure low-pressure integrated rotor material manufacturing, the forged material was forced air-cooled for maximum diameter of 1600 mm, and the maximum diameter of low-pressure area was 2000 mm for water quenching. The heat treatment was performed. That is, as a heat treatment of the portion corresponding to the high pressure portion, after heating at 950 ° C. to completely austenite, the quenching cooling rate (average of 950 ° C. to 300 ° C.) of the central portion of the high pressure portion: about 25 ° C./hr (heat treatment I), Quenching cooling rate (950 ° C ~
(Average of 300 ° C.): Approximately 1600 ° C./hr (heat treatment II), followed by heat treatment I and heat treatment II, followed by tempering in the temperature range of 650 to 700 ° C., and room temperature proof stress required for the high pressure part: 70 kg / It was adjusted to be mm 2 . next,
As a heat treatment condition for the portion corresponding to the low pressure part, after heating at 900 ° C. to completely austenite, the quenching cooling rate (average of 900 ° C. to 300 ° C.) at the center of the low pressure part: about 50 ° C./h
r (heat treatment III), quenching cooling rate (9
(Average of 00 ° C to 300 ° C): 600 to 650 after quenching at two cooling rates of about 1600 ° C / hr (heat treatment IV)
Tempering was carried out in the temperature range of ℃, and adjusted so that the yield strength at room temperature required for the low pressure part was 75 kg / mm 2 . The same heat treatment as above was performed on the comparative materials F and G.

【0026】上述の高圧部中心部及び外周部並びに低圧
部中心部及び外周部の熱処理(焼入れ、焼戻し)を施し
た供試材について、室温引張試験、シャルピー衝撃試験
を行なった。又高圧部中心部及び外周部の熱処理(焼入
れ、焼戻し)を施した供試材についてクリープ破断試験
を行なった。室温引張試験には平行部径:8mm×標点
間距離:28mmの試験片を用いた。シャルピー衝撃試
験には10×10×55mm、2mmVノッチシャルピ
ー衝撃試験片を用い試験後の試験片の延性破面率が50
%となる温度(50%FATTと言う)を求めた。クリ
ープ破断試験には平行部径:6.4mm×標点間距離:
25.6mmの試験片を用いた。試験結果をラーソンミ
ラーパラメータ{LMP=(T+273)(20+log
t)、T:試験温度、t:試験時間}を用いて整理し、
600℃×104 hrクリープ破断強度を求めた。これ
らの試験結果を表2に示す。
A room temperature tensile test and a Charpy impact test were carried out on the test material subjected to the heat treatment (quenching and tempering) of the central part and outer peripheral part of the high pressure part and the central part and outer peripheral part of the low pressure part. Further, a creep rupture test was carried out on the test material which had been subjected to heat treatment (quenching and tempering) in the central portion and the outer peripheral portion of the high pressure portion. For the room temperature tensile test, a test piece having a parallel part diameter of 8 mm and a gauge length of 28 mm was used. For the Charpy impact test, 10 × 10 × 55 mm, 2 mm V notch Charpy impact test piece was used, and the ductile fracture surface ratio of the test piece after the test was 50.
The temperature at which the percentage (% is called 50% FATT) was obtained. For creep rupture test, parallel part diameter: 6.4 mm × gauge length:
A 25.6 mm test piece was used. Larson Miller parameter {LMP = (T + 273) (20 + log
t), T: test temperature, t: test time},
The creep rupture strength at 600 ° C. × 10 4 hr was determined. Table 2 shows the test results.

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】本発明材及び比較材とも引張性質は高圧部
の耐力70kg/mm2 (I、II)、低圧部の耐力75
kg/mm2 (III 、IV)にほぼ調整されていることが
わかる。次に50%FATTは本発明材と比較材の間で
有意差はなく、高圧部の中心部(熱処理I)で+40〜
+52℃、高圧部の外周部(熱処理II)で+3〜12
℃、低圧部の中心部(熱処理III )で+29〜+35
℃、低圧部の外周部(熱処理IV)で−3〜+5℃であっ
た。
The tensile properties of the material of the present invention and the comparative material are as follows: proof stress at high pressure part 70 kg / mm 2 (I, II), proof stress at low pressure part 75
It can be seen that the value is almost adjusted to kg / mm 2 (III, IV). Next, 50% FATT has no significant difference between the material of the present invention and the comparative material, and is +40 to + in the central portion (heat treatment I) of the high pressure portion.
+3 to 12 at + 52 ℃, high temperature area (heat treatment II)
+29 to +35 at the center of low pressure part (heat treatment III)
The temperature was -3 to + 5 ° C in the outer peripheral portion (heat treatment IV) of the low pressure portion.

【0030】600℃×104 hrクリープ破断強度は
比較材の高圧部外周部(熱処理II)で9.2kg/mm
2 、11.0kg/mm2 であるのに対し、本発明材の
それは、13.1〜14.7kg/mm2 であり、著し
くクリープ破断強度が高いことがわかる。上述のとおり
本発明材は靱性を犠牲にすることなく高い高温強度(ク
リープ破断強度)を有していることが検証された。
The creep rupture strength at 600 ° C. × 10 4 hr was 9.2 kg / mm at the outer peripheral part of the high pressure part (heat treatment II) of the comparative material.
2, whereas a 11.0 kg / mm 2, it the present invention material is 13.1~14.7kg / mm 2, it can be seen that significantly creep rupture strength is high. As described above, it was verified that the material of the present invention has high high temperature strength (creep rupture strength) without sacrificing toughness.

【0031】[0031]

【発明の効果】前述の実施例において、明らかにしたと
おり、本発明材は靱性を犠牲にすることなく、高温にお
けるクリープ破断強度が著しく優れており、より高温域
で使用できる蒸気タービン単車室用高低圧一体ロータ材
を提供するものであり、プラントコストの低減、プラン
トの熱効率向上に大きく寄与するものである。
EFFECTS OF THE INVENTION As has been clarified in the above-mentioned embodiments, the material of the present invention is extremely excellent in creep rupture strength at high temperature without sacrificing toughness, and can be used in a higher temperature range for a single turbine turbine casing. It provides a high-low pressure integrated rotor material, and contributes greatly to reducing the plant cost and improving the thermal efficiency of the plant.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 馬越 龍太郎 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂製作所内 (72)発明者 辻 一郎 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂製作所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Ryutaro Magoshi 1-1-1, Niihama, Arai-cho, Takasago, Hyogo Prefecture Mitsubishi Heavy Industries, Ltd. Takasago Plant (72) Ichiro Tsuji 2-chome, Niihama, Arai-cho, Takasago, Hyogo Prefecture No. 1 Mitsubishi Heavy Industries, Ltd. Takasago Plant

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量比で、C:0.1〜0.3%、S
i:0.05%以下、Mn:0.1%以下、Ni:0.
1〜1.5%、Cr:0.5〜3%、Mo:0.05〜
0.5%、V:0.1〜0.35%、Nb:0.01〜
0.15%、W:0.5〜2%、B:0.001〜0.
01%を含有し、残部がFe及び不可避的不純物元素か
らなることを特徴とする高強度・高靱性低合金鋼。
1. A weight ratio of C: 0.1 to 0.3%, S
i: 0.05% or less, Mn: 0.1% or less, Ni: 0.
1-1.5%, Cr: 0.5-3%, Mo: 0.05-
0.5%, V: 0.1 to 0.35%, Nb: 0.01 to
0.15%, W: 0.5 to 2%, B: 0.001 to 0.
A high-strength, high-toughness low-alloy steel characterized by containing 01% and the balance being Fe and inevitable impurity elements.
【請求項2】 請求項1記載の高強度・高靱性低合金鋼
において、Mo当量=Mo+1/2W(重量%)が0.
7〜1.4であることを特徴とする高強度・高靱性低合
金鋼。
2. The high-strength, high-toughness low-alloy steel according to claim 1, wherein Mo equivalent = Mo + 1/2 W (wt%) is 0.
High strength / high toughness low alloy steel characterized by being 7 to 1.4.
【請求項3】 請求項1または2記載の高強度・高靱性
低合金鋼において、重量比で、さらにCoを2%以下、
Tiを0.05%以下添加してなることを特徴とする高
強度・高靱性低合金鋼。
3. The high-strength / high-toughness low-alloy steel according to claim 1, further comprising 2% by weight or less of Co,
A high-strength, high-toughness low-alloy steel characterized by containing Ti in an amount of 0.05% or less.
JP19758795A 1995-08-02 1995-08-02 High strength and high toughness low alloy steel Withdrawn JPH0941076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19758795A JPH0941076A (en) 1995-08-02 1995-08-02 High strength and high toughness low alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19758795A JPH0941076A (en) 1995-08-02 1995-08-02 High strength and high toughness low alloy steel

Publications (1)

Publication Number Publication Date
JPH0941076A true JPH0941076A (en) 1997-02-10

Family

ID=16376977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19758795A Withdrawn JPH0941076A (en) 1995-08-02 1995-08-02 High strength and high toughness low alloy steel

Country Status (1)

Country Link
JP (1) JPH0941076A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100330453B1 (en) * 1999-10-28 2002-04-01 윤영석 Cr-Mo-V Alloy Steel for Pressure Vessel
US6569269B1 (en) * 2000-02-08 2003-05-27 Mitsubishi Heavy Industries, Ltd. Process for producing a high and low pressure integrated turbine rotor
US6821360B2 (en) 2000-07-27 2004-11-23 Kabushiki Kaisha Toshiba Heat-resisting steel, method for thermally treating heat-resisting steel, and components made of heat-resisting steel
US7540711B2 (en) 2004-07-06 2009-06-02 Hitachi, Ltd. Heat resisting steel, steam turbine rotor shaft using the steel, steam turbine, and steam turbine power plant
CN104498834A (en) * 2014-12-15 2015-04-08 北京理工大学 Components of high-toughness ultrahigh-strength steel and preparation process of high-toughness ultrahigh-strength steel
CN114182166A (en) * 2021-11-01 2022-03-15 上大新材料(泰州)研究院有限公司 390 MPa-grade low-alloy corrosion-resistant steel and preparation method thereof
CN114667361A (en) * 2019-12-25 2022-06-24 三菱重工业株式会社 Turbine rotor material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100330453B1 (en) * 1999-10-28 2002-04-01 윤영석 Cr-Mo-V Alloy Steel for Pressure Vessel
US6569269B1 (en) * 2000-02-08 2003-05-27 Mitsubishi Heavy Industries, Ltd. Process for producing a high and low pressure integrated turbine rotor
US6773519B2 (en) 2000-02-08 2004-08-10 Mitsubishi Heavy Industries, Ltd. High and low pressure integrated type turbine rotor
US6821360B2 (en) 2000-07-27 2004-11-23 Kabushiki Kaisha Toshiba Heat-resisting steel, method for thermally treating heat-resisting steel, and components made of heat-resisting steel
US7540711B2 (en) 2004-07-06 2009-06-02 Hitachi, Ltd. Heat resisting steel, steam turbine rotor shaft using the steel, steam turbine, and steam turbine power plant
CN104498834A (en) * 2014-12-15 2015-04-08 北京理工大学 Components of high-toughness ultrahigh-strength steel and preparation process of high-toughness ultrahigh-strength steel
CN114667361A (en) * 2019-12-25 2022-06-24 三菱重工业株式会社 Turbine rotor material
CN114182166A (en) * 2021-11-01 2022-03-15 上大新材料(泰州)研究院有限公司 390 MPa-grade low-alloy corrosion-resistant steel and preparation method thereof

Similar Documents

Publication Publication Date Title
US5061440A (en) Ferritic heat resisting steel having superior high-temperature strength
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
EP0806490B1 (en) Heat resisting steel and steam turbine rotor shaft
JP3354832B2 (en) High toughness ferritic heat-resistant steel
JP3358951B2 (en) High strength, high toughness heat-resistant cast steel
EP1637615B1 (en) Heat-resisting steel, heat treatment method for heat-resisting steel and high-temperature steam turbine rotor
US5817192A (en) High-strength and high-toughness heat-resisting steel
JP3483493B2 (en) Cast steel for pressure vessel and method of manufacturing pressure vessel using the same
JP3492969B2 (en) Rotor shaft for steam turbine
JPH0941076A (en) High strength and high toughness low alloy steel
JPH04147948A (en) Rotary shaft for high temperature steam turbine
JP3422658B2 (en) Heat resistant steel
JPH11209851A (en) Gas turbine disk material
JP4177136B2 (en) Method for producing B-containing high Cr heat resistant steel
JPH0543986A (en) High chromium ferritic heat resisting steel reduced in deterioration in strength in weld heat-affected zone
JP3819848B2 (en) Heat resistant steel and manufacturing method thereof
JPH11350076A (en) Precipitation strengthening type ferritic heat resistant steel
JP2948324B2 (en) High-strength, high-toughness heat-resistant steel
JPH0931600A (en) Steam turbine rotor material for high temperature use
JPH1036944A (en) Martensitic heat resistant steel
JPH04120239A (en) High strength and high toughness low alloy steel
JPH11217655A (en) High strength heat resistant steel and its production
JPH08120414A (en) Heat resistant steel
JPH07197208A (en) High strength high chromium cast steel for high temperature pressure vessel
JP3581458B2 (en) High temperature steam turbine rotor material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105