KR100289193B1 - Manufacturing method of phosphor - Google Patents

Manufacturing method of phosphor Download PDF

Info

Publication number
KR100289193B1
KR100289193B1 KR1019980051640A KR19980051640A KR100289193B1 KR 100289193 B1 KR100289193 B1 KR 100289193B1 KR 1019980051640 A KR1019980051640 A KR 1019980051640A KR 19980051640 A KR19980051640 A KR 19980051640A KR 100289193 B1 KR100289193 B1 KR 100289193B1
Authority
KR
South Korea
Prior art keywords
phosphor
precipitate
firing
manganese
particle size
Prior art date
Application number
KR1019980051640A
Other languages
Korean (ko)
Other versions
KR20000034331A (en
Inventor
조태환
장호정
박응석
Original Assignee
장호정
조태환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 장호정, 조태환 filed Critical 장호정
Priority to KR1019980051640A priority Critical patent/KR100289193B1/en
Publication of KR20000034331A publication Critical patent/KR20000034331A/en
Application granted granted Critical
Publication of KR100289193B1 publication Critical patent/KR100289193B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • C09K11/592Chalcogenides
    • C09K11/595Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Luminescent Compositions (AREA)

Abstract

본 발명은 액상반응법에 의하여 입자크기 및 형상제어를 통하여 제조공정이 단순한 형광체의 제조방법에 관한 것이다.The present invention relates to a method for producing a phosphor having a simple manufacturing process through particle size and shape control by a liquid phase reaction method.

본 발명에 따른 형광체의 제조방법은, Zn2-xMnxSiO4에서 x가 0.01 내지 0.2가 되도록 하여 질산아연(Zn(NO3)26H2O), 규산(Silicic acid) 및 황산망간(MnSO4)을 평량하고 이들을 물에 용해시키고, 교반하는 전구체용액 준비단계; 상기 전구체용액에 암모니아수를 NH3OH : Zn2+= 5 : 1내지 3 : 1의 비율이 되도록 가하고, 3 내지 7시간 동안 환류시키는 환류단계; 환류 후의 용액을 상온에서 방치하여 침전물을 형성시키는 침전물형성단계; 형성된 침전물을 여과 등에 의하여 분리해내는 분리단계; 수득된 침전물을 건조시키는 건조단계; 및 건조된 침전물을 900 내지 1300℃의 온도범위에서 소성시키는 소성단계;로 이루어짐을 특징으로 한다.In the method of manufacturing the phosphor according to the present invention, Zn 2-x Mn x SiO 4 is a zinc nitrate (Zn (NO 3 ) 2 6H 2 O), silicic acid (Silicic acid) and manganese sulfate ( MnSO 4 ) to prepare a precursor solution for weighing and dissolving them in water and stirring; Adding ammonia water to the precursor solution in a ratio of NH 3 OH: Zn 2+ = 5: 1 to 3: 1, and refluxing for 3 to 7 hours; A precipitate forming step of forming a precipitate by leaving the solution after reflux at room temperature; A separation step of separating the formed precipitate by filtration or the like; A drying step of drying the obtained precipitate; And firing the dried precipitate in a temperature range of 900 to 1300 ° C.

따라서, 입자크기 및 형상제어를 통하여 제조공정이 단순한 형광체의 제조방법을 제공하는 효과가 있다.Therefore, there is an effect of providing a method for producing a phosphor having a simple manufacturing process through particle size and shape control.

Description

형광체의 제조방법Manufacturing method of phosphor

본 발명은 형광체의 제조방법에 관한 것이다. 보다 상세하게는 본 발명은 액상반응법에 의하여 입자크기 및 형상제어를 통하여 제조공정이 단순한 형광체의 제조방법에 관한 것이다.The present invention relates to a method for producing a phosphor. More specifically, the present invention relates to a method for producing a phosphor having a simple manufacturing process through particle size and shape control by a liquid phase reaction method.

최근 휴대용 정보장치의 개발이 활발하게 진행되고, 그 응용범위가 넓어지면서 이들 휴대용 개인정보장치의 인식수단으로서 플라스마표시장치 등 경량, 소형의 표시장치의 개발이 더욱 요구되고 있다. 표시장치들은 일반적으로 육안으로 문자나 도형을 인식할 수 있도록 전기신호들을 가시대역의 광으로 변환시키는 역할을 하며, 대부분 전기신호에 의하여 자극된형광체가 가시대역의 발광현상을 일으켜, 이 발광현상에 의하여 사용자가 표시된 문자나 도형을 육안으로 인식하게 된다.In recent years, the development of portable information devices has been actively progressed, and the application range thereof has been widened, and as a means of recognizing these portable personal information devices, development of lightweight and small display devices such as plasma display devices has been further demanded. Display devices generally convert electrical signals into visible light so that the human body can recognize characters or figures. Most of the phosphors stimulated by electrical signals cause light emission in the visible band. As a result, the user may visually recognize the displayed character or figure.

따라서, 보다 작고, 가벼운 표시장치의 개발을 위하여는 보다 우수한 발광특성을 갖는 형광체의 개발을 요구하고 있다.Therefore, in order to develop a smaller and lighter display device, there is a demand for the development of a phosphor having superior light emission characteristics.

특히, 규산아연형광체의 경우, 이미 개발이 완료되어 주로 음극선관이나 플라스마표시장치 등에 상용적으로 사용되고 있다. 상기 규산아연형광체는 통상 Zn2SiO4:M 또는 Zn2-xMxSiO4으로 표시되며, 여기에서 부활제로서의 M에따라, M으로 망간만이 사용되거나(상품명 P1형광체), 망간이나 비소가 사용되거나(상품명 P39형광체), 또는 망간, 비소, 안티몬 등 공부활제를 더 포함하는 것(일본국 특원소57-34620호) 등이 다량으로 사용되고 있다. 또한, 망간 및 비소를 부활제로 사용하는 이러한 규산아연형광체는 우수한 발광특성 및 긴 잔광성으로 인하여 램프용으로도 사용되고 있다.In particular, in the case of zinc silicate phosphors, development has already been completed and mainly used for commercial use in cathode ray tubes and plasma display devices. The zinc silicate phosphor is usually represented by Zn 2 SiO 4 : M or Zn 2-x M x SiO 4 , wherein only manganese is used as M (brand name P1 phosphor) according to M as an activator, or manganese or arsenic Are used (trade name P39 phosphor), or those containing further active agents such as manganese, arsenic, and antimony (Japanese Patent Application No. 57-34620). In addition, these zinc silicate phosphors using manganese and arsenic as activators have also been used for lamps due to their excellent luminescence properties and long afterglow properties.

한편, 대한민국 특허공고 제 86-1883 호에는 부활제로서 독성 및 공해상의 문제가 있는 비소의 사용을 억제하고 우수한발광특성을 갖도록 안티몬 또는 비스무트를 사용하는 것을 내용으로 하는 규산아연 형광체를 기술하고 있다. 그러나, 이규산아연 형광체 역시 독성이나 공해상의 점에 있어서, 약간의 차이가 있기는 하나, 이들 안티몬이나 비스무트 역시 대량 장시간 사용에 있어서는 여전히 독성 및 공해상의 문제를 나타낼 수 있음은 당연하다고 할 수 있다.Meanwhile, Korean Patent Publication No. 86-1883 discloses a zinc silicate phosphor that uses antimony or bismuth to suppress the use of arsenic having toxicity and pollution problems as an activator and to have excellent luminescence properties. However, zinc disilicate phosphors also have some differences in toxicity and pollution, but it can be said that these antimony and bismuth may still exhibit toxicity and pollution problems in long-term use.

또한, 대한민국 특허공고 86-1896 호에는 상기한 규산아연 형광체에서 아연의 일부를 바륨, 칼슘, 스트론튬 및 나트륨 중의 어느 하나로 치환한 망간, 비소 등을 부활제와 공부활제로 사용하여, 장시간의 사용에 있어서의 형광체의 버닝(음극선의 장시간 동일한 위치에의 주사로 인하여 형광체의 일부가 산화 또는 소실되어 그에 따라 휘도얼룩이 일어나는 현상)을 줄일 수 있는 규산아연형광체를 기술하고 있다. 그러나, 이 역시 버닝현상의 완화라는 목적을 제공하기는 하나, 부활제로서의 비소의 사용으로 인하여 독성 및 공해상의 문제가 있으며, 비소의 첨가로 인하여 약간이나마 휘도가 감소하기 때문에 발광특성이 오히려 저하하게 되는 문제점이 있었다.In addition, Korean Patent Publication No. 86-1896 discloses manganese, arsenic, etc., in which zinc is partially substituted with one of barium, calcium, strontium, and sodium in the zinc silicate phosphor, as an activator and a study active agent. A zinc silicate phosphor capable of reducing burning of phosphors (a phenomenon in which part of the phosphors is oxidized or lost due to scanning of the cathode lines at the same position for a long time, and thus luminance staining occurs) is described. However, this also provides the purpose of alleviating the burning phenomenon, but there are problems of toxicity and pollution due to the use of arsenic as an activator, and the luminescence property is rather deteriorated because the brightness is slightly reduced due to the addition of arsenic. There was a problem.

한편, 부활제로서 망간을 사용하는 경우에 대하여도 그 특성개선을 위해 많은 연구가 진행되어 왔으며, 특히 디스플레이용 형광체로 이용되기 위해서는 높은 발광휘도, 우수한 색순도 및 적절한 잔광시간(Decay time)이 요구된다. 최근, 부활제로서 망간을 사용하는 규산아연 녹색형광체의 특성개선을 위해 새로운 합성방법의 연구와 활성제(Activator)의 종류 및 농도를 최적화시키려는 연구에 관심이 모아지고 있다. 한편, 디스플레이용 형광체의 연구는 에이. 모렐(A. Morell) 등이 규산아연(ZnSiO4) 모체에 망간 활성제 농도를 증가시킬 경우 잔광이 짧아진다고 보고한 바 있으나, 이 경우 농도증가와 함께 발광휘도의 감소가 나타남으로써 특성개선에 문제점을 안고 있다.On the other hand, many studies have been conducted to improve the characteristics of manganese as an activator. Especially, in order to be used as a display phosphor, high luminous luminance, excellent color purity, and appropriate decay time are required. . Recently, attention has been focused on the study of new synthetic methods and the optimization of the type and concentration of activators for improving the properties of zinc silicate green phosphors using manganese as an activator. On the other hand, research of the fluorescent substance for display is A. Morel et al. Reported that after increasing manganese activator concentration in zinc silicate (ZnSiO 4 ) matrix, the afterglow was shortened. Holding it.

일반적으로 종래의 규산아연 녹색형광체의 제조에는 고상반응법이 주로 이용되어 왔다. 그러나, 종래의 고상반응법은 높은 소성온도와 긴 소성시간을 필요로 하고 있으며, 입자형상과 크기를 조절하기 어렵다는 단점이 있었다.In general, the solid phase reaction method has been mainly used in the production of conventional zinc silicate green phosphor. However, the conventional solid phase reaction method requires a high firing temperature and a long firing time, and has a disadvantage in that particle shape and size are difficult to control.

이러한 단점을 해결하기 위하여 최근 고상반응법 이외에 새로운 합성방법으로 수열합성법, 졸-겔법 및 열분무법 등에 의해 우수한 특성의 규산아연 녹색형광체를 제조하려는 연구가 국내외에서 이루어지고 있다. 그러나, 이들 합성법들은 입자의 형상과 크기의 조절 및 발광휘도 개선 등에 어느정도의 효과를 나타내기는 하나, 제조공정이 복잡하여 실용화에 많은 노력과 비용이 소요된다는 단점이 있었다.In order to solve these drawbacks, in recent years, research has been made at home and abroad to produce zinc silicate green phosphor having excellent properties by hydrothermal synthesis, sol-gel, and thermal spraying as a new synthesis method in addition to the solid state reaction method. However, these synthesis methods have some effects such as controlling the shape and size of particles and improving the luminance of light emitted. However, these synthesis methods have a disadvantage in that they require a lot of effort and cost for practical application due to the complicated manufacturing process.

본 발명의 목적은 고상반응법의 단점을 극복할 수 있으며, 비교적 제조방법이 단순한 액상반응법을 이용한 형광체의 제조방법을 제공하는 데 있다.An object of the present invention is to overcome the disadvantages of the solid phase reaction method, to provide a method for producing a phosphor using a liquid phase reaction method is relatively simple manufacturing method.

본 발명의 다른 목적은 액상반응법에 의하여 입자크기 및 형상제어를 통하여 제조공정이 단순한 형광체의 제조방법을 제공하는 데 있다.Another object of the present invention is to provide a method for producing a phosphor having a simple manufacturing process through particle size and shape control by a liquid phase reaction method.

제1도는 본 발명에 따른 Zn1.9Mn0.1SiO4녹색형광체 시료의 제조에 있어서 소성온도를 900 내지 1250℃의 범위로 변화시켰을때 254nm 여기하에서의 발광피크강도를 나타내는 그래프이다.1 is a graph showing the emission peak intensity under 254 nm excitation when the firing temperature is changed to a range of 900 to 1250 ° C. in the preparation of a Zn 1.9 Mn 0.1 SiO 4 green phosphor sample according to the present invention.

제2도는 본 발명에 따른 Zn1.9Mn0.1SiO4녹색형광체 시료의 제조에 있어서 소성온도를 900 내지 1250℃의 범위로 변화시켰을때 147nm 여기하에서의 발광피크강도를 나타내는 그래프이다.2 is a graph showing the emission peak intensity under 147 nm excitation when the firing temperature is changed to a range of 900 to 1250 ° C. in the preparation of a Zn 1.9 Mn 0.1 SiO 4 green phosphor sample according to the present invention.

제3도는 본 발명에 따른 Zn1.9Mn0.1SiO4 녹색형광체 시료의 제조에 있어서 소성온도를 900 내지 1250℃의 범위로 변화시켰을 때 엑스선회절(XRD) 피크의 변화를 나타내는 그래프이다.3 is a graph showing the change of X-ray diffraction (XRD) peak when the firing temperature is changed to a range of 900 to 1250 ° C in the preparation of a Zn 1.9 Mn 0.1 SiO 4 green phosphor sample according to the present invention.

제4도는 본 발명에 따른 Zn2-xMnxSiO4녹색형광체 시료의 제조에 있어서 망간(Mn)의 농도(0.01 내지 0.2)에 따른 상대발광강도를나타내는 그래프이다.4 is a graph showing the relative emission intensity according to the concentration of manganese (Mn) (0.01 to 0.2) in the preparation of Zn 2-x Mn x SiO 4 green phosphor sample according to the present invention.

제5도는 본 발명에 따른 Zn2-xMnxSiO4녹색형광체 시료의 제조에 있어서 망간(Mn)의 농도(0.01 내지 0.2)에 따른 색순도의 변화를 나타내는 그래프이다.5 is a graph showing the change in color purity according to the concentration (0.01 to 0.2) of manganese (Mn) in the preparation of the Zn 2-x Mn x SiO 4 green phosphor sample according to the present invention.

제6도는 본 발명에 따른 Zn1.98Mn0.02SiO4녹색형광체 시료의 제조에 있어서 소성온도변화에 따른 입도크기를 PSA(Particle Size Analyzer ; 입경분석기)로 측정하여 나타낸 입도크기분포의 그래프이다.Figure 6 is a graph of the particle size distribution measured by measuring the particle size according to the firing temperature change in the preparation of Zn 1.98 Mn 0.02 SiO 4 green phosphor sample according to the present invention using a particle size analyzer (PSA).

제7도 내지 제10도는 본 발명에 따른 Zn1.98Mn0.02SiO4녹색형광체 시료의 제조에 있어서 소성온도를 900℃(제7도), 1000℃(제8도), 1100℃(제9도) 및 1200℃(제10도)로 증가시킴에 따라 형광체 입도의 크기의 변화를 측정한 주사전자현미경사진이다.7 to 10 show the firing temperatures of 900 ° C. (Fig. 7), 1000 ° C. (Fig. 8), and 1100 ° C. (Fig. 9) in the preparation of Zn 1.98 Mn 0.02 SiO 4 green phosphor sample according to the present invention. And scanning electron micrographs measuring the change in the size of the phosphor particle size with increasing to 1200 ° C. (FIG. 10).

본 발명에 따른 형광체의 제조방법은, Zn2-xMnxSiO4에서 x가 0.01 내지 0.2가 되도록 하여 질산아연(Zn(NO3)26H2O), 규산(Silicic acid) 및 황산망간(MnSO4)을 평량 하고 이들을 물에 용해시키고, 교반하는 전구체용액 준비단계; 상기 전구체용액에 암모니아수를 NH3OH : Zn2+= 5 : 1 내지 3 : 1의 비율이 되도록 가하고, 3 내지 7 시간 동안 환류시키는 환류단계; 환류후의 용액을 상온에서 방치하여 침전물을 형성시키는 침전물 형성단계; 형성된 침전물을 여과 등에 의하여 분리해내는 분리단계; 수득된 침전물을 건조시키는 건조단계; 및 건조된 침전물을 900 내지 1300℃의 온도범위에서 소성시키는 소성단계;로 이루어진다.In the method of manufacturing the phosphor according to the present invention, Zn 2-x Mn x SiO 4 is a zinc nitrate (Zn (NO 3 ) 2 6H 2 O), silicic acid (Silicic acid) and manganese sulfate ( MnSO 4 ) to prepare a precursor solution for weighing and dissolving them in water and stirring; Adding ammonia water to the precursor solution in a ratio of NH 3 OH: Zn 2+ = 5: 1 to 3: 1, and refluxing for 3 to 7 hours; A precipitate forming step of leaving the solution after reflux at room temperature to form a precipitate; A separation step of separating the formed precipitate by filtration or the like; A drying step of drying the obtained precipitate; And a firing step of firing the dried precipitate in the temperature range of 900 to 1300 ℃.

이하, 본 발명의 구체적인 실시예를 첨부한 도면을 참조하여 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 따른 형광체의 제조방법은 액상반응법에 의하여 수득되는 형광체 입자의 크기 및 형상을 용이하게 제어토록 하므로써 특히 발광강도와 색순도를 증가시키고, 발광세기를 강화시키고, 입도분포가 균일한 형광체를 제조할 수 있다.The method for producing a phosphor according to the present invention is to facilitate the control of the size and shape of the phosphor particles obtained by the liquid phase reaction method, in particular to increase the emission intensity and color purity, to enhance the emission intensity, and to have a uniform particle size distribution It can manufacture.

본 발명에서는 우선 전구체용액 준비단계에서 Zn2-xMnxSiO4에서 x가 0.01 내지 0.2가 되도록 하여 질산아연(Zn(NO3)26H2O), 규산(Silicic acid) 및 황산망간(MnSO4)을 평량하고 이들을 물에 용해시켜 액화한다. 원료물질들로서는 규산아연 녹색형광체의 제조의 경우, 질산아연(Zn(NO3)26H2O), 규산(Silicic acid) 및 황산망간(MnSO4)등이 사용될 수 있다. 물론, 이들 원료물질들은 형광체의 발광특성 등의 조절을 위하여 다른 원료들이 사용될 수 있으며, 특히 망간 등은 부활제로 기능하는 것으로서, 망간 이외에도 다른 금속들이 부활제로서 사용될 수 있음은 당해 기술분야에서 통상의 지식을 갖는 자에게는 용이하게 이해될 수 있음은 자명한 것이다.In the present invention, first, in the precursor solution preparation step, Zn 2-x Mn x SiO 4 is x-0.01 to 0.2 so that zinc nitrate (Zn (NO 3 ) 2 6H 2 O), silicic acid and manganese sulfate (MnSO 4 ) is weighed and liquefied by dissolving them in water. As raw materials, zinc nitrate (Zn (NO 3 ) 2 6H 2 O), silicic acid and manganese sulfate (MnSO 4 ) may be used for the production of zinc silicate green phosphors. Of course, these raw materials may be used for other raw materials for controlling the luminescent properties of the phosphor, in particular manganese and the like to function as an activator, other metals in addition to manganese can be used as the activator is common in the art It is obvious that it can be easily understood by those who have knowledge.

후속되는 환류단계에서는 상기 전구체용액에 암모니아수를 NH3OH : Zn2+= 5 : 1 내지 3 : 1의 비율이 되도록 가하고, 3내지 7 시간 동안 환류시키는 것으로 이루어지며, 환류를 통하여 충분한 반응이 일어나도록 함으로써 균일한 크기 및 형상의 형광체 분말을 수득할 수 있도록 한다.In the subsequent reflux step, ammonia water was added to the precursor solution in a ratio of NH 3 OH: Zn 2+ = 5: 1 to 3: 1, and refluxed for 3 to 7 hours, and sufficient reaction occurred through reflux. By making it possible to obtain a phosphor powder of a uniform size and shape.

계속해서 침전물형성단계에서는 환류 후의 용액을 상온에서 방치하여 침전물을 형성시키는 단계로서 충격이나 교반 등을 가하지 않는 상태에서 방치하여 용액을 안정화시키면 침전물이 자연적으로 형성되면서 침강하게 된다. 형성된 침전물은 여과 등에 의하여 분리해내고, 건조기 등에서 약 50℃ 정도의 온도로 가열하여 건조시킨다. 건조는 소성단계에서 소성후 형성되는 형광체 내부에 기포 등이 형성되지 않도록 하며, 균일한 소성에 의해 균일한 크기 및 형상의 형광체 분말을 수득할 수 있도록 한다.Subsequently, in the precipitate forming step, the solution after refluxing is left at room temperature to form a precipitate. When the solution is stabilized by not applying impact or agitation, the precipitate precipitates as it naturally forms. The formed precipitate is separated by filtration or the like, dried by heating to a temperature of about 50 ° C. in a dryer or the like. Drying is such that bubbles or the like are not formed in the phosphor formed after firing in the firing step, and phosphor powder having a uniform size and shape can be obtained by uniform firing.

계속해서 건조된 침전물은 소성로에서 900 내지 1300℃의 온도범위에서 소성되어 형광체로 된다. 특히, 소성은 알루미나보트 등에 장입하여 공기중에서 소성될 수 있으며, 실질적으로 전기로에서 상기의 온도범위로 약 4시간 동안 소성한 후 서서히 로냉시키는 것에 의하여 달성될 수 있다.Subsequently, the dried precipitate is fired in a firing furnace at a temperature in the range of 900 to 1300 ° C. to become a phosphor. In particular, the firing may be fired in air by charging into an alumina boat or the like, and may be substantially achieved by slowly quenching in the electric furnace for about 4 hours in the above temperature range.

이하에서 본 발명의 바람직한 실시예 및 비교예들이 기술되어질 것이다.Hereinafter, preferred embodiments and comparative examples of the present invention will be described.

이하의 실시예들은 본 발명을 예증하기 위한 것으로서 본 발명의 범위를 국한시키는 것으로 이해되어져서는 안될 것이다.The following examples are intended to illustrate the invention and should not be understood as limiting the scope of the invention.

[실시예 1 내지 6][Examples 1 to 6]

망간(Mn)의 함량이 0.1인 녹색형광체의 제조를 위하여 질산아연(Zn(NO3)26H2O), 규산(Silicic acid) 2.7636g 및 황산망간(MnSO4) 0.5981g을 정확히 평량하여 분말형태로 혼합한 혼합물을 물에 용해시켰다. 그후, NH3OH : Zn2+= 4: 1이 되도록 암모니아수를 가하고, 5시간 동안 환류시켜 Zn2-xMnxSiO4의 전구체용액을 준비하였다. 환류 후, 상온에 방치하여 형성된 침전물을 통상의 마이크로필터를 사용하여 여과해내고, 이를 50℃의 온도를 유지하는 건조기에서 10시간 동안 건조시켰다. 건조된 침전물은 알루미나보트에 장입하여 전기로에 투입하고 900℃(실시예 1), 1000℃(실시예 2), 1100℃(실시예 3), 1150℃(실시예 4), 1200℃(실시예 5) 및 1250℃(실시예 6)으로 소성온도를 달리하면서 4시간 동안 소성시켜 목적하는 형광체를 수득하였으며, 수득된 형광체들의 발광피크강도를 254nm 여기하(제1도) 및 147nm 여기하(제2도)에서 측정하여 그래프로 나타내었다. 또한, 수득된 형광체들의 엑스선회절(XRD) 피크를 제3도에 나타내었다. 제1도에 나타난바와같이, 소성온도를 900℃에서 1250℃로 증가시킴에 따라 상대발광강도는 약 4배 이상 증가함을 확인할 수 있으며, 발광피크의 FWHM(Full Width at Half Maximum)값은 84.9nm에서 45.3nm로 급격하게 감소하여 색순도가 크게 개선되었음을 확인할 수 있었다. 제2도에서도 유사한 경향을 나타냄을 확인할수 있었다. 여기에서, 1100℃ 이하의 소성온도에서 발광피크강도가 크게 감소하는 것은 형광체 분말이 완전히 결정화되지 않고 미반응물질이 존재하여 이들 미반응상이 발광의 저해요인으로 작용하는 것으로 판단된다.Powder of zinc nitrate (Zn (NO 3 ) 2 6H 2 O), silicic acid (2.7636 g) and 0.5981 g of manganese sulfate (MnSO 4 ) were precisely weighed to prepare a green phosphor with a manganese (Mn) content of 0.1. The mixture mixed in the form was dissolved in water. Then, ammonia water was added to NH 3 OH: Zn 2+ = 4: 1, and refluxed for 5 hours to prepare a precursor solution of Zn 2-x Mn x SiO 4 . After refluxing, the precipitate formed by standing at room temperature was filtered out using a conventional microfilter and dried for 10 hours in a drier maintaining a temperature of 50 ℃. The dried precipitate was charged into an alumina boat and placed in an electric furnace, followed by 900 ° C (Example 1), 1000 ° C (Example 2), 1100 ° C (Example 3), 1150 ° C (Example 4), 1200 ° C (Example 5) and firing at 1250 ° C. (Example 6) for 4 hours with different firing temperatures to obtain the desired phosphor, and the emission peak intensity of the obtained phosphors was 254 nm excited (FIG. 1) and 147 nm excited (first). 2 degrees) and graph it. X-ray diffraction (XRD) peaks of the obtained phosphors are also shown in FIG. As shown in FIG. 1, as the firing temperature is increased from 900 ° C to 1250 ° C, it can be seen that the relative emission intensity increases more than four times, and the FWHM (Full Width at Half Maximum) value of the emission peak is 84.9. It was confirmed that the color purity was greatly improved by a sharp decrease from 45.3 nm to 45.3 nm. In Figure 2 it can be seen that a similar trend. Here, the large decrease in the luminescence peak intensity at the firing temperature of 1100 ° C. or less indicates that the phosphor powder is not completely crystallized and an unreacted substance is present so that these unreacted phases act as inhibitors of luminescence.

또한, 제3도에서 나타난 바와 같이, 소성온도가 900℃에서 1250℃로 증가됨에 따라 결정상의 피크강도가 증가하는 것으로나타났으며, 1100℃ 이상의 소성온도에서 전형적인 빌레마이트(Willemite) 결정구조를 나타냄을 확인할수 있었으며, 1000℃의 낮은 소성온도에서는 미반응 불순물 결정상으로 보이는 피크가 2θ = 36° 근방에서 확인되었다.In addition, as shown in FIG. 3, the peak strength of the crystal phase was increased as the firing temperature was increased from 900 ° C to 1250 ° C. At a low firing temperature of 1000 ° C., a peak appearing as an unreacted impurity crystal phase was found in the vicinity of 2θ = 36 °.

[실시예 7]Example 7

부활제로서의 망간의 함량을 0.01 내지 0.2의 범위로 조절하고, 소성온도를 1200℃로 한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 형광체를 수득하였으며, 수득된 형광체를 254nm와 147nm 파장을 갖는 여기원을 사용하여 발광시켜 수득된 형광체의 망간의 농도에 따른 상대발광강도를 측정하였으며, 그 결과를 제4도에 나타내었다. 제4도에 나타난 바와같이, 여기원의 파장에 따라 서로 다른 발광세기를 나타냄을 확인할 수 있었으며, 따라서 망간의 함량의 조절에 의하여 여기원의 파장에 따라 다양한 형광체를 제조할 수 있음을 확인할 수 있었다. 254nm 파장을 갖는 여기원을 사용하는 경우 망간의 함량이 0.08 부근에서 가장 우수한 발광세기를 가질 수 있으며, 망간 함량을 0.16 이상으로 증가시킬 경우 발광강도가 급격히 저하할 수 있다. 또한, 147nm 파장을 갖는 여기원을 사용하는 경우 망간의 함량이 0.02 부근에서 가장 우수한 발광세기를 가질수 있으며, 0.10에서 급격히 발광강도가 저하될 수 있음을 확인할 수 있었다. 또한, 제5도에서 나타난 바와 같이 망간의 함량에 따른 색순도의 변화를 측정하였으며, 망간의 함량이 증가함에 따라 색순도가 62.9%에서74.8%로 개선되는 것을 확인할 수 있었다.A phosphor was obtained in the same manner as in Example 1 except that the content of manganese as an activator was adjusted to a range of 0.01 to 0.2, and the calcination temperature was set at 1200 ° C., and the obtained phosphor was 254 nm and 147 nm in wavelength. Relative luminescence intensity was measured according to the concentration of manganese of the phosphor obtained by emitting light using the excitation source having the result, and the result is shown in FIG. As shown in FIG. 4, it was confirmed that the light emission intensity was different according to the wavelength of the excitation source, and thus, it was confirmed that various phosphors could be manufactured according to the wavelength of the excitation source by controlling the content of manganese. . In the case of using an excitation source having a wavelength of 254nm, the content of manganese may have the best emission intensity in the vicinity of 0.08, and when the manganese content is increased to 0.16 or more, the emission intensity may be drastically reduced. In addition, in the case of using an excitation source having a wavelength of 147 nm, the content of manganese may have the best luminous intensity in the vicinity of 0.02, and it may be confirmed that the luminous intensity may drop rapidly at 0.10. In addition, as shown in FIG. 5, the change in color purity according to the content of manganese was measured. As the content of manganese increased, the color purity improved from 62.9% to 74.8%.

[실시예 8]Example 8

부활제로서의 망간의 함량을 0.02로 조절하고, 소성온도를 900℃(제7도), 1000℃(제8도), 1100℃(제9도) 및 1200℃(제10도)로증가시키는 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 Zn1.98Mn0.02SiO4녹색형광체 시료를 수득하였으며, 소성온도에 따른 형광체 입도의 크기의 변화를 주사전자현미경사진으로 촬영하였다. 이들 전자현미경사진에서 나타난 바와 같이, 소성온도가 900℃에서 1200℃로 증가함에 따라 형광체 입도의 크기가 다소 증가하는 것을 확인할 수 있었으며, 입자형상은 구형에 가까운 것으로 나타났다. 1200℃의 온도로 소성된 형광체의 입자크기는 주로 2 내지 3μm 의 비교적 작은입자로 구성되어 있으며, 약 5μm크기의 응집입자도 발견됨을 확인할 수 있었다. 또한, 제6도에는 소성온도에 대한PSA입도크기 분포를 나타내었으며, 소성온도가 증가함에 따라 평균입자의 크기가 증가하는 것으로 나타났다. 특히 900℃로 소성하는 경우에는 소성전보다 입자크기가 약간 감소하는 분포를 나타내었으며, 이는 소성초기에 온도의 상승과 함께액상반응시 첨가된 유기물이 입자에서 분리되면서 입자수축이 일어난 것으로 여겨지며, 소성온도가 1000℃ 이상으로 증가함에 따라 작은 입자끼리의 결합성장을 통하여 점차 큰 입자로 결정화되는 것으로 여겨진다. 1200℃의 소성온도에서는 주로 2 내지 3μm 크기의 입자로 이루어진 형광체를 수득할 수 있음을 확인할 수 있었으며, 이는 제10도의 주사전자현미경사진과도 일치하는 것으로 나타났다.The amount of manganese as an activator was adjusted to 0.02, and the firing temperature was increased to 900 ° C (Fig. 7), 1000 ° C (Fig. 8), 1100 ° C (Fig. 9) and 1200 ° C (Fig. 10). Except for the Zn 1.98 Mn 0.02 SiO 4 green phosphor sample was obtained in the same manner as in Example 1 except that the change in the size of the phosphor particle size according to the firing temperature was taken by scanning electron micrograph. As shown in these electron micrographs, it was confirmed that the size of the phosphor particle was somewhat increased as the firing temperature was increased from 900 ° C. to 1200 ° C., and the particle shape was close to a spherical shape. Particle size of the phosphor fired at a temperature of 1200 ℃ mainly consists of relatively small particles of 2 to 3μm, it was confirmed that the aggregated particles of about 5μm size is also found. In addition, FIG. 6 shows the PSA particle size distribution with respect to firing temperature, and the average particle size increases with increasing firing temperature. Particularly, when firing at 900 ℃, the particle size was slightly decreased than before firing. It is believed that particle shrinkage occurred as the organic matter added during the liquid phase reaction separated from the particles with the rise of temperature at the beginning of firing. It is believed that the crystallization gradually becomes larger particles through the growth of bonding of smaller particles as is increased to more than 1000 ℃. It was confirmed that a phosphor mainly composed of particles having a size of 2 to 3 μm was obtained at a calcination temperature of 1200 ° C., which is consistent with the scanning electron micrograph of FIG. 10.

상기한 실시예들을 종합한 결과, 입자의 크기 및 원형으로 형상화된 형광체 입자를 수득할 수 있으며, 특히 부활제로서의 망간의 함량의 조절에 의하여 여기원의 파장에 따라 서로 다른 발광세기를 갖는 형광체의 제조가 가능함을 확인할 수 있었다.As a result of the synthesis of the above embodiments, it is possible to obtain phosphor particles shaped into particles of a size and a circular shape, and in particular, by controlling the content of manganese as an activator, phosphors having different emission intensities depending on the wavelength of the excitation source. It could be confirmed that manufacturing is possible.

따라서, 본 발명에 의하면 입자크기 및 형상제어를 통하여 제조공정이 단순한 형광체의 제조방법을 제공하는 효과가 있다.Therefore, according to the present invention, it is effective to provide a method for producing a phosphor having a simple manufacturing process through particle size and shape control.

이상에서 본 발명은 기재된 구체예에 대해서만 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.Although the present invention has been described in detail only with respect to the described embodiments, it will be apparent to those skilled in the art that various modifications and variations are possible within the technical scope of the present invention, and such modifications and modifications are within the scope of the appended claims.

Claims (1)

Zn2-xMnxSiO4에서 x가 0.01 내지 0.2가 되도록 하여 질산아연(Zn(NO3)26H2O), 규산(Silicic acid) 및 황산망간(MnSO4)을 평량하고 이들을 물에 용해시키고, 교반하는 전구체용액 준비단계; 상기 전구체용액에 암모니아수를 NH3OH : Zn2+= 5 : 1 내지 3 : 1의 비율이 되도록 가하고, 3 내지 7 시간 동안 환류시키는 환류단계; 환류 후의 용액을 상온에서 방치하여 침전물을 형성시키는 침전물형성단계; 형성된 침전물을 여과 등에 의하여 분리해내는 분리단계; 수득된 침전물을 건조시키는 건조단계; 및 건조된 침전물을 900 내지 1300℃의 온도범위에서 소성시키는 소성단계;로 이루어짐을 특징으로 하는 형광체의 제조방법.In Zn 2-x Mn x SiO 4 , x is 0.01 to 0.2 so that zinc nitrate (Zn (NO 3 ) 2 6H 2 O), silicic acid and manganese sulfate (MnSO 4 ) are weighed and dissolved in water. Preparing and stirring a precursor solution; Adding ammonia water to the precursor solution in a ratio of NH 3 OH: Zn 2+ = 5: 1 to 3: 1, and refluxing for 3 to 7 hours; A precipitate forming step of forming a precipitate by leaving the solution after reflux at room temperature; A separation step of separating the formed precipitate by filtration or the like; A drying step of drying the obtained precipitate; And firing the dried precipitate in a temperature range of 900 to 1300 ° C .;
KR1019980051640A 1998-11-30 1998-11-30 Manufacturing method of phosphor KR100289193B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980051640A KR100289193B1 (en) 1998-11-30 1998-11-30 Manufacturing method of phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980051640A KR100289193B1 (en) 1998-11-30 1998-11-30 Manufacturing method of phosphor

Publications (2)

Publication Number Publication Date
KR20000034331A KR20000034331A (en) 2000-06-15
KR100289193B1 true KR100289193B1 (en) 2001-05-02

Family

ID=19560285

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980051640A KR100289193B1 (en) 1998-11-30 1998-11-30 Manufacturing method of phosphor

Country Status (1)

Country Link
KR (1) KR100289193B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120061343A (en) 2010-12-03 2012-06-13 삼성엘이디 주식회사 Method for producing phosphor and light emitting device

Also Published As

Publication number Publication date
KR20000034331A (en) 2000-06-15

Similar Documents

Publication Publication Date Title
JP4219514B2 (en) Rare earth phosphate manufacturing method, rare earth phosphate phosphor, and rare earth phosphate phosphor manufacturing method
CN109370580B (en) Bismuth ion activated titanium aluminate fluorescent powder and preparation method and application thereof
CN112322286B (en) Rare earth ion doped nano calcium carbonate luminescent material with different morphologies as well as preparation method and application thereof
JPH0523316B2 (en)
KR100289193B1 (en) Manufacturing method of phosphor
KR100280369B1 (en) Manufacturing method of green light emitting phosphor
CN101475204A (en) Preparation of luminescent material
US5132042A (en) Method of making lanthanum cerium terbium phosphate phosphor with improved brightness
KR100351635B1 (en) Process for preparing spherical blue phosphor based on aluminates
JPH0141673B2 (en)
CN102337122B (en) Silicate green fluorescent powder and preparation method thereof
KR100376274B1 (en) Process for preparing borate-based phosphors
EP0333053B1 (en) Phosphate-coated electroluminescent phosphor for electroluminescent lamp and a process for producing the same
KR101256626B1 (en) Long phosphorescent phosphors and method of preparating powders of the same
CN101255337B (en) Preparation method of red-light fluorescent powder for LED or PDP display
KR101419858B1 (en) Phosphor, and preparing method of the same
KR20110002445A (en) Silicate-based oxide phosphor and method of preparating podwer of the same
JP3209724B2 (en) Method for producing fine luminous phosphor powder and fine luminous phosphor powder
KR100666209B1 (en) Preparation method of red phosphors based on sulfide
US20130105733A1 (en) Oxide luminescent materials and preparation methods thereof
KR100447936B1 (en) Green emitting phosphor by VUV excitiation and its preparation method
CN112048298B (en) Potassium carbonate terbium fluorescent powder and preparation method thereof
CN101597042B (en) Hydroxide phosphate precursor and application thereof
KR100254169B1 (en) A method for manufacturing a manganese activating silicic acidic zinc phosphor by liquid reaction method
KR100419863B1 (en) Preparing method for spherical red phosphor based on borates

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060207

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee