JP2000080363A - Preparation of green light-emitting phosphor - Google Patents

Preparation of green light-emitting phosphor

Info

Publication number
JP2000080363A
JP2000080363A JP11247769A JP24776999A JP2000080363A JP 2000080363 A JP2000080363 A JP 2000080363A JP 11247769 A JP11247769 A JP 11247769A JP 24776999 A JP24776999 A JP 24776999A JP 2000080363 A JP2000080363 A JP 2000080363A
Authority
JP
Japan
Prior art keywords
phosphor
zinc
precipitate
gallium
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11247769A
Other languages
Japanese (ja)
Other versions
JP3436712B2 (en
Inventor
Kyun Yun Ha
キュン ユン ハ
Soon Park Do
ソーン パルク ド
Don Park Hee
ドン パルク ヘー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Research Institute of Chemical Technology KRICT
Original Assignee
Korea Research Institute of Chemical Technology KRICT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Research Institute of Chemical Technology KRICT filed Critical Korea Research Institute of Chemical Technology KRICT
Publication of JP2000080363A publication Critical patent/JP2000080363A/en
Application granted granted Critical
Publication of JP3436712B2 publication Critical patent/JP3436712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides
    • C09K11/623Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/57Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing manganese or rhenium
    • C09K11/572Chalcogenides
    • C09K11/574Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process for preparing at a low temperature a green light-emitting phosphor excellent in fluorescent intensity. SOLUTION: In a process for preparing a ZnGa2O4:Mn green light-emitting phosphor, a base is added to a solution containing a gallium component to precipitate a hydroxide, which is converted to a GaO(OH) precipitate by heat treatment of the solution, and the precipitate is subsequently dispersed in an aqueous solution of a zinc compound containing a manganese component, to which is added oxalic acid and a base to give mixed precipitates, which are filtered, dried and burned.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、緑色発光蛍光体の
製造方法に関するもので、より詳細にはガリウム成分を
含む溶液に塩基を加えて熱処理と加水分解をすることに
より得られる沈澱物を、亜鉛及びマンガン成分を含む溶
液に分散させてシュウ酸を加えて亜鉛及びマンガン成分
をシュウ酸塩に沈澱させてから、上記混合沈澱物を乾燥
及び熱処理する湿式沈澱法によりZnGa2O4:Mn緑色発光蛍
光体を製造する方法に関する。上記蛍光体粉末の製造温
度は低く、粒子が柱状形として粉末に凝集性もなく、活
性剤であるマンガンの均一な分布により従来の製造方法
に比べて発光強度が極めて優れており、低電圧用蛍光体
として電子表示管用に適合し、FED(Field Emission Dis
play). VFD(Vacuum Fluorescence Display) 等のような
ディスプレイ産業等に広く用いられるように電子線によ
り励起されて可視領域で発光スペクトルを示す緑色発光
蛍光体の新たな製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a green light-emitting phosphor, and more particularly, to a precipitate obtained by adding a base to a solution containing a gallium component and subjecting the solution to heat treatment and hydrolysis. After dispersing in a solution containing zinc and manganese components and adding oxalic acid to precipitate the zinc and manganese components in oxalate, ZnGa 2 O 4 : Mn green by a wet precipitation method in which the mixed precipitate is dried and heat-treated. The present invention relates to a method for manufacturing a light emitting phosphor. The production temperature of the phosphor powder is low, the particles are columnar, the powder has no cohesiveness, and the uniform distribution of manganese, which is an activator, makes the emission intensity extremely excellent compared to the conventional production method. Suitable for electronic display tubes as a phosphor, FED (Field Emission Discharge)
The present invention relates to a new method for producing a green light-emitting phosphor that is excited by an electron beam and exhibits an emission spectrum in the visible region, as widely used in the display industry such as VFD (Vacuum Fluorescence Display).

【0002】[0002]

【従来の技術】ディスプレイ産業では、種々の光色を具
現するに当って核心材料として用いられている電子表示
管用の蛍光体に関しては、今まで多くの研究が進められ
て来た。その中でもスピネル構造を有するZnGa2O4 を母
体としてマンガンを活性剤とする低電圧で駆動するZnGa
2O4:Mn蛍光体の発光特性に関する研究が行われて来た。
一般に、蛍光体の発光特性は、粒子の大きさと結晶構造
に大きく左右すると知られている。上記発光特性を改善
するために、新たな母体物質の開発や蛍光体の製造方法
が開発されている。従来、ZnGa2O4:Mn蛍光体を製造する
ために原料を混合・熱処理する固相反応法により粉末形
態として蛍光体を製造して来たが、上記工程は最終の焼
成過程に高い温度を適用することにより蛍光体粒子の凝
集を来すので、蛍光体を製造する過程の中に必ず含まれ
る粉砕操作、例えばボールミーリングのような粉砕操作
中に蛍光体の表面に損傷を与え、その表面に不感層の形
成や不純物の混入により発光強度の損失を起す問題が出
て来る。また、固相反応法によるZnGa2O4:Mn蛍光体を製
造する時には、高い焼成温度を適用することにより、高
い蒸気圧によるZnO とGa2O3 の揮発は各種の深刻な問題
を惹起するので、上記成分の揮発を減らすためには、低
い温度でZnGa2O4:Mn蛍光体を製造する方法が必要になっ
ている。従って、従来の固相反応法を代替し得るそれ以
外の製造方法が切実に要求される。一方、高効率の蛍光
体を製造するためには、粒子の大きさ、模様及び母体格
子における活性剤の均一な分布等を調節しなければなら
ない。従って、このような観点から見て均一な粒子と良
好な結晶性を有する蛍光体粉末を製造することができる
新たな製造方法が切実に要求される。
2. Description of the Related Art In the display industry, much research has been conducted on phosphors for electronic display tubes, which are used as a core material in realizing various light colors. Among them, ZnGa having a spinel structure and a low-voltage driven ZnGa with manganese as an activator based on ZnGa 2 O 4
Studies on the emission characteristics of 2 O 4 : Mn phosphor have been conducted.
In general, it is known that the emission characteristics of a phosphor largely depend on the size and crystal structure of particles. In order to improve the emission characteristics, a new base material and a method for manufacturing a phosphor have been developed. Conventionally, ZnGa 2 O 4 : Mn Phosphor has been produced in powder form by a solid-state reaction method in which raw materials are mixed and heat-treated to produce the phosphor.However, the above process requires a high temperature in the final firing process. Since the application causes the phosphor particles to aggregate, the surface of the phosphor is damaged during the crushing operation necessarily included in the process of manufacturing the phosphor, for example, a crushing operation such as ball milling, and the surface of the phosphor is damaged. In addition, there is a problem that the emission intensity is lost due to the formation of a dead layer and the mixing of impurities. In addition, when producing ZnGa 2 O 4 : Mn phosphor by a solid-state reaction method, by applying a high firing temperature, volatilization of ZnO and Ga 2 O 3 by a high vapor pressure causes various serious problems. Therefore, in order to reduce the volatilization of the above components, a method for producing a ZnGa 2 O 4 : Mn phosphor at a low temperature is required. Therefore, other manufacturing methods that can replace the conventional solid phase reaction method are urgently required. On the other hand, in order to produce a phosphor with high efficiency, it is necessary to control the size, pattern and uniform distribution of the activator in the matrix lattice. Therefore, a new manufacturing method capable of manufacturing a phosphor powder having uniform particles and good crystallinity from such a viewpoint is urgently required.

【0003】[0003]

【発明が解決しようとする課題】本発明者らは、ZnGa2O
4:Mn蛍光体の発光特性を改善することに鑑み、湿式沈澱
法によりZnGa2O4:Mn蛍光体を製造すれば低温で蛍光体が
形成されても、却って発光強度が極めて優れた緑色発光
蛍光体が得られることがわかって本発明を完成するに至
った。従って、本発明の目的は、ZnGa2O4:Mn蛍光体を製
造するのに湿式沈澱法により、従来の方法に比べて蛍光
体が低温で形成し、粉末粒子が一定の柱状形として凝集
性もなく、活性剤の均一な分布により蛍光強度の優れた
緑色発光蛍光体を製造する方法を提供することである。
SUMMARY OF THE INVENTION The present inventors have developed ZnGa 2 O
In view of improving the emission characteristics of the 4 : Mn phosphor, if the ZnGa 2 O 4 : Mn phosphor is produced by a wet precipitation method, even if the phosphor is formed at a low temperature, green light emission with extremely excellent emission intensity is obtained. It has been found that a phosphor can be obtained, and the present invention has been completed. Accordingly, an object of the present invention is to provide a ZnGa 2 O 4 : Mn phosphor by a wet precipitation method, in which the phosphor is formed at a lower temperature compared to the conventional method, and the powder particles are coherent as a constant columnar shape. It is another object of the present invention to provide a method for producing a green light-emitting phosphor having excellent fluorescence intensity by a uniform distribution of an activator.

【0004】[0004]

【課題を解決するための手段】本発明は、ZnGa2O4:Mn緑
色発光蛍光体の製造方法において、ガリウム成分を含む
溶液に塩基を加えて水酸化物に沈澱させ、上記溶液を熱
処理してGaO(OH) 沈澱物に転換させた後、上記沈澱物を
マンガン成分を含む亜鉛化合物水溶液に分散してシュウ
酸及び塩基を加えて得られる混合沈澱物を濾過、乾燥及
び焼成する緑色発光蛍光体の製造方法である。
According to the present invention, there is provided a method for producing a ZnGa 2 O 4 : Mn green light-emitting phosphor, wherein a base containing a gallium component is added to precipitate a hydroxide, and the solution is subjected to a heat treatment. After converting to a GaO (OH) precipitate by dispersing the precipitate in an aqueous solution of a zinc compound containing a manganese component and adding oxalic acid and a base, the mixed precipitate obtained is filtered, dried and calcined. It is a method of manufacturing the body.

【0005】本発明をより詳細に説明すれば次の通りで
ある。本発明による緑色発光蛍光体の製造方法は湿式沈
澱法により、ガリウム成分を含む溶液に塩基を加えて水
酸化物に沈澱させ、熱処理して、これを加水分解してGa
O(OH) に転換させた後、濾過して上記沈澱物を亜鉛及び
マンガンの含まれた溶液に分散させ、これにシュウ酸溶
液を加えて塩基でpHを調節して亜鉛とマンガンをシュウ
酸塩として沈澱させ、濾過及び乾燥した後、空気及び還
元雰囲気で熱処理することによりZnGa2O4:Mn蛍光体を製
造する方法である。本発明によって製造されたZnGa2O4:
Mn蛍光体は、700℃の低温から単一相として形成さ
れ、粉末粒子が凝集もない均一な柱状形をし、電子線に
より励起されて可視領域で極めて優れた緑色発光強度を
示す。
[0005] The present invention will be described in more detail as follows. According to the method for producing a green light-emitting phosphor according to the present invention, a base is added to a solution containing a gallium component to precipitate a hydroxide by a wet precipitation method, the mixture is heat-treated, and this is hydrolyzed to obtain a Ga.
After converting to O (OH), the precipitate was filtered and dispersed in a solution containing zinc and manganese.An oxalic acid solution was added thereto, and the pH was adjusted with a base to remove zinc and manganese from oxalic acid. This is a method for producing a ZnGa 2 O 4 : Mn phosphor by precipitating as a salt, filtering and drying, and then heat-treating in air and a reducing atmosphere. ZnGa 2 O 4 produced according to the present invention:
The Mn phosphor is formed as a single phase at a low temperature of 700 ° C., has a uniform columnar shape with no agglomeration of powder particles, and exhibits an extremely excellent green emission intensity in the visible region when excited by an electron beam.

【0006】本発明の蛍光体は、ガリウム化合物、亜鉛
化合物及びマンガン化合物を原料として上記方法により
製造することができる。本発明による製造方法では、先
ずガリウム成分を含む溶液に塩基を加えて水酸化物に沈
澱させる。上記ガリウム成分を含む溶液を製造するため
のガリウム化合物としては、硝酸ガリウム、硫酸ガリウ
ム或いは塩化ガリウムの水溶液と金属ガリウムを硝酸や
塩酸に溶かしたものから選ばれた1種以上が挙げられ
る。上記ガリウム成分を含む溶液から、ZnGa2O4:Mnの組
成による混合比率としてガリウム成分は0.01〜5Mの
濃度を有することが望ましい。万一、ガリウム成分の濃
度が0.01M未満であれば用いる水とエネルギの量が過
多になって非経済的であり、5Mを超過すると生成され
る沈澱液の攪拌及び濾過が難しくなる工程上の問題があ
る。
[0006] The phosphor of the present invention can be produced by the above method using a gallium compound, a zinc compound and a manganese compound as raw materials. In the production method according to the present invention, a base is first added to a solution containing a gallium component to precipitate the hydroxide. Examples of the gallium compound for producing the solution containing the gallium component include at least one selected from an aqueous solution of gallium nitrate, gallium sulfate or gallium chloride and a solution of gallium metal dissolved in nitric acid or hydrochloric acid. From a solution containing the gallium component, ZnGa 2 O 4: Gallium components as the mixing ratio by the composition of Mn, it is desirable to have a concentration of 0.01~5M. If the concentration of the gallium component is less than 0.01M, the amount of water and energy to be used becomes excessive, which is uneconomical. If the concentration exceeds 5M, stirring and filtration of the formed precipitate becomes difficult. There is a problem.

【0007】この時、ガリウム成分を完全に沈澱させる
ためには、溶液のpHを5以上に調節する必要があるが、
特に6〜9の範囲に調節するのが望ましい。ガリウム成
分を沈澱させるために添加される塩基としては、アンモ
ニア水、水酸化ナトリウム及び有機アミン類等が挙げら
れるが、ガリウム成分が沈澱させられるどんな塩基でも
良い。沈澱された水酸化ガリウムは溶液状態で攪拌しな
がら、80〜110℃の条件下で0.5〜4時間にわたっ
て加熱と加水分解を行ってから、濾過してGaO(OH) 沈澱
物が得られる。上記GaO(OH) 沈澱物を上記マンガン成分
を含む亜鉛化合物水溶液に分散する。
At this time, it is necessary to adjust the pH of the solution to 5 or more in order to completely precipitate the gallium component.
In particular, it is desirable to adjust the range to 6 to 9. Bases added to precipitate the gallium component include aqueous ammonia, sodium hydroxide, organic amines, and the like, but any base from which the gallium component is precipitated can be used. The precipitated gallium hydroxide is heated and hydrolyzed at 80 to 110 ° C. for 0.5 to 4 hours while stirring in a solution state, and then filtered to obtain a GaO (OH) precipitate. . The GaO (OH) precipitate is dispersed in the aqueous zinc compound solution containing the manganese component.

【0008】上記過程から用いられるマンガン成分を含
む亜鉛化合物水溶液は、亜鉛化合物溶液とマンガン化合
物溶液の混合されたものである。上記亜鉛化合物として
は、酢酸亜鉛、塩化亜鉛、硝酸亜鉛或いは硫酸亜鉛の水
溶液或いは金属亜鉛や酸化亜鉛を硝酸、塩酸、硫酸に溶
かしたものから選ばれた1種以上が用いられる。また、
上記マンガン化合物としては、水溶性の酢酸マンガン、
塩化マンガン、硝酸マンガン及び硫酸マンガンの中から
選ばれた1種以上が用いられる。この時、組成によるマ
ンガン成分を含む亜鉛化合物水溶液の亜鉛成分は0.01
〜5Mの濃度を有するものが良いし、望ましくは0.1〜
3Mの濃度を維持させる。また、母体に対する活性剤と
して用いられるマンガンの濃度は0.01〜3mol%の範囲
が望ましい。万一、マンガンの濃度が0.01mol%未満も
しくは3mol%を超過すればその発光強度は微弱になる問
題がある。
The aqueous solution of a zinc compound containing a manganese component used in the above process is a mixture of a zinc compound solution and a manganese compound solution. As the zinc compound, one or more selected from an aqueous solution of zinc acetate, zinc chloride, zinc nitrate or zinc sulfate or a solution of zinc metal or zinc oxide dissolved in nitric acid, hydrochloric acid or sulfuric acid is used. Also,
As the manganese compound, water-soluble manganese acetate,
One or more selected from manganese chloride, manganese nitrate and manganese sulfate are used. At this time, the zinc component of the aqueous zinc compound solution containing a manganese component according to the composition was 0.01.
It is preferable to have a concentration of 5 to 5M, and preferably 0.1 to 5M.
Maintain a concentration of 3M. Further, the concentration of manganese used as an activator for the base is preferably in the range of 0.01 to 3 mol%. If the concentration of manganese is less than 0.01 mol% or more than 3 mol%, there is a problem that the emission intensity becomes weak.

【0009】上記GaO(OH) 沈澱物の分散されたマンガン
成分を含む亜鉛化合物水溶液から、亜鉛及びマンガン成
分を沈澱させるために、シュウ酸溶液と塩基を加えてpH
を6〜10、望ましくは7〜9の範囲に調節して亜鉛と
マンガン成分の損失なく沈澱させる。この時、用いられ
るシュウ酸は、溶液に含まれた亜鉛成分に対して当量比
として100〜110%が適当である。また、シュウ酸
溶液は、シュウ酸を水やアルコールに溶かして約1Mの
濃度とし、塩基は亜鉛成分の損失を防止するために、ジ
エチルアミン、ジエタノールアミン、トリエチルアミン
等の有機アミン類から選ばれた1種以上が用いられる。
To precipitate the zinc and manganese components from the aqueous solution of the zinc compound containing the manganese component in which the GaO (OH) precipitate is dispersed, an oxalic acid solution and a base are added to precipitate the zinc and manganese components.
Is adjusted in the range of 6 to 10, preferably 7 to 9 to precipitate without loss of zinc and manganese components. At this time, the oxalic acid used is suitably in an equivalent ratio of 100 to 110% with respect to the zinc component contained in the solution. The oxalic acid solution is prepared by dissolving oxalic acid in water or alcohol to a concentration of about 1 M, and the base is one of organic amines selected from organic amines such as diethylamine, diethanolamine and triethylamine in order to prevent loss of the zinc component. The above is used.

【0010】続いて、上記から製造したガリウム、亜鉛
及びマンガンの混合沈澱物を濾過及び乾燥し、その乾燥
物をるつぼの耐熱容器に充填し、空気中で700〜1,3
00℃の条件下で1〜10時間にわたって焼成する。活
性剤であるマンガン成分を還元させるために、再び水素
/窒素或いは一酸化炭素/二酸化炭素の混合気体を用い
て弱い還元雰囲気と700〜1,200℃の条件下で1時
間にわたって再焼成することにより、ZnGa2O4:Mn蛍光体
粉末が得られる。上記に述べたように、本発明によるZn
Ga2O4:Mn蛍光体を製造する方法は、従来の方法とは異な
って700℃の低温から蛍光体が単一相に製造され、凝
集もない柱状形の粉末粒子を形成する。この粒子は、活
性剤の均一な分布による優れた緑色発光強度を示し、低
電圧用の蛍光体として、電子表示管用に適合し、FED 、
VFD 等のようなディスプレイ産業等に広く用いられるよ
うに電子線により励起されて可視領域で発光スペクトル
を示す特徴がある。
Subsequently, the mixed precipitate of gallium, zinc and manganese produced above is filtered and dried, and the dried product is filled in a heat-resistant container of a crucible, and 700 to 1,3 in air.
It calcinates for 1 to 10 hours under the condition of 00 ° C. In order to reduce the manganese component as an activator, re-burning is performed again for one hour under the condition of 700 to 1200 ° C. and a weak reducing atmosphere using a mixed gas of hydrogen / nitrogen or carbon monoxide / carbon dioxide. As a result, a ZnGa 2 O 4 : Mn phosphor powder is obtained. As mentioned above, the Zn according to the present invention
The method of producing the Ga 2 O 4 : Mn phosphor differs from the conventional method in that the phosphor is produced in a single phase at a low temperature of 700 ° C. and forms columnar powder particles without aggregation. These particles show excellent green emission intensity due to the uniform distribution of activator, and are suitable for electronic display tubes as a phosphor for low voltage, FED,
As widely used in the display industry and the like, such as VFD, it has the feature of exhibiting an emission spectrum in the visible region when excited by an electron beam.

【0011】最終の焼成段階から空気及び還元雰囲気
と、それぞれ800℃の条件下で熱処理したZnGa2O4:Mn
蛍光体粉末をX−線により回折した分析結果によると、
図1に示したように、単一相に得られて固相反応法[J.
Electrochem. Soc. 141. 1950(1994)] の1,100℃よ
り低い温度で蛍光体が形成されることを確認した。ま
た、本発明により製造されたZnGa2O4:Mn蛍光体粉末に対
して走査電子顕微鏡(SEM) により観察した結果から見れ
ば、図2に示したように、蛍光体粒子は凝集もなく、一
定の柱状形をしていることが確認された。
From the final baking stage, ZnGa 2 O 4 : Mn heat-treated under the conditions of air and a reducing atmosphere at 800 ° C.
According to the analysis result of X-ray diffraction of the phosphor powder,
As shown in FIG. 1, solid phase reaction method [J.
Electrochem. Soc. 141. 1950 (1994)], it was confirmed that a phosphor was formed at a temperature lower than 1,100 ° C. Further, from the result of observing the ZnGa 2 O 4 : Mn phosphor powder manufactured according to the present invention with a scanning electron microscope (SEM), as shown in FIG. 2, the phosphor particles did not agglomerate, It was confirmed that it had a certain columnar shape.

【0012】一方、本発明によるZnGa2O4:Mn蛍光体に対
して254nmの電子線により励起させ、従来の固相反応
法により製造された蛍光体からマンガンの濃度と蛍光体
の発光強度を比較した結果、図3に示したように、両者
共にマンガンの濃度が0.5mol% である時に最大の発光強
度を示した。それに対し、本発明による蛍光体がマンガ
ンの全濃度に掛けて極めて優れた緑色発光強度を示した
ことは、何よりも活性剤であるマンガンが母体に均一に
分布したと判断される。また、本発明の製造方法による
ZnGa2O4:Mn蛍光体の緑色発光を確認した結果、図4に示
したように、505nmの波長に発光中心を有するマンガ
ンイオン特有の緑色発光スペクトルを示すことが確認さ
れた。以下、本発明を実施例にもとづいて詳細に説明す
るが、本発明は実施例に限定されていない。
On the other hand, the ZnGa 2 O 4 : Mn phosphor according to the present invention is excited by an electron beam of 254 nm, and the concentration of manganese and the emission intensity of the phosphor are determined from the phosphor produced by the conventional solid-phase reaction method. As a result of the comparison, as shown in FIG. 3, both of them exhibited the maximum emission intensity when the concentration of manganese was 0.5 mol%. In contrast, the fact that the phosphor according to the present invention exhibited extremely excellent green light emission intensity over the entire manganese concentration indicates that manganese, which is the activator, was evenly distributed in the matrix. Further, according to the production method of the present invention
As a result of confirming the green emission of the ZnGa 2 O 4 : Mn phosphor, as shown in FIG. 4, it was confirmed that the phosphor exhibited a green emission spectrum peculiar to manganese ion having an emission center at a wavelength of 505 nm. Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the examples.

【0013】[0013]

【実施例1】1Mの濃度を有する200mlの硝酸ガリウ
ム溶液にアンモニア水を加え、上記溶液のpHを8に調節
して水酸化ガリウムに沈澱させた。上記沈澱物を溶液状
態として攪拌しながら、90℃の条件下で2時間にわた
って加水分解してGaO(OH) 沈澱に転換させた。上記沈澱
物を濾過して0.0005mol の硝酸マンガンを含む0.9
95Mの濃度と100mlのシュウ酸水溶液を加えて攪拌
しながら、徐々にジエチルアミンを加えて溶液のpHを8.
8に調節し、1時間にわたって攪拌し、濾過してガリウ
ム、亜鉛及びマンガンの混合沈澱物を得た。上記混合沈
澱物を80℃の条件下で4時間にわたって乾燥させた
後、アルミナるつぼに入れて空気と800℃の条件下で
4時間にわたって焼成させた。上記焼成物を5%水素/
窒素の混合気体の還元雰囲気と800℃の条件下で1時
間にわたって再び焼成させて目的とする蛍光体粉末を得
た。上記蛍光体の組成はZnGa2O4:0.005Mn であり、加速
電圧800Vの陰極線による励起下で、図4に示したよ
うな505nm に発光中心を有する緑色発光スペクトルを示
した。
EXAMPLE 1 Aqueous ammonia was added to 200 ml of gallium nitrate solution having a concentration of 1 M, and the pH of the solution was adjusted to 8 to precipitate gallium hydroxide. The precipitate was converted into a GaO (OH) precipitate by hydrolysis under a condition of 90 ° C. for 2 hours while stirring the precipitate in a solution state. The precipitate is filtered and contains 0.905 mol of manganese nitrate, 0.9.
A solution of oxalic acid at a concentration of 95M and 100 ml of oxalic acid aqueous solution was added, and while stirring, diethylamine was gradually added to adjust the pH of the solution to 8.
8, stirred for 1 hour and filtered to obtain a mixed precipitate of gallium, zinc and manganese. The mixed precipitate was dried at 80 ° C. for 4 hours and then placed in an alumina crucible and calcined with air at 800 ° C. for 4 hours. 5% hydrogen /
The mixture was fired again for 1 hour under a reducing atmosphere of a mixed gas of nitrogen and 800 ° C. to obtain a target phosphor powder. The phosphor had a composition of ZnGa 2 O 4 : 0.005Mn, and showed a green emission spectrum having an emission center at 505 nm as shown in FIG. 4 under excitation by a cathode ray at an acceleration voltage of 800 V.

【0014】[0014]

【実施例2〜5】上記実施例1と同様な方法により実施
したが、蛍光体の組成は表1のように実施して蛍光体粉
末を製造した。上記蛍光体の組成による発光強度をも表
1に示した。
Examples 2 to 5 The same procedure as in Example 1 was carried out except that the composition of the phosphor was as shown in Table 1 to produce a phosphor powder. Table 1 also shows the emission intensity according to the composition of the phosphor.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【比較例1】 ZnO 4.980 g Ga2O3 11.529 g MnCO3 0.035 g 上記高純度の原料を20mlのエタノールに湿式混合して
蒸発・乾燥した後、アルミナるつぼに入れて空気雰囲気
で1,100℃の条件下で4時間にわたって焼成し、再び
5%水素/窒素の混合気体の還元雰囲気と900℃の条
件下で1時間にわたって再焼成させた。得られた最終の
焼成物を粉砕して蛍光体粉末を製造した。得られた蛍光
体の組成はZnGa2O4:0.005Mn であり、加速電圧800V
の陰極線による励起下で、505nmに発光中心を有する
緑色発光スペクトルを示した。蛍光体の組成による発光
強度は表2に示した。
[Comparative Example 1] ZnO 4.980 g Ga 2 O 3 11.529 g MnCO 3 0.035 g The above-mentioned high-purity raw material was wet-mixed with 20 ml of ethanol, evaporated and dried, and then placed in an alumina crucible at 1,100 ° C in an air atmosphere. For 4 hours, and again for 1 hour under a reducing atmosphere of a 5% hydrogen / nitrogen mixed gas and 900 ° C. The final fired product was pulverized to produce a phosphor powder. The composition of the obtained phosphor was ZnGa 2 O 4 : 0.005Mn, and the accelerating voltage was 800V.
A green emission spectrum having an emission center at 505 nm was shown under the excitation with a cathode ray. The emission intensity according to the composition of the phosphor is shown in Table 2.

【0017】[0017]

【比較例2−5】上記比較例1と同様な方法により実施
したが、蛍光体の組成は表2のように実施して蛍光体粉
末を製造した。また、上記蛍光体の組成による発光強度
をも表2に示した。
Comparative Example 2-5 A phosphor powder was manufactured in the same manner as in Comparative Example 1 except that the composition of the phosphor was as shown in Table 2. Table 2 also shows the emission intensity depending on the composition of the phosphor.

【0018】[0018]

【表2】 上記実施例1〜5及び比較例1〜5を比較した結果によ
ると、本発明の製造方法による蛍光体は、従来の方法に
より製造された蛍光体に比べて発光強度が非常に優れて
おり、特に最大の発光強度を示すZnGa2O4:0.005Mn の組
成では、約2倍の緑色発光強度を示すことが確認され
た。
[Table 2] According to the results of comparing the above Examples 1 to 5 and Comparative Examples 1 to 5, the phosphor according to the production method of the present invention has a much higher emission intensity than the phosphor produced by the conventional method, In particular, it was confirmed that the composition of ZnGa 2 O 4 : 0.005Mn showing the maximum light emission intensity showed about twice the green light emission intensity.

【0019】[0019]

【発明の効果】上述したように、本発明によるZnGa2O4:
Mn蛍光体の新たな製造方法は、従来の製造方法とは異な
って、低い温度で蛍光体を製造することにより、亜鉛と
ガリウム成分の揮発を抑制して蛍光体の再現性のある物
性を期待することができるし、環境汚染を防止する面で
も優れた効果を発揮している。特に、凝集もない均一な
柱状の粒子形状を持ちながら、従来の方法に比べて輝度
が極めて優れて低電圧駆動用蛍光体として電子表示管用
に適合し、ディスプレイ産業等に広く用いられる有用な
効果がある。
As described above, the ZnGa 2 O 4 according to the present invention:
The new manufacturing method of Mn phosphor is different from the conventional manufacturing method.By manufacturing the phosphor at low temperature, the volatilization of zinc and gallium components is suppressed, and the reproducible physical properties of the phosphor are expected. It is also effective in preventing environmental pollution. In particular, while having a uniform columnar particle shape without agglomeration, it has extremely excellent brightness compared to the conventional method, is suitable for electronic display tubes as a low voltage driving phosphor, and is a useful effect widely used in the display industry and the like. There is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1により製造されたZnGa2O4:0.005Mn 蛍
光体のX−線回折図である。
FIG. 1 is an X-ray diffraction diagram of a ZnGa 2 O 4 : 0.005Mn phosphor manufactured according to Example 1.

【図2】実施例1により製造されたZnGa2O4:0.005Mn 蛍
光体の粉末粒子の走査電子顕微鏡写真である。
FIG. 2 is a scanning electron micrograph of ZnGa 2 O 4 : 0.005Mn phosphor powder particles manufactured according to Example 1.

【図3】本発明によるZnGa2O4:Mn蛍光体と従来の固相反
応法により製造された蛍光体から、活性剤であるマンガ
ンの濃度による発光強度を示したグラフである。
FIG. 3 is a graph showing the emission intensity of the ZnGa 2 O 4 : Mn phosphor according to the present invention and the phosphor prepared by a conventional solid-state reaction method depending on the concentration of manganese as an activator.

【図4】実施例1により製造されたZnGa2O4:0.005Mn 蛍
光体の発光スペクトルである。
FIG. 4 is an emission spectrum of a ZnGa 2 O 4 : 0.005Mn phosphor produced according to Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ヘー ドン パルク 大韓民国 305−333 デジョン ユースン −ク ウエウン−ドン (番地なし) ハ ンビト アパートメント 111−501 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor He Dong Parc Korea 305-333 Daejeon Yusun-Ku-Waughn-Dong (No address) Hanbit Apartment 111-501

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ZnGa2O4:Mn緑色発光蛍光体の製造方法に
おいて、ガリウム成分を含む溶液に塩基を加えて水酸化
物に沈澱させ、上記溶液を熱処理することによりGaO(O
H) 沈澱物に転換した後、上記沈澱物を、マンガン成分
を含む亜鉛化合物水溶液に分散させてシュウ酸及び塩基
を加えて得られる混合沈澱物を濾過、乾燥及び焼成する
ことを特徴とする緑色発光蛍光体の製造方法。
In a method for producing a ZnGa 2 O 4 : Mn green light-emitting phosphor, a base is added to a solution containing a gallium component to precipitate a hydroxide, and the solution is subjected to a heat treatment to obtain a GaO (O 2
H) After converting into a precipitate, the precipitate is dispersed in an aqueous solution of a zinc compound containing a manganese component, and oxalic acid and a base are added. The mixed precipitate obtained is filtered, dried and calcined, and is characterized by a green color. A method for producing a light emitting phosphor.
【請求項2】 上記ガリウム成分を含む溶液が、硝酸ガ
リウム、硫酸ガリウム或いは塩化ガリウム水溶液及び金
属ガリウムを硝酸や塩酸に溶かしたものから選ばれた1
種以上であることを特徴とする請求項1記載の緑色発光
蛍光体の製造方法。
2. The solution containing a gallium component is selected from a solution of gallium nitrate, gallium sulfate or gallium chloride aqueous solution and metal gallium dissolved in nitric acid or hydrochloric acid.
2. The method for producing a green light-emitting phosphor according to claim 1, wherein the number is at least one kind.
【請求項3】 上記熱処理が、80〜110℃の条件下
で0.5〜4時間にわたって行われることを特徴とする請
求項1記載の緑色発光蛍光体の製造方法。
3. The method according to claim 1, wherein the heat treatment is performed at 80 to 110 ° C. for 0.5 to 4 hours.
【請求項4】 上記マンガン成分を含む亜鉛化合物水溶
液が、酢酸亜鉛、塩化亜鉛、硝酸亜鉛或いは硫酸亜鉛の
水溶液及び金属亜鉛や酸化亜鉛を硝酸、塩酸或いは硫酸
に溶したものから選ばれた1種以上に0.01〜3mol%の
マンガン成分が含まれたものであることを特徴とする請
求項1記載の緑色発光蛍光体の製造方法。
4. The zinc compound aqueous solution containing a manganese component is one selected from an aqueous solution of zinc acetate, zinc chloride, zinc nitrate or zinc sulfate, and a solution of zinc metal or zinc oxide dissolved in nitric acid, hydrochloric acid or sulfuric acid. The method for producing a green light-emitting phosphor according to claim 1, wherein the manganese component is contained in an amount of 0.01 to 3 mol%.
【請求項5】 上記焼成が、空気及び還元雰囲気と70
0〜1,300℃の条件下で1〜10時間にわたって行わ
れることを特徴とする請求項1記載の緑色発光蛍光体の
製造方法。
5. The method according to claim 1, wherein the sintering is performed in an air and reducing atmosphere.
The method for producing a green light-emitting phosphor according to claim 1, wherein the method is performed at a temperature of 0 to 1,300 ° C. for 1 to 10 hours.
JP24776999A 1998-09-01 1999-09-01 Manufacturing method of green light emitting phosphor Expired - Fee Related JP3436712B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR35889 1998-09-01
KR1019980035889A KR100280369B1 (en) 1998-09-01 1998-09-01 Manufacturing method of green light emitting phosphor

Publications (2)

Publication Number Publication Date
JP2000080363A true JP2000080363A (en) 2000-03-21
JP3436712B2 JP3436712B2 (en) 2003-08-18

Family

ID=19549181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24776999A Expired - Fee Related JP3436712B2 (en) 1998-09-01 1999-09-01 Manufacturing method of green light emitting phosphor

Country Status (2)

Country Link
JP (1) JP3436712B2 (en)
KR (1) KR100280369B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7361289B2 (en) * 2003-11-20 2008-04-22 Samsung Sdi Co., Ltd. Green light-emitting phosphor for vacuum ultraviolet-excited light-emitting device, light-emitting device including the same, and method of preparing the same
WO2014196305A1 (en) 2013-06-03 2014-12-11 第一稀元素化学工業株式会社 Phosphor and method for producing same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100358250B1 (en) * 2000-08-02 2002-10-25 한국화학연구원 Combi-chem synthesizing apparatus for searching for and preparing of phosphors
KR20020025281A (en) 2000-09-28 2002-04-04 오길록 A green phosphor for fluorescent display and a preparation method thereof
KR100528909B1 (en) * 2000-10-10 2005-11-16 삼성에스디아이 주식회사 Method for preparing green emitting phosphor
KR100365583B1 (en) * 2001-07-18 2002-12-26 이엘코리아 주식회사 Phosphors and method for fabricating the same
KR20030067162A (en) * 2002-02-07 2003-08-14 대한민국 (한밭대학총장) Manufacturing methods of nano size Gallium Nitride powder, Gallium Nitride - Gallium Oxide compound powder and Electro luminescence Devices
KR100449582B1 (en) * 2002-05-15 2004-09-22 한국에너지기술연구원 Phosphors and their preparation method for field emission display

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7361289B2 (en) * 2003-11-20 2008-04-22 Samsung Sdi Co., Ltd. Green light-emitting phosphor for vacuum ultraviolet-excited light-emitting device, light-emitting device including the same, and method of preparing the same
WO2014196305A1 (en) 2013-06-03 2014-12-11 第一稀元素化学工業株式会社 Phosphor and method for producing same
JP2014234455A (en) * 2013-06-03 2014-12-15 第一稀元素化学工業株式会社 Fluorescent body and method of producing the same
US9809745B2 (en) 2013-06-03 2017-11-07 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Phosphor and method for producing same

Also Published As

Publication number Publication date
KR20000018337A (en) 2000-04-06
JP3436712B2 (en) 2003-08-18
KR100280369B1 (en) 2001-02-01

Similar Documents

Publication Publication Date Title
KR101761421B1 (en) Phosphor particles, light-emitting diode, and illuminating device and liquid crystal panel backlight device using them
JP3875027B2 (en) Method for producing spherical zinc orthosilicate-based green light-emitting phosphor
JP4206100B2 (en) Yttrium-based phosphor, method for producing the same, and display element using the same
JPH07315816A (en) Rare earth element salt particle of phosphoric acid and its production
JP3436712B2 (en) Manufacturing method of green light emitting phosphor
CN108559500B (en) Solvent heat-assisted method for preparing complex-phase titanate red long-afterglow fluorescent powder
JP2003524676A (en) Rare earth activated phosphor
áM Rodriguez et al. Luminescent characteristics and morphology of Eu 3+: YVO 4 phosphor powders prepared by HCR and flux techniques
JP2001288465A (en) Production method for green-luminescent alkaline earth aluminate phosphor for vuv excitation light emission apparatus
KR100351635B1 (en) Process for preparing spherical blue phosphor based on aluminates
KR101414948B1 (en) PROCESS FOR PRODUCTION OF Eu-ACTIVATED ALKALINE EARTH METAL SILICATE PHOSPHOR
KR100351636B1 (en) Process for preparing spherical phosphors based on zinc gallate
JPH09291279A (en) Powdery fluorescent substance and its production
WO2014006755A1 (en) Silicate phosphor and process for manufacturing same
JP2001172620A (en) Method for producing red light emitting fluorescent microparticle
KR20020022457A (en) Process for preparing borate-based phosphors
JP5484397B2 (en) Silicate phosphor and method for producing the same
US8119029B2 (en) Phosphate nano phosphor and method of preparing the same
KR100666209B1 (en) Preparation method of red phosphors based on sulfide
KR100447936B1 (en) Green emitting phosphor by VUV excitiation and its preparation method
CN113150782B (en) Preparation method of rare earth ion doped orthorhombic indium acid gadolinium-calcium-titanium ore fluorescent powder
JP2012144689A5 (en)
JP2003027058A (en) Manufacturing method for ultrafine particle of rare earth oxysulfide
JPH09255950A (en) Preparation of light-storing luminescent pigment
JP2719209B2 (en) Phosphor manufacturing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees