KR100376274B1 - Process for preparing borate-based phosphors - Google Patents

Process for preparing borate-based phosphors Download PDF

Info

Publication number
KR100376274B1
KR100376274B1 KR10-2000-0055240A KR20000055240A KR100376274B1 KR 100376274 B1 KR100376274 B1 KR 100376274B1 KR 20000055240 A KR20000055240 A KR 20000055240A KR 100376274 B1 KR100376274 B1 KR 100376274B1
Authority
KR
South Korea
Prior art keywords
phosphor
solution
europium
gadolinium
yttrium
Prior art date
Application number
KR10-2000-0055240A
Other languages
Korean (ko)
Other versions
KR20020022457A (en
Inventor
정하균
김경남
박희동
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR10-2000-0055240A priority Critical patent/KR100376274B1/en
Publication of KR20020022457A publication Critical patent/KR20020022457A/en
Application granted granted Critical
Publication of KR100376274B1 publication Critical patent/KR100376274B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/774Borates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Abstract

본 발명은 붕소산화물계 형광체의 제조방법에 관한 것으로서, 더욱 상세하게는 진공자외선에 의하여 여기되어 가시영역에서 발광 스펙트럼을 나타내는 (Y,Gd)BO3:Eu 적색 발광 형광체를 제조하는 방법에 있어서, 수소이온농도를 일정하게 유지시키면서 바탕용액에 이트륨, 가돌리늄, 유로피움 성분 및 붕산의 혼합 수용액과 염기 용액을 함께 첨가하여 상기 모든 금속 성분을 공침시키고 이를 여과 후에, 건조하여 공기 분위기 중에서 열처리하여 형광체 분말을 제조하는 합성방법을 채용함으로써, 특히 형광체의 제조온도가 낮으며 형광체의 휘도가 개선되는 유용한 효과가 있어 플라즈마 디스플레이 패널(이하, PDP)에 적용할 수 있는 (Y,Gd)BO3:Eu 적색 발광 형광체의 새로운 제조방법에 관한 것이다.The present invention relates to a method for producing a boron oxide-based phosphor, and more particularly, in a method of manufacturing a (Y, Gd) BO 3 : Eu red light-emitting phosphor which is excited by vacuum ultraviolet rays and exhibits an emission spectrum in the visible region. While maintaining a constant hydrogen ion concentration, a mixed solution of yttrium, gadolinium, europium, and boric acid and a base solution are added to the base solution to coprecipitate all the above metal components, and after filtration, dry and heat-treat in an air atmosphere to form a phosphor powder. By employing a synthetic method to prepare a (Y, Gd) BO 3 : Eu red, which can be applied to a plasma display panel (hereinafter, PDP), in particular, the manufacturing temperature of the phosphor is low and the luminance of the phosphor is improved. The present invention relates to a new method for producing a luminescent phosphor.

Description

붕소산화물계 형광체의 제조방법{Process for preparing borate-based phosphors}Process for preparing borate-based phosphors

본 발명은 붕소산화물계 형광체의 제조방법에 관한 것으로서, 더욱 상세하게는 진공자외선에 의하여 여기되어 가시영역에서 발광 스펙트럼을 나타내는 (Y,Gd)BO3:Eu 적색 발광 형광체를 제조하는 방법에 있어서, 수소이온농도를 일정하게 유지시키면서 바탕용액에 이트륨과 가돌리늄, 유로피움 성분 및 붕산의 혼합 수용액과 염기 용액을 함께 첨가하여 상기 모든 금속 성분을 공침시키고 이를 여과 후에, 건조하여 공기 분위기 중에서 열처리하여 형광체 분말을 제조하는 합성방법을 채용함으로써, 특히 형광체의 제조온도가 낮으며 형광체의 휘도가 개선되는 유용한 효과가 있어 플라즈마 디스플레이 패널(이하, PDP)에 적용할 수 있는 (Y,Gd)BO3:Eu 적색 발광 형광체의 새로운 제조방법에 관한 것이다.The present invention relates to a method for producing a boron oxide-based phosphor, and more particularly, in a method of manufacturing a (Y, Gd) BO 3 : Eu red light-emitting phosphor which is excited by vacuum ultraviolet rays and exhibits an emission spectrum in the visible region. While maintaining a constant hydrogen ion concentration, a mixed solution of yttrium, gadolinium, europium, and boric acid and a base solution were added to the base solution to coprecipitate all the metal components, and after filtration, dried and heat-treated in an air atmosphere to form a phosphor powder. By employing a synthetic method to prepare a (Y, Gd) BO 3 : Eu red, which can be applied to a plasma display panel (hereinafter, PDP), in particular, the manufacturing temperature of the phosphor is low and the luminance of the phosphor is improved. The present invention relates to a new method for producing a luminescent phosphor.

디스플레이 산업에서 색깔을 구현하는데 사용되는 핵심재료로 디스플레이용 형광체에 관하여 그간 많은 연구들이 진행되어 왔다. 이러한 형광체는 입사되는 광원의 파장대에서 여기하는 특성을 나타내는 것으로 선정되어야 하며, 각종 디스플레이 방식에 맞는 휘도, 색순도, 잔광특성, 전류포화특성, 열화특성 및 기타 물성이 갖추어져야 한다. 이러한 조건을 고려할 때, PDP에 주로 사용되는 적색 발광 형광체로는 147nm 또는 172nm인 진공자외선에 의해 여기되어 가시영역에서 발광하는 붕소산화물계의 적색 발광 형광체가 이용되며, 특히 (Y,Gd)BO3를 모체로 하고 Eu3+이온을 활성제로 하는 적색 발광 형광체가 바람직한 것으로 알려져 있다.Many researches have been conducted on the phosphor for a display as a core material used to realize color in the display industry. Such phosphors should be selected to exhibit excitation characteristics in the wavelength range of the incident light source, and should be equipped with luminance, color purity, afterglow characteristics, current saturation characteristics, deterioration characteristics, and other physical properties suitable for various display methods. Considering these conditions, a boron oxide-based red light-emitting phosphor which is excited by vacuum ultraviolet rays of 147 nm or 172 nm and emits light in the visible region is used as a red light-emitting phosphor mainly used for PDP. In particular, (Y, Gd) BO 3 It is known that a red light-emitting phosphor having a parent and Eu 3+ ion as an activator is preferable.

형광체의 발광특성은 입자크기와 결정구조에 크게 의존하는 것으로 알려져 있으므로, 형광체의 발광특성을 개선시키기 위하여 새로운 모체물질을 개발하거나 형광체의 새로운 제조방법들이 개발되고 있다.Since the luminescence properties of phosphors are known to be highly dependent on the particle size and crystal structure, new matrix materials or new methods of manufacturing phosphors have been developed to improve the luminescence properties of phosphors.

상기 (Y,Gd)BO3:Eu 적색 형광체를 제조하는 종래의 방법으로서, 고상의 원료들을 혼합하여 열처리하는 고상반응법에 의해 분말 형태로 제조하는 방법이 사용되어져 왔다. 그러나, 상기 공정은 최종 소성 과정에 1,100℃ 이상의 온도가 적용되기 때문에 형광체 입자들의 응집을 초래하므로, 반드시 포함되는 분쇄과정 중에 형광체의 표면에 손상을 입히게 되어 표면에 불감층이 형성되거나 불순물이 혼입되어 결과적으로 발광강도의 손실을 가져오게 된다.As a conventional method of preparing the (Y, Gd) BO 3 : Eu red phosphor, a method of preparing in powder form by a solid phase reaction method of mixing and heat treating solid raw materials has been used. However, since the process causes agglomeration of phosphor particles because a temperature of 1,100 ° C. or higher is applied to the final firing process, the surface of the phosphor is damaged during the included grinding process, thereby forming a dead layer or mixing impurities. As a result, the luminous intensity is lost.

또한, 고효율의 형광체가 되기 위해서는 입자크기, 입자모양 및 모체격자에서의 활성제의 균일한 분포 등이 조절되어야 한다.In addition, in order to be a highly efficient phosphor, the particle size, particle shape, and even distribution of the active agent in the matrix should be controlled.

따라서, 이러한 관점에서 균일한 입자와 좋은 결정성을 가진 적색 형광체 분말을 제조할 수 있는 새로운 제조방법이 절실히 요구되고 있다.Therefore, there is an urgent need for a new production method capable of producing red phosphor powder having uniform particles and good crystallinity.

이와 같은 현실에서, 본 발명자들은 (Y,Gd)BO3:Eu 적색 형광체의 발광특성을 개선시키고자 습식법으로 형광체를 제조하기 위한 연구를 거듭한 결과, 일정 pH를 유지하면서 바탕용액으로 이트륨과 가돌리늄, 유로피움 성분 및 붕산의 혼합 수용액과 염기 용액을 함께 첨가하여 상기 각 금속 성분을 공침시키고 여과 후에, 건조 및 공기 분위기 중에서 열처리하는 공침법으로 (Y,Gd)BO3:Eu 적색 형광체를 제조하게 되면, 낮은 온도에서 형광체가 형성되고 균일한 입도를 가지며 특히 형광체의 휘도가 개선된 붕소산화물계 적색 형광체를 얻을 수 있다는 사실을 알게 되어 본 발명을 완성하게 되었다.In this reality, the present inventors have repeatedly studied to prepare the phosphor by the wet method to improve the light emission characteristics of the (Y, Gd) BO 3 : Eu red phosphor, the yttrium and gadolinium as a base solution while maintaining a constant pH To prepare a (Y, Gd) BO 3 : Eu red phosphor by a coprecipitation method of co-precipitating each metal component by adding a mixed aqueous solution of europium component and boric acid and a base solution together, followed by filtration, and drying in an air atmosphere. When the phosphor is formed at a low temperature, the boron oxide-based red phosphor having a uniform particle size and in particular, the luminance of the phosphor is improved can be found to complete the present invention.

따라서, 본 발명은 종래의 방법보다 형광체가 저온에서 형성됨으로서 붕소 성분의 휘발을 억제하여 형광체의 재현성 있는 물성을 기대할 수 있고 수득되는 형광체의 입도가 균일하여 입자크기를 조절하기 위한 볼밀링과 같은 분쇄공정을 생략하게 하여 형광체의 성능저하를 방지시킬 수 있으며, 형광체의 휘도가 개선된 (Y,Gd)BO3:Eu 적색 발광 형광체의 제조방법을 제공하는데 그 목적이 있다.Therefore, the present invention can be expected to reproducible physical properties of the phosphor by suppressing the volatilization of the boron component by forming the phosphor at a lower temperature than the conventional method, and the particle size of the resulting phosphor is uniform, such as ball milling to control the particle size The purpose of the present invention is to provide a method for preparing a (Y, Gd) BO 3 : Eu red light emitting phosphor in which the deterioration of the phosphor can be prevented and the luminance of the phosphor is improved.

도 1은 본 발명에 따른 실시예 1에서 제조된 (Y0.6Gd0.35Eu0.05)BO3형광체에 대한 X-선 회절도이고,1 is an X-ray diffraction diagram of (Y 0.6 Gd 0.35 Eu 0.05 ) BO 3 phosphor prepared in Example 1 according to the present invention,

도 2는 본 발명에 따른 실시예 1에서 제조된 (Y0.6Gd0.35Eu0.05)BO3형광체의 분말 입자를 주사전자현미경으로 관찰한 사진이며,FIG. 2 is a photograph of a powder particle of (Y 0.6 Gd 0.35 Eu 0.05 ) BO 3 phosphor prepared in Example 1 according to the present invention with a scanning electron microscope,

도 3은 본 발명에 따른 실시예 1에서 제조된 (Y0.6Gd0.35Eu0.05)BO3형광체와 비교예(종래 상용의 (Y,Gd)BO3:Eu 적색 형광체, 일본 Nemoto사)에 대하여 147nm의 진공자외선으로 여기시켜 얻은 발광 스펙트럼을 비교하여 나타낸 그래프이다.FIG. 3 is 147 nm of a (Y 0.6 Gd 0.35 Eu 0.05 ) BO 3 phosphor prepared in Example 1 and a comparative example (a conventional (Y, Gd) BO 3 : Eu red phosphor, manufactured by Nemoto, Japan) according to the present invention. Is a graph showing a comparison of the emission spectra obtained by excitation with vacuum ultraviolet rays.

본 발명은 바탕용액에질산이트륨, 염화이트륨 및 초산이트륨 중에서 선택된 1종 이상의 이트륨화합물; 질산가돌리늄, 염화가돌리늄 및 초산가돌리늄 중에서 선택된 1종 이상의 가돌리늄화합물; 수용성의 초산유로피움, 질산유로피움 및 염화유로피움 중에서 선택된 1종 이상의 유로피움화합물; 및 붕산의 혼합수용액과무기염기 및 유기염기 중에서 선택된 염기용액을 함께 적하하여 pH 7 ∼ 9를 유지하면서 희토류금속 성분들을 공침시키고, 여과한 후에 건조하고 공기중에서 600 ∼ 1,100 ℃로 열처리하여 제조하는 (Y,Gd)BO3:Eu 형광체의 새로운 제조방법을 그 특징으로 한다.One or more yttrium compounds selected from yttrium nitrate, yttrium chloride and yttrium acetate in the ground solution; At least one gadolinium compound selected from gadolinium nitrate, gadolinium chloride, and gadolinium acetate; At least one europium compound selected from water-soluble europium acetate, europium nitrate and europium chloride; And a mixed solution of boric acid and a base solution selected from inorganic bases and organic bases are added dropwise together to coprecipitate rare earth metal components while maintaining a pH of 7-9, followed by filtration, drying and heat-treating at 600 to 1,100 ° C. in air. It is characterized by a novel method for producing Y, Gd) BO 3 : Eu phosphor.

이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.

본 발명에 따른 (Y,Gd)BO3:Eu 적색 형광체의 제조방법은 일정한 수소이온농도(pH)를 유지시키면서 바탕용액에 이트륨, 가돌리늄, 유로피움 및 붕산의 산성 혼합 수용액과 염기 용액을 함께 첨가하여 상기 모든 금속 성분을 공침시키고 이를 여과한 후에, 건조하고 공기 분위기 중에서 열처리하는 공침법에 의해 종래 제조온도보다 저온에서 형광체를 합성하고, 또한 균일한 입도 및 휘도가 개선된 (Y,Gd)BO3:Eu 형광체를 제조하는 방법이다.In the method for preparing (Y, Gd) BO 3 : Eu red phosphor according to the present invention, an acid mixed aqueous solution of yttrium, gadolinium, europium, and boric acid and a base solution are added together to a background solution while maintaining a constant hydrogen ion concentration (pH). And coprecipitating all the above metal components and filtering the same, and then synthesized the phosphor at a lower temperature than the conventional manufacturing temperature by a coprecipitation method of drying and heat-treating in an air atmosphere, and further improved (Y, Gd) BO with uniform particle size and luminance. 3 : It is a method of manufacturing an Eu phosphor.

즉, 본 발명의 형광체는 종래 고상반응법보다 낮은 750℃의 저온으로부터 단일상으로 형성됨으로써, 붕소성분의 휘발을 억제하고 형광체 분말의 입도가 균일함에 따라 진공자외선에 의하여 여기되어 가시 영역에서 상용의 (Y,Gd)BO3:Eu 적색 형광체보다 개선된 휘도를 나타내는 특징이 있다.That is, the phosphor of the present invention is formed in a single phase at a lower temperature of 750 ° C. than the conventional solid phase reaction method, thereby suppressing volatilization of the boron component and being excited by vacuum ultraviolet rays as the particle size of the phosphor powder is uniform, which is commercially available in the visible region. (Y, Gd) BO 3 : Eu There is a characteristic that shows the improved luminance than the red phosphor.

본 발명에 따른 형광체를 합성하기 위해서는 바탕용액 및 이트륨, 가돌리늄, 유로피움, 붕산의 혼합 수용액과 염기 용액을 원료로 하여 제조할 수 있다.In order to synthesize the phosphor according to the present invention, a base solution and a mixed aqueous solution of yttrium, gadolinium, europium and boric acid and a base solution may be prepared as raw materials.

본 발명은 상술한 바와 같이, 바탕용액에 상기 두 용액을 적하시킬 때 바탕용액을 교반시키면서 산성을 나타내는 희토류금속 성분을 함유한 혼합수용액과 염기용액의 적하속도를 조절함으로써, 수소이온농도(pH)를 7 ∼ 9의 범위로 유지시킬 수 있다.As described above, when the two solutions are added to the base solution, the hydrogen ion concentration (pH) is adjusted by adjusting the dropping speed of the mixed solution containing the rare earth metal component and the base solution while showing the acidity while stirring the base solution. Can be kept in the range of 7-9.

특히, 본 발명에서 수소이온농도를 일정하게 유지시킴으로써 모든 금속 성분을 손실 없이 공침시킬 수 있으며, 습식 반응의 침전화 단계에서 일반적으로 형성되는 붕소수산화물의 겔화가 방지되어 침전물의 여과를 용이하게 한다.In particular, by maintaining a constant hydrogen ion concentration in the present invention, all metal components can be co-precipitated without loss, and gelation of boron hydroxide which is generally formed in the precipitation step of the wet reaction is prevented to facilitate filtration of the precipitate.

이때, (Y,Gd)BO3:Eu의 조성에 따른 혼합비율로 상기 희토류금속 양이온 성분은 혼합수용액에 대하여 0.05 ∼ 1.5 mol/L의 농도가 되도록 하되, 바람직하게는 0.1 ∼ 1.0 mol/L의 농도로 조절하는 것이 좋다.At this time, the rare earth metal cation component in the mixing ratio according to the composition of (Y, Gd) BO 3 : Eu to be a concentration of 0.05 to 1.5 mol / L with respect to the mixed aqueous solution, preferably 0.1 to 1.0 mol / L It is good to adjust the concentration.

또한, 첨가되는 붕산은 최종 소성 과정에서의 휘발을 고려하여 희토류금속 양이온 성분에 대하여 당량비로 100 ∼ 120%를 사용하는 것이 바람직하다.In addition, it is preferable to use 100-120% of the boric acid added in an equivalent ratio with respect to the rare earth metal cation component in consideration of volatilization in a final baking process.

본 발명에 따르면, 상기 바탕용액으로는 증류수, 메틸알코올, 에틸알코올, 1-프로필알코올 및 이소프로필알코올 중에서 선택된 1종 이상이 사용될 수 있다. 또한, 상기 이트륨화합물로는 질산이트륨, 염화이트륨 및 초산이트륨 중에서 선택된 1종 이상이 사용될 수 있고, 가돌리늄화합물로는 질산가돌리늄, 염화가돌리늄, 초산가돌리늄 중에서 선택된 1종 이상이 사용될 수 있다. 그리고, 유로피움화합물로는 수용성의 초산유로피움, 질산유로피움 및 염화유로피움 중에서 선택된 1종 이상이 사용될 수 있다.According to the present invention, at least one selected from distilled water, methyl alcohol, ethyl alcohol, 1-propyl alcohol, and isopropyl alcohol may be used as the background solution. In addition, the yttrium compound may be one or more selected from yttrium nitrate, yttrium chloride and yttrium acetate, and the gadolinium compound may be one or more selected from gadolinium nitrate, gadolinium chloride, and gadolinium acetate. As the europium compound, at least one selected from water-soluble europium acetate, europium nitrate and europium chloride may be used.

본 발명에서 모든 금속 성분을 침전시키기 위해서 첨가하는 염기 용액으로는 수산화암모늄, 수산화나트륨 및 수산화칼륨 등의 무기염기 또는 디에틸아민, 디에탄올아민 및 트리에틸아민 등의 유기아민류 중에서 선택된 1종 이상을 사용할 수 있다. 여기서 무기염기를 사용할 경우에는 1 ∼ 5 mol/L 농도의 수용액이 바람직하며, 유기아민류를 사용할 경우에는 증류수와 혼합하여 10 ∼ 50%의 아민 수용액이 바람직하다.The base solution added in order to precipitate all the metal components in the present invention is at least one selected from inorganic bases such as ammonium hydroxide, sodium hydroxide and potassium hydroxide or organic amines such as diethylamine, diethanolamine and triethylamine. Can be used. When using an inorganic base here, the aqueous solution of 1-5 mol / L concentration is preferable, and when using organic amines, 10-50% of aqueous amine aqueous solution is preferable by mixing with distilled water.

이와 같이, 본 발명은 공침법으로 이트륨, 가돌리늄, 유로피움 및 붕소 성분의 공침물을 얻음으로서, 열처리시 60 ℃ 이하의 온도에서 건조하여 그 건조물을 도가니의 내열 용기에 충진하여 공기 중에서 600 ∼ 1,100 ℃로 1 ∼ 5시간에 걸쳐 소성하여 종래보다 낮은 온도에서 목적하는 붕소산화물계 (Y,Gd)BO3:Eu 형광체 분말을 얻을 수 있다.As described above, the present invention obtains a co-precipitate of yttrium, gadolinium, europium, and boron by coprecipitation, which is dried at a temperature of 60 ° C. or lower during heat treatment, and the dried product is filled in a heat-resistant container of the crucible in air from 600 to 1,100. ℃ by sintering over 1 to 5 hours the desired boron at a lower temperature than conventional oxide-based (Y, Gd) BO 3: Eu phosphor powder can be obtained.

본 발명에 따른 최종 소성 단계의 공기 분위기 중에서 각기 750 ℃로 열처리한 (Y0.6Gd0.35Eu0.05)BO3형광체 분말의 X-선 회절분석 결과, 도 1과 같이 형광체가 단일상으로 얻어져 종래 고상반응법보다 저온에서 형광체가 형성됨을 확인할 수 있다.X-ray diffraction analysis of (Y 0.6 Gd 0.35 Eu 0.05 ) BO 3 phosphor powders heat-treated at 750 ° C. in the air atmosphere of the final firing step according to the present invention showed that the phosphors were obtained as a single phase as shown in FIG. 1. It can be seen that the phosphor is formed at a lower temperature than the reaction method.

또한, 본 발명에 따라 제조된 (Y0.6Gd0.35Eu0.05)BO3형광체 분말에 대하여 주사전자현미경으로 관찰한 결과, 도 2에서 볼 수 있는 바와 같이 본 발명에 따른 형광체 입자들은 입자크기가 1 ∼ 2㎛이고 균일한 입도를 나타냄을 확인할 수 있다.In addition, as a result of observing with a scanning electron microscope for (Y 0.6 Gd 0.35 Eu 0.05 ) BO 3 phosphor powder prepared according to the present invention, as shown in Figure 2, the phosphor particles according to the present invention has a particle size of 1 ~ It can be seen that it is 2 μm and shows a uniform particle size.

그리고, 본 발명에 따른 (Y0.6Gd0.35Eu0.05)BO3형광체와 상용의 (Y,Gd)BO3:Eu 적색 형광체(일본 Nemotto사)에 대하여 147nm의 진공자외선으로 여기시켜 발광 스펙트럼을 얻었는바, 도 3에서 볼 수 있는 바와 같이 본 발명에 따른 형광체가 상용의 적색 형광체보다 개선된 휘도를 보여 주는 것으로 확인되었다.The emission spectrum was obtained by excitation of (Y 0.6 Gd 0.35 Eu 0.05 ) BO 3 phosphor and commercially available (Y, Gd) BO 3 : Eu red phosphor (Nemotto, Japan) at 147 nm under vacuum ultraviolet rays. As shown in FIG. 3, it was confirmed that the phosphor according to the present invention showed improved luminance than a commercially available red phosphor.

이하, 본 발명을 실시예에 의거하여 더욱 상세히 설명하면 다음과 같은바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following Examples, but the present invention is not limited by the Examples.

실시예 1 및 비교예Example 1 and Comparative Example

Y(NO3)3ㆍ6H2O 11.49g, Gd(NO3)3ㆍ6H2O 7.9g, Eu(NO3)3ㆍ5H2O 1.07g 및 H3BO33.4g을 증류수 90㎖에 첨가하여 희토류금속 성분이 0.5 mol/L 농도인 혼합수용액을 제조하였다. 바탕용액으로 증류수 50㎖를 격렬하게 교반시키면서 수소이온농도가 pH 8 ∼ 8.5 사이를 유지하도록 상기 혼합수용액과 5 mol/L 농도의 수산화암모늄 용액을 천천히 가하였다. 형성된 슬러리를 실온에서 2시간 동안 교반시켜Y, Gd, Eu 및 B 성분의 혼합 침전물을 완성하였다. 이 혼합 침전물을 여과 및 수세하여 50 ℃에서 6 시간 동안 건조시킨 다음, 알루미나 도가니에 넣고 공기 중에서 750 ℃의 온도로 3시간 동안 소성시켜 99.5%의 수율로 목적하는 형광체 분말을 얻었다.11.49 g of Y (NO 3 ) 3 ㆍ 6H 2 O, 7.9 g of Gd (NO 3 ) 3 ㆍ 6H 2 O, 1.07 g of Eu (NO 3 ) 3 ㆍ 5H 2 O and 3.4 g of H 3 BO 3 were added to 90 mL of distilled water. A mixed aqueous solution having a concentration of 0.5 mol / L was added to the rare earth metal component. The mixed aqueous solution and the ammonium hydroxide solution of 5 mol / L concentration were slowly added while maintaining 50 mL of distilled water with vigorous solution while maintaining the hydrogen ion concentration between pH 8 and 8.5. The resulting slurry was stirred at room temperature for 2 hours to complete a mixed precipitate of the Y, Gd, Eu and B components. The mixed precipitate was filtered and washed with water, dried at 50 ° C. for 6 hours, placed in an alumina crucible, and calcined for 3 hours at a temperature of 750 ° C. in air to obtain a desired phosphor powder in a yield of 99.5%.

비교예는 종래 상용의 (Y,Gd)BO3:Eu 적색 형광체(일본 Nemoto사)를 사용하였다.In Comparative Example, a conventional commercial (Y, Gd) BO 3 : Eu red phosphor (Nemoto, Japan) was used.

본 실시예 1에서 수득된 형광체의 화학적 조성은 (Y0.6Gd0.35Eu0.05)BO3이고, 도 1에서 보면 상기 분말에 대한 X-선 회절도는 단일상으로 확인되었다.The chemical composition of the phosphor obtained in Example 1 is (Y 0.6 Gd 0.35 Eu 0.05 ) BO 3 , and in FIG. 1, the X-ray diffractogram of the powder was confirmed as a single phase.

도 2에 형광체 분말입자를 주사전자현미경으로 관찰한 사진을 나타내었고, 결과에서 보면 입자크기가 1 ∼ 2㎛이고 균일한 입도를 가지고 있다.Figure 2 shows a photograph of the phosphor powder particles observed with a scanning electron microscope. From the results, the particle size is 1 to 2㎛ and has a uniform particle size.

도 3은 상기 실시예 1과 비교예(상용의 (Y,Gd)BO3:Eu 적색 형광체, 일본 Nemoto사)에 대하여 147nm의 진공자외선으로 여기시켜 얻은 발광 스펙트럼을 비교하여 나타내었고, 본 실시예 1의 형광체 분말의 경우 147nm의 진공자외선 여기하에서 593nm에 발광 중심을 갖는 적색 발광 스펙트럼을 나타내었다.FIG. 3 compares Example 1 and Comparative Example (commercially available (Y, Gd) BO 3 : Eu red phosphor, Nemoto, Japan) to compare the emission spectra obtained by excitation with 147 nm vacuum ultraviolet rays. In the case of phosphor powder 1, a red emission spectrum having an emission center at 593 nm was exhibited under vacuum ultraviolet excitation of 147 nm.

실시예 2Example 2

YCl3ㆍ6H2O 14.56g, Gd(CH3COO)3ㆍxH2O(x=5) 10.185g, Eu(NO3)3ㆍ5H2O 3.424g 및 H3BO35.2g을 증류수 90㎖에 첨가하여 희토류금속 성분이 0.8 mol/L 농도인 혼합수용액을 제조하였다. 바탕용액으로 에틸알코올 50㎖를 격렬하게 교반시키면서 수소이온농도가 pH 7.8 ∼ 8.2 사이를 유지하도록 상기 혼합수용액과 20%의 디에틸아민 수용액을 천천히 가하였다. 이하, 실시예 1과 동일한 방법으로 실시하여 99.1%의 수율로 목적하는 형광체 분말을 얻었다.14.56 g of YCl 3 ㆍ 6H 2 O, 10.185 g of Gd (CH 3 COO) 3, xH 2 O (x = 5), 3.424 g of Eu (NO 3 ) 3 ㆍ 5H 2 O and 5.2 g of H 3 BO 3 were distilled water 90 The solution was added to ㎖ to prepare a mixed aqueous solution having a concentration of 0.8 mol / L of the rare earth metal component. The mixed aqueous solution and 20% aqueous diethylamine solution were slowly added while maintaining 50 mL of ethyl alcohol as the base solution while maintaining the hydrogen ion concentration between pH 7.8 and 8.2. The target phosphor powder was obtained in the same manner as in Example 1 with a yield of 99.1%.

이렇게 하여 수득된 형광체의 화학적 조성은 (Y0.6Gd0.3Eu0.1)BO3이고, 이 분말에 대한 X-선 회절도와 주사전자현미경으로 관찰한 사진 및 147nm의 진공자외선 여기하에서의 발광 스펙트럼은 실시예 1의 결과와 동일하였다.The chemical composition of the thus obtained phosphor was (Y 0.6 Gd 0.3 Eu 0.1 ) BO 3 , and the emission spectrum under X-ray diffraction diagram and scanning electron microscope and 147 nm vacuum ultraviolet excitation for this powder were shown in Example 1 Was the same as the result.

이상과 같이, 상기 실시예 1, 2 및 상용의 (Y,Gd)BO3:Eu 형광체들의 비교 결과로부터 본 발명의 제조방법에 따른 형광체는 상용의 형광체보다 낮은 온도의 열처리로 단일상으로 얻어지고 입도가 균일하며, 특히 모체에 활성제의 균일한 분포로 인하여 형광체의 휘도가 개선되는 특징을 가지고 있음을 확인할 수 있다.As described above, the phosphors according to the production method of Examples 1 and 2 and commercial (Y, Gd) BO 3 : Eu phosphors were obtained as a single phase by heat treatment at a lower temperature than commercial phosphors. It can be seen that the particle size is uniform, and in particular, the luminance of the phosphor is improved due to the uniform distribution of the active agent in the mother.

상술한 바와 같이, 본 발명에 따른 (Y,Gd)BO3:Eu 형광체의 새로운 제조 방법은 종래의 제조 방법과는 달리 낮은 온도에서 형광체가 형성되고 형광체 분말의 입도가 균일하며, 활성제인 유로피움의 균일한 분포로 종래의 제조방법에 비하여 형광체의 휘도가 개선되어 플라즈마표시소자(PDP)용으로 매우 적합한 적색 발광 형광체로서 유용한 효과가 있는 것이다.As described above, the new method for producing the (Y, Gd) BO 3 : Eu phosphor according to the present invention, unlike the conventional manufacturing method, the phosphor is formed at a low temperature, the particle size of the phosphor powder is uniform, the active agent europium The uniform distribution of the phosphor improves the luminance of the phosphor compared to the conventional manufacturing method, and thus has a useful effect as a red light emitting phosphor which is very suitable for plasma display devices (PDP).

Claims (8)

바탕용액에In the background solution 질산이트륨, 염화이트륨 및 초산이트륨 중에서 선택된 1종 이상의 이트륨화합물; 질산가돌리늄, 염화가돌리늄 및 초산가돌리늄 중에서 선택된 1종 이상의 가돌리늄화합물; 수용성의 초산유로피움, 질산유로피움 및 염화유로피움 중에서 선택된 1종 이상의 유로피움화합물; 및 붕산의 혼합수용액과At least one yttrium compound selected from yttrium nitrate, yttrium chloride and yttrium acetate; At least one gadolinium compound selected from gadolinium nitrate, gadolinium chloride, and gadolinium acetate; At least one europium compound selected from water-soluble europium acetate, europium nitrate and europium chloride; And a mixed aqueous solution of boric acid 무기염기 및 유기염기 중에서 선택된 염기용액을 함께 적하하여 pH 7 ∼ 9를 유지하면서 희토류금속 성분들을 공침시키고, 여과한 후에 건조하고 공기중에서 600 ∼ 1,100 ℃로 열처리하여 제조하는 것을 특징으로 하는 (Y,Gd)BO3:Eu 형광체 분말의 제조방법.The base solution selected from the inorganic base and the organic base is added dropwise together to coprecipitate rare earth metal components while maintaining pH 7-9, filtered, dried and heat-treated at 600-1,100 ° C. in air to prepare (Y, Gd) BO 3 : Preparation method of Eu phosphor powder. 제 1 항에 있어서, 상기 바탕용액은 증류수, 메틸알코올, 에틸알코올, 1-프로필알코올 및 이소프로필알코올 중에서 선택된 1종 이상인 것을 특징으로 (Y,Gd)BO3:Eu 형광체 분말의 제조방법.The method of claim 1, wherein the basis solution is distilled water, wherein the methyl alcohol, ethyl alcohol, at least one selected from 1-propyl alcohol and isopropyl alcohol (Y, Gd) BO 3: Eu method of manufacturing a phosphor powder. 제 1 항에 있어서, 상기 혼합수용액의 희토류금속 성분의 농도는 혼합수용액에 대하여 0.05 ∼ 1.5 mol/L인 것을 특징으로 하는 붕소산화물계((Y,Gd)BO3:Eu) 형광체 분말의 제조방법.The method of claim 1, wherein the concentration of the rare earth metal component of the mixed aqueous solution of an oxide of boron, characterized in that 0.05 ~ 1.5 mol / L with respect to the mixed aqueous solution system: The method of ((Y, Gd) BO 3 Eu) phosphor powder . 삭제delete 삭제delete 삭제delete 제 1 항에 있어서, 상기 무기염기는 수산화암모늄, 수산화나트륨 및 수산화칼륨 중에서 선택된 1종 이상인 것으로, 염기용액의 농도는 1 ∼ 5 mol/L인 것을 특징으로 하는 붕소산화물계((Y,Gd)BO3:Eu) 형광체 분말의 제조방법.The boron oxide system of claim 1, wherein the inorganic base is at least one selected from ammonium hydroxide, sodium hydroxide and potassium hydroxide, and the concentration of the base solution is 1 to 5 mol / L. BO 3 : Eu) Method for producing phosphor powder. 제 1 항에 있어서, 상기 유기염기는 디에틸아민, 디에탄올아민 및 트리에틸아민 중에서 선택된 1종 이상인 것으로, 염기용액은 증류수와 혼합된 10 ∼ 50%의 아민 수용액인 것을 특징으로 하는 붕소산화물계((Y,Gd)BO3:Eu) 형광체 분말의 제조방법.The boron oxide system according to claim 1, wherein the organic base is at least one selected from diethylamine, diethanolamine and triethylamine, and the base solution is a 10 to 50% aqueous amine solution mixed with distilled water. Method for preparing ((Y, Gd) BO 3 : Eu) phosphor powder.
KR10-2000-0055240A 2000-09-20 2000-09-20 Process for preparing borate-based phosphors KR100376274B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0055240A KR100376274B1 (en) 2000-09-20 2000-09-20 Process for preparing borate-based phosphors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0055240A KR100376274B1 (en) 2000-09-20 2000-09-20 Process for preparing borate-based phosphors

Publications (2)

Publication Number Publication Date
KR20020022457A KR20020022457A (en) 2002-03-27
KR100376274B1 true KR100376274B1 (en) 2003-03-17

Family

ID=19689563

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0055240A KR100376274B1 (en) 2000-09-20 2000-09-20 Process for preparing borate-based phosphors

Country Status (1)

Country Link
KR (1) KR100376274B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419863B1 (en) * 2001-11-23 2004-02-25 한국화학연구원 Preparing method for spherical red phosphor based on borates
KR100424861B1 (en) * 2001-12-04 2004-03-27 한국화학연구원 Preparing process for spherical red phosphor based on borates using hydrolysis
KR100431124B1 (en) * 2002-02-20 2004-05-12 한국에너지기술연구원 Low Temperature and Single Step Driven Red Phosphor Materials and its Synthesis Method
RU2761209C1 (en) * 2021-04-06 2021-12-06 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Method for obtaining lanthanum borates doped with europium and terbium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100496051B1 (en) * 2002-10-14 2005-06-16 한국화학연구원 Europium activated yttrium gadolinium borate phosphors and a preparation method thereof
KR100490630B1 (en) * 2003-05-28 2005-05-17 삼성에스디아이 주식회사 Red phosphor for plasma display panel
KR100972918B1 (en) * 2008-01-10 2010-07-28 인제대학교 산학협력단 Method of Manufacturing sub micro particle form fluorescent substance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000000999A (en) * 1998-06-05 2000-01-15 김유혁 Process for producing boron oxide-based red fluorescein

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000000999A (en) * 1998-06-05 2000-01-15 김유혁 Process for producing boron oxide-based red fluorescein

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419863B1 (en) * 2001-11-23 2004-02-25 한국화학연구원 Preparing method for spherical red phosphor based on borates
KR100424861B1 (en) * 2001-12-04 2004-03-27 한국화학연구원 Preparing process for spherical red phosphor based on borates using hydrolysis
KR100431124B1 (en) * 2002-02-20 2004-05-12 한국에너지기술연구원 Low Temperature and Single Step Driven Red Phosphor Materials and its Synthesis Method
RU2761209C1 (en) * 2021-04-06 2021-12-06 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Method for obtaining lanthanum borates doped with europium and terbium

Also Published As

Publication number Publication date
KR20020022457A (en) 2002-03-27

Similar Documents

Publication Publication Date Title
KR100467731B1 (en) Rare Earth Borate and Its Precursor, Preparation Processes and Use of Borate as Luminophore
WO2000071636A1 (en) Preparing green phosphor based on zinc orthosilicate
KR100547522B1 (en) Method for producing high brightness small particle red emitting phosphor
EP1066644B1 (en) Small particle terbium activated yttrium gadolinium borate phosphors and method of making
KR100376274B1 (en) Process for preparing borate-based phosphors
WO1998053025A1 (en) Phosphorescent pigment and process for preparing the same
JP2000212556A (en) Luminous phosphor, and luminous fluorescent powder, and their production
KR100351635B1 (en) Process for preparing spherical blue phosphor based on aluminates
TWI448535B (en) Eu method for the production of metalloid phosphite phosphors
KR100280369B1 (en) Manufacturing method of green light emitting phosphor
US6284155B1 (en) Method for making small particle red emitting phosphors
KR101496959B1 (en) Red-emitting phosphors with highly enhanced luminescent efficiency and their preparation methods
JP2001303039A (en) Inorganic fluorescent substance and method for producing the same
KR100351636B1 (en) Process for preparing spherical phosphors based on zinc gallate
JP4723150B2 (en) Method for producing rare earth borate and its application to phosphor
KR100424861B1 (en) Preparing process for spherical red phosphor based on borates using hydrolysis
KR100419863B1 (en) Preparing method for spherical red phosphor based on borates
KR100387659B1 (en) Manufacturing method of strontium aluminate phosphor by the sol-gel method
KR100447936B1 (en) Green emitting phosphor by VUV excitiation and its preparation method
CN113150782B (en) Preparation method of rare earth ion doped orthorhombic indium acid gadolinium-calcium-titanium ore fluorescent powder
CN117143599B (en) Sodium-indium garnet-based abnormal thermal quenching red fluorescent powder and preparation method thereof
KR20090119181A (en) Method for preparing oxide based nanophosphors
CN110003910B (en) Eu (Eu)3+Activated bismuth fluorotellurate red fluorescent powder and preparation method and application thereof
JPH09255950A (en) Preparation of light-storing luminescent pigment
KR101085097B1 (en) Yittrium Oxide-Based Red Phosphor and Method for Preparing the Same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111214

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee