KR100280369B1 - Manufacturing method of green light emitting phosphor - Google Patents

Manufacturing method of green light emitting phosphor Download PDF

Info

Publication number
KR100280369B1
KR100280369B1 KR1019980035889A KR19980035889A KR100280369B1 KR 100280369 B1 KR100280369 B1 KR 100280369B1 KR 1019980035889 A KR1019980035889 A KR 1019980035889A KR 19980035889 A KR19980035889 A KR 19980035889A KR 100280369 B1 KR100280369 B1 KR 100280369B1
Authority
KR
South Korea
Prior art keywords
phosphor
zinc
gallium
manganese
precipitate
Prior art date
Application number
KR1019980035889A
Other languages
Korean (ko)
Other versions
KR20000018337A (en
Inventor
박희동
박도순
정하균
Original Assignee
김충섭
한국화학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김충섭, 한국화학연구소 filed Critical 김충섭
Priority to KR1019980035889A priority Critical patent/KR100280369B1/en
Priority to JP24776999A priority patent/JP3436712B2/en
Publication of KR20000018337A publication Critical patent/KR20000018337A/en
Application granted granted Critical
Publication of KR100280369B1 publication Critical patent/KR100280369B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides
    • C09K11/623Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/57Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing manganese or rhenium
    • C09K11/572Chalcogenides
    • C09K11/574Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 녹색 발광 형광체의 제조방법에 관한 것으로서, 더욱 상세하게는 갈륨 성분을 함유한 용액에 염기를 첨가하고, 이를 열처리하여 가수분해시킨 다음, 아연 및 망간 성분을 함유한 용액에 분산시키고, 여기에 옥살산을 가하여 아연 및 망간 성분을 옥살산염으로 침전시켜 이 혼합 침전물을 건조 후 열처리하는 습식침전법을 이용하여 ZnGa2O4:Mn 녹색 발광 형광체를 제조함으로써 형광체 분말의 제조온도가 낮으며, 입자가 주상형으로 분말에 응집성이 없고, 활성제인 망간의 균일한 분포로 종래의 제조방법에 비하여 발광강도가 대단히 우수하여 저전압용 형광체로서 전자표시관용으로 매우 적합하고, 디스플레이 산업 등에 광범위하게 이용될 수 있도록 전자선에 의하여 여기되어 가시영역에서 발광 스펙트럼을 나타내는 녹색 발광 형광체의 새로운 제조방법에 관한 것이다.The present invention relates to a method for producing a green light emitting phosphor, and more particularly, a base is added to a solution containing a gallium component, and heat-treated by hydrolysis, and then dispersed in a solution containing zinc and manganese components. Oxylic acid was added to precipitate zinc and manganese with oxalate to prepare ZnGa 2 O 4 : Mn green luminescent phosphor by wet precipitation method of drying and heat-treating the mixed precipitate. It is a columnar type and has no cohesiveness in powder, and its uniform distribution of manganese, which is an activator, has a very good luminous intensity compared to the conventional manufacturing method, making it suitable for use in electronic display tubes as a low voltage phosphor, and can be widely used in the display industry. So that the green light-emitting phosphor is excited by an electron beam and exhibits an emission spectrum in the visible region. Peaceful relates to a method of manufacturing the same.

Description

녹색 발광 형광체의 제조방법Manufacturing method of green light emitting phosphor

본 발명은 녹색 발광 형광체의 제조방법에 관한 것으로서, 더욱 상세하게는 갈륨 성분을 함유한 용액에 염기를 첨가하고, 이를 열처리하여 가수분해시킨 다음, 아연 및 망간 성분을 함유한 용액에 분산시키고, 여기에 옥살산을 가하여 아연 및 망간 성분을 옥살산염으로 침전시켜 이 혼합 침전물을 건조 후 열처리하는 습식침전법을 이용하여 ZnGa2O4:Mn 녹색 발광 형광체를 제조함으로써 형광체 분말의 제조온도가 낮으며, 입자가 주상형으로 분말에 응집성이 없고, 활성제인 망간의 균일한 분포로 종래의 제조방법에 비하여 발광강도가 대단히 우수하여 저전압용 형광체로서 전자표시관용으로 매우 적합하고, 디스플레이 산업 등에 광범위하게 이용될 수 있도록 전자선에 의하여 여기되어 가시영역에서 발광 스펙트럼을 나타내는 녹색 발광 형광체의 새로운 제조방법에 관한 것이다.The present invention relates to a method for producing a green light emitting phosphor, and more particularly, a base is added to a solution containing a gallium component, and heat-treated by hydrolysis, and then dispersed in a solution containing zinc and manganese components. Oxylic acid was added to precipitate zinc and manganese with oxalate to prepare ZnGa 2 O 4 : Mn green luminescent phosphor by wet precipitation method of drying and heat-treating the mixed precipitate. It is a columnar type and has no cohesiveness in powder, and its uniform distribution of manganese, which is an activator, has a very good luminous intensity compared to the conventional manufacturing method, making it suitable for use in electronic display tubes as a low voltage phosphor, and can be widely used in the display industry. So that the green light-emitting phosphor is excited by an electron beam and exhibits an emission spectrum in the visible region. Peaceful relates to a method of manufacturing the same.

디스플레이 산업에서 색깔을 구현하는데 핵심재료로 사용되는 전자표시관용 형광체에 관하여 그간 많은 연구들이 진행되어 왔다. 그중에서도 스피넬 구조를 갖는 ZnGa2O4를 모체로 하고 망간을 활성제로 하는 저전압에서 구동하는 ZnGa2O4:Mn 형광체에 대하여 형광특성에 관한 연구가 행하여져 왔다.Much research has been conducted on phosphors for electronic display tubes, which are used as core materials for color in the display industry. Among them, fluorescence characteristics have been studied for ZnGa 2 O 4 : Mn phosphors driven at low voltages using ZnGa 2 O 4 having a spinel structure as a matrix and manganese as an activator.

일반적으로 형광체의 발광특성은 입자크기와 결정구조에 크게 의존하는 것으로 알려져 있으므로 형광체의 발광특성을 개선시키기 위하여 새로운 모체물질을 개발하거나 형광체의 제조방법들이 개발되고 있다. 이에 종래에는 ZnGa2O4:Mn 형광체를 제조하기 위하여 원료들을 혼합하여 열처리하는 고상반응법을 도입하여 분말 형태로 형광체를 제조하였으나, 이 공정은 최종 하소 과정에 높은 온도가 적용되기 때문에 형광체 입자들의 응집을 초래하므로 형광체 제조과정중 반드시 포함되는 분쇄, 연마 또는 볼밀링과 같은 분쇄과정중에 형광체의 표면에 손상을 입히게 되어 형광체 표면에 불감층이 형성되거나 불순물이 혼입되어 결과적으로 발광강도의 손실을 가져오게 되는 문제가 있다. 또한, 고상반응법에 의한 ZnGa2O4:Mn 형광체 제조시 높은 하소 온도를 적용하게 됨에 따라 높은 증기압에 기인하는 ZnO와 Ga2O3의 휘발은 여러모로 심각한 문제를 야기하기 때문에 이러한 성분들의 휘발을 줄이기 위해서 낮은 온도에서의 ZnGa2O4:Mn 형광체 제조방법이 필요하다. 이러한 이유로 고상반응법을 대체할 수 있는 다른 제조방법이 절실하게 필요하게 되었다.In general, it is known that the luminescence properties of the phosphors are largely dependent on the particle size and crystal structure, so that new matrix materials or methods for manufacturing the phosphors have been developed to improve the luminescence properties of the phosphors. In order to prepare a ZnGa 2 O 4 : Mn phosphor, a phosphor was prepared in a powder form by introducing a solid-phase reaction method in which raw materials were mixed and heat-treated. However, since the high temperature is applied to the final calcination process, the phosphor particles are used. Because of the coagulation, the surface of the phosphor is damaged during the grinding process such as grinding, grinding or ball milling, which is necessarily included in the manufacturing process of the phosphor, resulting in the formation of a dead layer on the surface of the phosphor or the incorporation of impurities, resulting in loss of luminescence intensity. There is a problem that comes. In addition, the volatilization of ZnO and Ga 2 O 3 due to the high vapor pressure causes serious problems in many cases as the high calcination temperature is applied in the preparation of ZnGa 2 O 4 : Mn phosphors by the solid-phase reaction method. In order to reduce the need for a ZnGa 2 O 4 : Mn phosphor manufacturing method at a low temperature. For this reason, there is an urgent need for other manufacturing methods that can replace the solid state reaction method.

한편, 고효율 형광체를 제조하기 위해서는 입자크기, 입자모양 및 모체격자에서의 활성제의 균일한 분포 등을 조절하여야 한다. 따라서, 이러한 관점에서 균일한 입자와 좋은 결정성을 가진 형광체 분말을 제조할 수 있는 새로운 제조방법이 절실히 요구되고 있다.On the other hand, in order to manufacture high-efficiency phosphors, particle size, particle shape, and even distribution of the active agent in the matrix should be controlled. Therefore, there is an urgent need for a new production method capable of producing phosphor powder having uniform particles and good crystallinity.

이에 본 발명자들은 ZnGa2O4:Mn 형광체의 발광특성을 개선시키고자 연구를 거듭한 결과, 습식침전법으로 ZnGa2O4:Mn 형광체를 제조하게 되면 저온에서 형광체가 형성되면서도 오히려 발광강도가 크게 우수한 녹색 발광 형광체를 얻을 수 있다는 사실을 알게 되어 본 발명을 완성하게 되었다.The present inventors have found that ZnGa 2 O 4: Here improve the luminescence properties of Mn phosphor and a result of extensive studies, ZnGa 2 O 4 by a wet precipitation method: When manufacturing the Mn phosphor while being phosphor is formed at a low temperature rather than the emission intensity greatly The present invention has been completed by knowing that an excellent green light emitting phosphor can be obtained.

따라서, 본 발명은 ZnGa2O4:Mn 형광체의 제조에 습식침전법을 사용함으로써 종래의 방법보다 형광체가 저온에서 형성되고 분말입자가 일정한 주상형으로 응집성이 없으며 활성제의 균일한 분포로 인하여 발광강도가 우수한 녹색 발광 형광체의 제조방법을 제공하는데 그 목적이 있다.Therefore, the present invention uses the wet precipitation method for the production of ZnGa 2 O 4 : Mn phosphor, the phosphor is formed at a lower temperature than the conventional method, the powder particles are coherent in a constant columnar shape, and the luminous intensity is due to the uniform distribution of the active agent. It is an object of the present invention to provide a method for producing a green light emitting phosphor which is excellent.

도 1은 본 발명에 따른 실시예 1에서 제조된 ZnGa2O4:0.005Mn 형광체에 대한 X-선 회절도이고,1 is an X-ray diffraction diagram of a ZnGa 2 O 4 : 0.005Mn phosphor prepared in Example 1 according to the present invention,

도 2는 본 발명에 따른 실시예 1에서 제조된 ZnGa2O4:0.005Mn 형광체의 분말 입자를 주사전자현미경으로 관찰한 사진이고,2 is a photograph of a powder particle of ZnGa 2 O 4 : 0.005Mn phosphor prepared in Example 1 according to the present invention with a scanning electron microscope,

도 3은 본 발명에 따른 ZnGa2O4:Mn 형광체와 종래의 고상반응법에 의하여 제조된 형광체에서 활성제인 망간의 농도에 따른 발광강도를 나타낸 그래프이고,Figure 3 is a graph showing the emission intensity according to the concentration of manganese active agent in the ZnGa 2 O 4 : Mn phosphor according to the present invention and the phosphor prepared by a conventional solid-phase reaction method,

도 4는 본 발명에 따른 실시예 1에서 제조된 ZnGa2O4:0.005Mn 형광체에 대한 발광 스펙트럼을 나타낸 것이다.Figure 4 shows the emission spectrum of the ZnGa 2 O 4 : 0.005Mn phosphor prepared in Example 1 according to the present invention.

본 발명은 ZnGa2O4:Mn 녹색 발광 형광체의 제조방법에 있어서, 갈륨 성분을 함유한 용액에 염기를 첨가하여 수산화물로 침전시키고, 이 용액을 열처리하여 GaO(OH) 침전물로 전환시킨 후, 이 침전물을 망간 성분을 함유하는 아연화합물 수용액에 분산시키고, 옥살산 및 염기를 첨가하여 얻어지는 혼합 침전물을 여과, 건조 및 소성하는 녹색 발광 형광체의 제조방법을 그 특징으로 한다.The present invention provides a method for producing a ZnGa 2 O 4 : Mn green light-emitting phosphor, in which a base is added to a solution containing a gallium component to precipitate with a hydroxide, and the solution is heat-treated to convert to a GaO (OH) precipitate. A method for producing a green light-emitting phosphor, in which a precipitate is dispersed in an aqueous zinc compound solution containing a manganese component, and the mixed precipitate obtained by adding oxalic acid and a base is filtered, dried, and calcined.

이와 같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.The present invention will be described in more detail as follows.

본 발명에 따른 녹색 발광 형광체의 제조방법은 습식침전법으로서 갈륨 성분을 함유한 용액에 염기를 첨가하여 수산화물로 침전시키고 이를 열처리하여 가수분해시켜서 GaO(OH)로 전환시킨 후, 여과하여 이 침전물을 아연 및 망간이 함유된 용액에 분산시키고 여기에 옥살산 용액을 첨가하고 염기로 수소이온농도를 조절하여 아연과 망간을 옥살산염으로 침전시키고 여과 및 건조한 후 공기 및 환원분위기 중에서 열처리함으로써 ZnGa2O4:Mn 형광체를 제조하는 방법이다.In the method for preparing a green light emitting phosphor according to the present invention, as a wet precipitation method, a base is added to a solution containing a gallium component, precipitated with hydroxide, heat treated to hydrolyze, converted to GaO (OH), and then filtered to deposit this precipitate. ZnGa 2 O 4 : dispersed in a solution containing zinc and manganese, oxalic acid solution is added thereto, and the hydrogen ion concentration is adjusted with a base to precipitate zinc and manganese with oxalate, filtered and dried and heat treated in air and a reducing atmosphere. It is a method of manufacturing Mn phosphor.

상기와 같은 본 발명에 따른 제조방법에 의하여 제조된 ZnGa2O4:Mn 형광체는 700℃의 저온으로부터 단일상으로 형성되고 분말 입자가 응집이 없는 균일한 주상형을 하고 있으며 전자선에 의하여 여기되어 가시영역에서 매우 우수한 녹색 발광강도를 나타낸다.The ZnGa 2 O 4 : Mn phosphor prepared by the manufacturing method according to the present invention as described above is formed in a single phase from a low temperature of 700 ° C. and has a uniform columnar shape in which powder particles are not aggregated and are excited by electron beams. Very good green light emission intensity in the region.

본 발명에 따른 형광체를 합성하기 위해서는 갈륨화합물, 아연화합물 그리고 망간화합물을 원료로하여 상기 방법에 따라 제조할 수 있다.In order to synthesize the phosphor according to the present invention, a gallium compound, a zinc compound and a manganese compound may be prepared according to the above-described method.

본 발명에 따른 제조방법에서는 우선 갈륨 성분을 함유한 용액에 염기를 첨가하여 수산화물로 침전시킨다. 상기 갈륨 성분을 함유한 용액을 제조하기 위한 갈륨화합물로는 예컨대 질산갈륨, 황산갈륨 또는 염화갈륨의 수용액과 금속 갈륨을 질산이나 염산에 용해시킨 것 중에서 선택된 1종 이상이 사용될 수 있다. 이러한 갈륨 성분을 함유한 용액에서 ZnGa2O4:Mn의 조성에 따른 혼합비율로 갈륨 성분은 0.01 ∼ 5M의 농도를 갖는 것이 바람직하다. 만일, 갈륨 성분의 농도가 0.01M 미만이면 사용되는 물과 에너지의 양이 과다해져 비경제적이고, 5M을 초과하면 생성되는 침전용액의 교반 및 여과가 어려워지는 공정상의 문제가 있다.In the production method according to the present invention, a base is first added to a solution containing a gallium component to precipitate as a hydroxide. As the gallium compound for preparing the solution containing the gallium component, for example, an aqueous solution of gallium nitrate, gallium sulfate or gallium chloride and one or more selected from metal gallium dissolved in nitric acid or hydrochloric acid may be used. In the solution containing the gallium component, it is preferable that the gallium component has a concentration of 0.01 to 5 M in a mixing ratio according to the composition of ZnGa 2 O 4 : Mn. If the concentration of the gallium component is less than 0.01M, the amount of water and energy used is excessive and uneconomical. If it exceeds 5M, there is a process problem in that stirring and filtration of the resulting precipitation solution becomes difficult.

이때, 갈륨 성분을 완전히 침전시키기 위해서 용액의 수소이온농도는 5 이상으로 하되, 6 ∼ 9로 조절하는 것이 바람직하다. 갈륨 성분을 침전시키기 위해서 첨가되는 염기로는 암모니아수, 수산화나트륨 및 유기아민류 등 갈륨 성분을 침전시킬 수 있는 어떤 염기라도 좋다. 여기서 침전된 수산화갈륨은 용액 상태로 교반하면서 80 ∼ 110℃의 온도에서 30분 ∼ 4시간동안 가열하여 가수분해시킨 다음, 여과하여 GaO(OH) 침전물을 얻는다. 이와 같이 얻은 GaO(OH) 침전물을 상기 망간 성분을 함유하는 아연화합물 수용액에 분산시킨다.At this time, in order to completely precipitate the gallium component, the hydrogen ion concentration of the solution is preferably 5 or more, but preferably adjusted to 6-9. The base added to precipitate the gallium component may be any base capable of precipitating the gallium component such as ammonia water, sodium hydroxide and organic amines. The gallium hydroxide precipitated here is heated and hydrolyzed at a temperature of 80 to 110 ° C. for 30 minutes to 4 hours while stirring in a solution state, and then filtered to obtain a GaO (OH) precipitate. The GaO (OH) precipitate thus obtained is dispersed in an aqueous zinc compound solution containing the manganese component.

이 과정에서 사용되는 망간 성분을 함유하는 아연화합물 수용액은 아연화합물 용액과 망간화합물 용액이 혼합된 것으로서, 아연화합물로는 예컨대 초산아연, 염화아연, 질산아연 또는 황산아연의 수용액 또는 금속 아연이나 산화아연을 질산, 염산, 황산 등에 용해시킨 것 중에서 선택된 1종 이상이 사용될 수 있으며, 망간화합물로는 예컨대 수용성의 초산망간, 염화망간, 질산망간 및 황산망간 중에서 선택된 1종 이상이 사용될 수 있다. 이때, 조성에 따른 망간 성분을 함유하는 아연화합물 수용액의 아연 성분은 0.01 ∼ 5M의 농도를 갖는 것이 좋고, 바람직하기로는 0.1 ∼ 3M의 농도를 갖도록 한다. 여기서 모체에 대한 활성제로 사용되는 망간의 농도는 0.01 ∼ 3 ㏖% 범위의 것이 바람직하다. 만일 망간의 농도가 0.01 ㏖% 미만이거나 3 ㏖%를 초과하면 그 발광강도가 미약해지는 문제가 있다.The zinc compound solution containing manganese components used in this process is a mixture of zinc compound solution and manganese compound solution. Zinc compounds include, for example, zinc acetate, zinc chloride, zinc nitrate or zinc sulfate, or metal zinc or zinc oxide. And at least one selected from those dissolved in nitric acid, hydrochloric acid, sulfuric acid, etc. may be used, and as the manganese compound, at least one selected from water-soluble manganese acetate, manganese chloride, manganese nitrate, and manganese sulfate may be used. At this time, the zinc component of the zinc compound aqueous solution containing the manganese component according to the composition preferably has a concentration of 0.01 to 5M, preferably to a concentration of 0.1 to 3M. The concentration of manganese used here as an activator for the parent is preferably in the range of 0.01 to 3 mol%. If the concentration of manganese is less than 0.01 mol% or more than 3 mol%, there is a problem that the emission intensity is weak.

상기와 같은 GaO(OH) 침전물이 분산된 망간 성분을 함유하는 아연화합물 수용액에서 아연 및 망간 성분을 침전시키기 위해서 옥살산 용액을 첨가하고 염기를 가하여 수소이온농도를 6 ∼ 10, 바람직하기로는 7 ∼ 9 사이로 조절함으로써 아연과 망간 성분의 손실없이 침전시킨다. 이때, 사용되는 옥살산은 용액에 함유된 아연 성분에 대하여 당량비로 100 ∼ 110%가 적당하며, 옥살산 용액은 옥살산을 물이나 알코올에 용해시켜 1M 정도의 농도로 하고, 염기는 아연 성분의 손실을 방지하기 위하여 디에틸아민, 디에탄올아민, 트리에틸아민 등의 유기아민류 중에서 선택된 1종 이상을 사용할 수 있다.In order to precipitate zinc and manganese in an aqueous zinc compound solution containing a manganese component in which the GaO (OH) precipitate is dispersed, an oxalic acid solution is added and a base is added to give a hydrogen ion concentration of 6-10, preferably 7-9. By adjusting between the precipitates are precipitated without loss of zinc and manganese components. At this time, the oxalic acid to be used is suitable in an amount ratio of 100 to 110% with respect to the zinc component contained in the solution, and the oxalic acid solution is dissolved in oxalic acid in water or alcohol to a concentration of about 1 M, and the base prevents the loss of the zinc component. For this purpose, one or more selected from organic amines such as diethylamine, diethanolamine and triethylamine can be used.

그 다음으로 상기에서 제조한 갈륨, 아연 및 망간의 혼합 침전물을 여과 및 건조하고 그 건조물을 도가니의 내열 용기에 충전하여 공기중에서 700 ∼ 1,300℃로 1 ∼ 10시간에 걸쳐 소성하고, 활성제인 망간 성분을 환원시키기 위하여 다시 수소/질소 또는 일산화탄소/이산화탄소 혼합 기체를 사용하여 약한 환원분위기 중에서 700 ∼ 1,200℃로 1시간 재소성함으로써 ZnGa2O4:Mn 형광체 분말을 얻을 수 있다.Next, the mixed precipitate of gallium, zinc, and manganese prepared above was filtered and dried, and the dried product was filled in a heat-resistant container of the crucible and calcined in air at 700 to 1,300 ° C. for 1 to 10 hours, and the active manganese component. ZnGa 2 O 4 : Mn phosphor powder can be obtained by re-firing at 700 to 1,200 ° C. for 1 hour using a hydrogen / nitrogen or carbon monoxide / carbon dioxide mixed gas in order to reduce the temperature.

이와 같이 본 발명에 따른 ZnGa2O4:Mn 형광체의 제조방법은 종래의 방법과는 달리 700℃의 저온으로부터 형광체가 단일상으로 제조되고, 응집이 없는 주상형의 분말 입자를 가지며, 활성제의 균일한 분포에 의한 우수한 녹색 발광 강도를 나타내어 저전압용 형광체로서 전자표시관용으로 매우 적합하고, 디스플레이 산업 등에 광범위하게 이용될 수 있도록 전자선에 의하여 여기되어 가시영역에서 발광 스펙트럼을 나타내는 특징이 있다.As described above, the method for producing a ZnGa 2 O 4 : Mn phosphor according to the present invention is different from the conventional method, in which a phosphor is prepared in a single phase from a low temperature of 700 ° C., and has no agglomerated columnar powder particles, and uniformity of the active agent. It exhibits excellent green luminescence intensity by one distribution and is very suitable for an electronic display tube as a low voltage phosphor, and is characterized by being excited by an electron beam so as to be widely used in the display industry and displaying an emission spectrum in the visible region.

본 발명의 제조방법에 따라 최종 소성 단계에서 공기 및 환원 분위기 중에서 각기 800℃로 열처리한 ZnGa2O4:Mn 형광체 분말의 X-선 회절분석 결과, 도 1에 나타낸 바와 같이 단일상으로 얻어져 고상 반응법[J. Electrochem. Soc., 141, 1950 (1994)]의 1,100℃보다 낮은 온도에서 형광체가 형성됨을 확인할 수 있다.X-ray diffraction analysis of ZnGa 2 O 4 : Mn phosphor powders heat-treated at 800 ° C. in air and reducing atmosphere in the final firing step according to the preparation method of the present invention, obtained as a single phase as shown in FIG. Reaction method [J. Electrochem. Soc., 141, 1950 (1994)] can be confirmed that the phosphor is formed at a temperature lower than 1,100 ℃.

또한, 본 발명의 제조방법에 따라 제조된 ZnGa2O4:Mn 형광체 분말에 대하여 주사전자현미경(SEM)으로 관찰한 결과, 도 2에 나타낸 바와 같이 본 발명에 따른 형광체 입자들은 응집이 없으며 일정한 주상형을 하고 있음을 확인할 수 있다.In addition, ZnGa 2 O 4 : Mn phosphor powder prepared according to the method of the present invention was observed by scanning electron microscopy (SEM), as shown in Figure 2, the phosphor particles according to the present invention is not agglomerated and constant columnar You can see that you are doing a brother.

한편, 본 발명에 따른 ZnGa2O4:Mn 형광체에 대하여 254㎚의 전자선으로 여기시켜 종래의 고상반응법에 의하여 제조된 형광체에서 망간의 농도와 형광체의 발광강도를 비교한 결과, 도 3에 나타낸 바와 같이 두 가지 제조방법에서 모두 망간의 농도가 0.5 ㏖%일 때 최대의 발광강도를 보이지만, 본 발명에 따른 형광체가 망간의 전 농도 범위에서 더 우수한 녹색 발광강도를 나타내는데, 이는 본 발명에 따른 제조방법의 경우에 활성제인 망간이 모체에 균일하게 분포하기 때문으로 판단된다.On the other hand, ZnGa 2 O 4 : Mn phosphor according to the present invention was excited with an electron beam of 254nm to compare the concentration of manganese and the emission intensity of the phosphor in the phosphor prepared by the conventional solid-phase reaction method, shown in Figure 3 As shown in FIG. 2, the maximum emission intensity is shown when the concentration of manganese is 0.5 mol% in both manufacturing methods. However, the phosphor according to the present invention exhibits better green emission intensity in the entire concentration range of manganese. In the case of the method, it is determined that manganese, which is an active agent, is uniformly distributed in the mother.

그리고, 상기와 같이 본 발명의 제조방법에 따른 ZnGa2O4:Mn 형광체의 녹색 발광 유무를 확인한 결과, 도 4에 나타낸 바와 같이 505㎚의 파장에 발광 중심을 갖는 망간 이온 특유의 녹색 발광 스펙트럼을 보여 주는 것으로 확인되었다.As described above, as a result of confirming the presence or absence of green light emission of the ZnGa 2 O 4 : Mn phosphor according to the manufacturing method of the present invention, as shown in FIG. 4, a green light emission spectrum peculiar to manganese ions having a light emission center at a wavelength of 505 nm was obtained. It was confirmed to show.

이와 같은 본 발명을 실시예에 의거하여 상세하게 설명하겠는 바, 본 발명이 실시예에 한정되는 것은 아니다.Although this invention is demonstrated in detail based on an Example, this invention is not limited to an Example.

실시예 1Example 1

1M 농도의 질산갈륨 용액 200㎖에 암모니아수를 첨가하여 용액의 수소이온농도를 8로 조절하여 수산화갈륨으로 침전시켰다. 이 침전물을 용액 상태로 교반하면서 90℃에서 2시간 동안 가수분해시켜 GaO(OH) 침전으로 전환시켰다. 이 침전물을 여과하여 0.0005 ㏖의 질산망간을 함유하는 0.995M 농도의 옥살산 수용액 100㎖를 첨가하고 교반하면서 천천히 디에틸아민을 가하여 용액의 수소이온농도를 8.8로 조절하고 1시간 교반 후 여과하여 갈륨, 아연 및 망간의 혼합 침전물을 얻었다. 이 혼합 침전물을 80℃에서 4시간동안 건조시킨 다음, 알루미나 도가니에 넣고 공기중에서 800℃의 온도로 4시간 소성시킨 후, 얻어진 소성물을 5% 수소/질소 혼합 기체의 환원 분위기 중에서 800℃의 온도로 1시간 동안 다시 소성시켜 목적하는 형광체 분말을 얻었다.Aqueous ammonia was added to 200 ml of a 1 M gallium nitrate solution to adjust the hydrogen ion concentration of the solution to 8 to precipitate as gallium hydroxide. The precipitate was converted to GaO (OH) precipitation by hydrolysis at 90 ° C. for 2 hours with stirring in solution. The precipitate was filtered, 100 ml of an aqueous 0.995 M oxalic acid solution containing 0.0005 mol of manganese nitrate was added thereto, and slowly added with diethylamine while stirring to adjust the hydrogen ion concentration of the solution to 8.8. A mixed precipitate of zinc and manganese was obtained. The mixed precipitate was dried at 80 ° C. for 4 hours, then placed in an alumina crucible and calcined at 800 ° C. for 4 hours in air, and then the resulting fired product was heated at 800 ° C. in a reducing atmosphere of 5% hydrogen / nitrogen mixed gas. It was calcined again for 1 hour to obtain the desired phosphor powder.

이렇게하여 얻어진 형광체의 조성은 ZnGa2O4:0.005Mn이며, 254㎚의 전자선 여기하에서 도 4에 나타낸 바와 같은 505㎚에 발광 중심을 갖는 녹색 발광 스펙트럼을 나타내었다.The composition of the phosphor thus obtained was ZnGa 2 O 4 : 0.005 Mn, and exhibited a green emission spectrum having an emission center at 505 nm as shown in FIG. 4 under electron beam excitation of 254 nm.

실시예 2 ∼ 5Examples 2-5

상기 실시예 1과 동일한 방법으로 실시하되, 형광체의 조성을 다음 표 1과 같이 실시하여 형광체 분말을 제조하였다. 이렇게 얻어진 형광체의 조성에 따른 발광강도는 다음 표 1에 나타낸 바와 같다.A phosphor powder was prepared in the same manner as in Example 1 except that the composition of the phosphor was carried out as shown in Table 1 below. The luminous intensity according to the composition of the phosphor thus obtained is shown in Table 1 below.

구 분division 형광체의 조성Composition of phosphor 발광강도 (임의치)Luminous intensity (arbitrary value) 실시예 1Example 1 ZnGa2O4:0.005MnZnGa 2 O 4 : 0.005Mn 1,1801,180 실시예 2Example 2 ZnGa2O4:0.0001MnZnGa 2 O 4 : 0.0001Mn 125125 실시예 3Example 3 ZnGa2O4:0.001MnZnGa 2 O 4 : 0.001Mn 280280 실시예 4Example 4 ZnGa2O4:0.01MnZnGa 2 O 4 : 0.01Mn 420420 실시예 5Example 5 ZnGa2O4:0.03MnZnGa 2 O 4 : 0.03Mn 9595

비교예 1Comparative Example 1

ZnO 4.980gZnO 4.980 g

Ga2O311.529gGa 2 O 3 11.529 g

MnCO30.035gMnCO 3 0.035 g

상기의 고순도 원료들을 에탄올 20㎖에 습식 혼합하여 증발 건조시킨 후, 알루미나 도가니에 넣고, 공기 분위기 중에서 1,100℃의 온도에서 4시간동안 소성시키고 다시 5% 수소/질소 혼합 기체의 환원 분위기 중에서 900℃의 온도로 1시간 재소성시켰다. 얻어진 최종 소성물을 분쇄하여 형광체 분말을 제조하였다.The high purity raw materials were wet-mixed in 20 ml of ethanol and evaporated to dryness, and then placed in an alumina crucible, calcined at 1,100 ° C. for 4 hours in an air atmosphere, and again at 900 ° C. in a reducing atmosphere of 5% hydrogen / nitrogen mixed gas. It was refired for 1 hour at temperature. The final fired product was ground to prepare a phosphor powder.

제조된 형광체의 조성은 ZnGa2O4:0.005Mn이며, 254㎚의 전자선 여기하에서 505㎚에 발광 중심을 갖는 녹색 발광 스펙트럼을 나타내었다.The composition of the prepared phosphor was ZnGa 2 O 4 : 0.005Mn, and showed a green emission spectrum having an emission center at 505 nm under electron beam excitation of 254 nm.

이렇게 얻어진 형광체의 조성에 따른 발광강도는 다음 표 2에 나타내었다.The luminous intensity according to the composition of the phosphor thus obtained is shown in Table 2 below.

비교예 2 ∼ 5Comparative Examples 2 to 5

상기 비교예 1과 동일한 방법으로 하되, 형광체의 조성은 다음 표 2에 나타낸 바와 같이 실시하여 형광체 분말을 제조하였다. 또한, 이렇게 얻어진 형광체의 조성에 따른 발광강도는 다음 표 2에 나타내었다.In the same manner as in Comparative Example 1, the composition of the phosphor was carried out as shown in Table 2 to prepare a phosphor powder. In addition, the luminous intensity according to the composition of the phosphor thus obtained is shown in Table 2 below.

구 분division 형광체의 조성Composition of phosphor 발광강도 (임의치)Luminous intensity (arbitrary value) 비교예 1Comparative Example 1 ZnGa2O4:0.005MnZnGa 2 O 4 : 0.005Mn 315315 비교예 2Comparative Example 2 ZnGa2O4:0.0001MnZnGa 2 O 4 : 0.0001Mn 4545 비교예 3Comparative Example 3 ZnGa2O4:0.001MnZnGa 2 O 4 : 0.001Mn 7575 비교예 4Comparative Example 4 ZnGa2O4:0.01MnZnGa 2 O 4 : 0.01Mn 2525 비교예 5Comparative Example 5 ZnGa2O4:0.03MnZnGa 2 O 4 : 0.03Mn 1010

상기 실시예 1 ∼ 5 및 상기 비교예 1 ∼ 5의 비교 결과로부터 본 발명의 제조방법에 따른 형광체는 종래의 방법에 따라 제조된 형광체에 비하여 발광강도가 매우 우수하며, 특히 최대 발광강도를 나타내는 ZnGa2O4:0.005Mn 조성에서는 약 4배의 녹색 발광강도를 나타냄을 확인할 수 있다.From the comparative results of Examples 1 to 5 and Comparative Examples 1 to 5, the phosphor according to the manufacturing method of the present invention has a very excellent luminous intensity compared to the phosphor prepared according to the conventional method, and particularly ZnGa exhibiting the maximum luminous intensity. In the composition of 2 O 4 : 0.005Mn, green emission intensity of about 4 times can be seen.

상술한 바와 같이, 본 발명에 따른 ZnGa2O4:Mn 형광체의 새로운 제조방법은 종래의 제조방법과는 달리 낮은 온도에서 형광체를 제조함으로써, 아연과 갈륨 성분의 휘발을 억제하여 형광체의 재현성 있는 물성을 기대할 수 있고 환경 오염방지면에서도 우수한 효과를 가지고 있으며, 특히 응집이 없는 균일한 주상의 입자 형상을 가지면서 종래의 방법에 비하여 발광강도가 대단히 우수하여 저전압 구동 형광체로서 전자표시관용으로 매우 적합하고 디스플레이 산업 등에 광범위하게 이용될 수 있는 유용한 효과가 있는 것이다.As described above, the new method for producing a ZnGa 2 O 4 : Mn phosphor according to the present invention, unlike the conventional manufacturing method by producing a phosphor at a low temperature, by suppressing the volatilization of zinc and gallium components, the reproducible physical properties of the phosphor It can be expected to have excellent effect in terms of environmental pollution prevention. Especially, it has a uniform columnar shape without agglomeration and has excellent luminous intensity compared to the conventional method, and is very suitable for electronic display tubes as a low voltage driving phosphor. There is a useful effect that can be widely used in the display industry.

Claims (4)

ZnGa2O4:Mn 녹색 발광 형광체의 제조방법에 있어서,In the method for producing a ZnGa 2 O 4 : Mn green light emitting phosphor, 갈륨 성분을 함유한 용액에 암모니아수, 수산화나트륨 및 유기아민류 중에서 선택된 것으로 갈륨성분을 침전시키는 염기를 첨가하여 수산화물로 침전시키고, 이 용액을 80~110℃의 온도에서 열처리하여 GaO(OH) 침전물로 전환시킨 후, 이 침전물을 망간 성분을 함유하는 아연화합물 수용액에 분산시키고, 옥살산 및 유기아민 염기를 첨가하여 얻어지는 혼합 침전물을 여과, 건조 및 소성하는 것을 특징으로 하는 녹색 발광 형광체의 제조방법.A solution containing gallium is selected from ammonia water, sodium hydroxide and organic amines, and a base is added to precipitate the gallium component, which is precipitated with hydroxide. The solution is heat-treated at a temperature of 80-110 ° C. to convert into a GaO (OH) precipitate. And then dispersing the precipitate in an aqueous zinc compound solution containing a manganese component, and filtering, drying and firing the mixed precipitate obtained by adding oxalic acid and an organic amine base. 제 1 항에 있어서, 상기 갈륨 성분을 함유한 용액은 질산갈륨, 황산갈륨 또는 염화갈륨의 수용액 및 금속 갈륨을 질산이나 염산에 용해시킨 것 중에서 선택된 1종 이상임을 특징으로 하는 녹색 발광 형광체의 제조방법.The method according to claim 1, wherein the solution containing gallium component is at least one selected from an aqueous solution of gallium nitrate, gallium sulfate or gallium chloride, and metal gallium dissolved in nitric acid or hydrochloric acid. . 제 1 항에 있어서, 상기 망간 성분을 함유하는 아연화합물 수용액은 초산아연, 염화아연, 질산아연 또는 황산아연의 수용액 및 금속 아연이나 산화아연을 질산, 염산 또는 황산에 용해된 용액 중에서 선택된 1종 이상에 망간 성분이 0.01 ∼ 3 ㏖% 함유된 것임을 특징으로 하는 녹색 발광 형광체의 제조방법.The method of claim 1, wherein the aqueous zinc compound solution containing the manganese component is one or more selected from an aqueous solution of zinc acetate, zinc chloride, zinc nitrate or zinc sulfate and a solution in which metal zinc or zinc oxide is dissolved in nitric acid, hydrochloric acid or sulfuric acid. A method for producing a green light emitting phosphor, wherein the manganese component is contained in an amount of 0.01 to 3 mol%. 제 1 항에 있어서, 상기 소성은 공기 및 환원 분위기 중에서 700 ∼ 1,300℃의 온도로 1 ∼ 10시간동안 소성하는 것을 특징으로 하는 녹색 발광 형광체의 제조방법.The method of claim 1, wherein the firing is carried out for 1 to 10 hours at a temperature of 700 to 1,300 ℃ in air and reducing atmosphere.
KR1019980035889A 1998-09-01 1998-09-01 Manufacturing method of green light emitting phosphor KR100280369B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019980035889A KR100280369B1 (en) 1998-09-01 1998-09-01 Manufacturing method of green light emitting phosphor
JP24776999A JP3436712B2 (en) 1998-09-01 1999-09-01 Manufacturing method of green light emitting phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980035889A KR100280369B1 (en) 1998-09-01 1998-09-01 Manufacturing method of green light emitting phosphor

Publications (2)

Publication Number Publication Date
KR20000018337A KR20000018337A (en) 2000-04-06
KR100280369B1 true KR100280369B1 (en) 2001-02-01

Family

ID=19549181

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980035889A KR100280369B1 (en) 1998-09-01 1998-09-01 Manufacturing method of green light emitting phosphor

Country Status (2)

Country Link
JP (1) JP3436712B2 (en)
KR (1) KR100280369B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100365583B1 (en) * 2001-07-18 2002-12-26 이엘코리아 주식회사 Phosphors and method for fabricating the same
KR100449582B1 (en) * 2002-05-15 2004-09-22 한국에너지기술연구원 Phosphors and their preparation method for field emission display

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100358250B1 (en) * 2000-08-02 2002-10-25 한국화학연구원 Combi-chem synthesizing apparatus for searching for and preparing of phosphors
KR20020025281A (en) 2000-09-28 2002-04-04 오길록 A green phosphor for fluorescent display and a preparation method thereof
KR100528909B1 (en) * 2000-10-10 2005-11-16 삼성에스디아이 주식회사 Method for preparing green emitting phosphor
KR20030067162A (en) * 2002-02-07 2003-08-14 대한민국 (한밭대학총장) Manufacturing methods of nano size Gallium Nitride powder, Gallium Nitride - Gallium Oxide compound powder and Electro luminescence Devices
KR100589405B1 (en) * 2003-11-20 2006-06-14 삼성에스디아이 주식회사 A green emitting phosphor for vuvvacuum ultraviolet excited light emitting device, a preparation method thereof and a light emitting device comprising the same
JP6184174B2 (en) 2013-06-03 2017-08-23 第一稀元素化学工業株式会社 Phosphor and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100365583B1 (en) * 2001-07-18 2002-12-26 이엘코리아 주식회사 Phosphors and method for fabricating the same
KR100449582B1 (en) * 2002-05-15 2004-09-22 한국에너지기술연구원 Phosphors and their preparation method for field emission display

Also Published As

Publication number Publication date
JP2000080363A (en) 2000-03-21
JP3436712B2 (en) 2003-08-18
KR20000018337A (en) 2000-04-06

Similar Documents

Publication Publication Date Title
KR100293330B1 (en) A preparing method for green fluorescent body based orthosilicate
JPH07315816A (en) Rare earth element salt particle of phosphoric acid and its production
KR100280369B1 (en) Manufacturing method of green light emitting phosphor
KR20010040381A (en) Method of Preparing High Brightness, Small Particle Red Emitting Phosphor
CN108559500B (en) Solvent heat-assisted method for preparing complex-phase titanate red long-afterglow fluorescent powder
WO1998053025A1 (en) Phosphorescent pigment and process for preparing the same
áM Rodriguez et al. Luminescent characteristics and morphology of Eu 3+: YVO 4 phosphor powders prepared by HCR and flux techniques
WO2000001784A1 (en) Small particle blue emitting lanthanum phosphate based phosphors for display and lamp applications and method of making
KR100351635B1 (en) Process for preparing spherical blue phosphor based on aluminates
KR100376274B1 (en) Process for preparing borate-based phosphors
KR100351636B1 (en) Process for preparing spherical phosphors based on zinc gallate
WO2014006755A1 (en) Silicate phosphor and process for manufacturing same
KR100666209B1 (en) Preparation method of red phosphors based on sulfide
JP5484397B2 (en) Silicate phosphor and method for producing the same
KR100655915B1 (en) Preparation method of alkali earth metal thiogallate phosphors
CN113150782B (en) Preparation method of rare earth ion doped orthorhombic indium acid gadolinium-calcium-titanium ore fluorescent powder
KR100666208B1 (en) Preparation method of red phosphors based on sulfide
JP2012144689A5 (en)
KR100447936B1 (en) Green emitting phosphor by VUV excitiation and its preparation method
JPH09255950A (en) Preparation of light-storing luminescent pigment
KR100424861B1 (en) Preparing process for spherical red phosphor based on borates using hydrolysis
Li et al. Characterization and photoluminescent properties of sol–gel-derived Ca2 (1− x) La7. 6+ x (SiO4) 6O2: Eu0. 4, Lix phosphors
KR100293332B1 (en) A preparing method for blue fluorescent body based YNbO4 used in low voltage
KR100289193B1 (en) Manufacturing method of phosphor
KR100419862B1 (en) The composition of the green phosphor in a GdPO4 system and its preparing method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20061019

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee