KR100276565B1 - Method of forming a metal wiring in a semiconductor device - Google Patents

Method of forming a metal wiring in a semiconductor device Download PDF

Info

Publication number
KR100276565B1
KR100276565B1 KR1019970081164A KR19970081164A KR100276565B1 KR 100276565 B1 KR100276565 B1 KR 100276565B1 KR 1019970081164 A KR1019970081164 A KR 1019970081164A KR 19970081164 A KR19970081164 A KR 19970081164A KR 100276565 B1 KR100276565 B1 KR 100276565B1
Authority
KR
South Korea
Prior art keywords
contact hole
metal layer
alignment key
metal
laser beam
Prior art date
Application number
KR1019970081164A
Other languages
Korean (ko)
Other versions
KR19990060918A (en
Inventor
민경열
손용선
Original Assignee
김영환
현대전자산업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업주식회사 filed Critical 김영환
Priority to KR1019970081164A priority Critical patent/KR100276565B1/en
Publication of KR19990060918A publication Critical patent/KR19990060918A/en
Application granted granted Critical
Publication of KR100276565B1 publication Critical patent/KR100276565B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76882Reflowing or applying of pressure to better fill the contact hole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE: A method for manufacturing a metal interconnection of a semiconductor device is provided to fill a contact hole and prevent an alignment error in a step region, by depositing a metal material on the whole structure including the contact hole and by selectively irradiating a laser beam of a short wavelength to reflow only the metal layer in the contact hole portion. CONSTITUTION: After an interlayer dielectric(12) is formed on a base layer(11) having an alignment key(14), a selected portion of the interlayer dielectric is etched to expose the alignment key potion while a contact hole(13) to which the selected portion of the base layer is exposed is formed. The metal layer(15) is formed on the interlayer dielectric including the alignment key and the contact hole. A laser beam is selectively irradiated to the meal layer including at least the contact hole portion except the alignment key portion so that the selected portion of the metal layer is re-flowed to fill the contact hole.

Description

반도체 소자의 금속 배선 형성 방법{Method of forming a metal wiring in a semiconductor device}Method of forming a metal wiring in a semiconductor device

본 발명은 반도체 소자의 금속 배선 형성 방법에 관한 것으로, 특히 단 파장의 레이저 빔(laser beam)을 선택적으로 조사하여 콘택홀 부분의 금속층만을 리플로우(reflow) 시키므로써, 콘택홀이 양호하게 매립되어 소자의 신뢰성을 향상시킬 수 있는 반도체 소자의 금속 배선 형성 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a metal wiring of a semiconductor device, and in particular, by selectively irradiating a laser beam of short wavelength to reflow only the metal layer of the contact hole portion, the contact hole is well buried. The present invention relates to a method for forming a metal wiring of a semiconductor device capable of improving the reliability of the device.

일반적으로, 반도체 소자가 고집적화 되어감에 따라 콘택홀의 사이즈가 줄어들고 있다. 이에 따라 금속 콘택 공정시 콘택홀을 양호하게 채우기가 어려워 콘택 저항이 증가되는 요인으로 작용한다. 금속 배선은 텅스텐(W), 알루미늄(Al), 티타늄(Ti), 코발트(Co), 아연(Zn), 구리(Cu), 실리콘(Si), 백금(Pt), 금(Au) 등의 전도성 금속 물질을 사용하여 물리적 기상 증착(PVD) 또는 화학적 기상 증착(CVD) 방법에 의해 형성된다.In general, as semiconductor devices are highly integrated, the size of contact holes is reduced. Accordingly, it is difficult to fill the contact holes well in the metal contact process, which acts as a factor of increasing the contact resistance. Metal wires are conductive such as tungsten (W), aluminum (Al), titanium (Ti), cobalt (Co), zinc (Zn), copper (Cu), silicon (Si), platinum (Pt), and gold (Au). Metallic materials are used to form by physical vapor deposition (PVD) or chemical vapor deposition (CVD) methods.

도 1(a) 및 도 1(b)는 종래 반도체 소자의 금속 배선 형성 방법을 설명하기 위한 소자의 단면도이다.1 (a) and 1 (b) are cross-sectional views of a device for explaining a metal wiring formation method of a conventional semiconductor device.

도 1(a)를 참조하면, 하부층(1)상에 층간 절연막(2)이 형성된다. 하부층(1)은 반도체 기판이거나 반도체 소자의 구성 요소중 전극 또는 배선을 이루는 도전층이며, 이러한 하부층(1)의 선택된 부분을 일정 깊이 식각하여 얼라인먼트 키(alignment key; 4)가 형성된다. 층간 절연막(2)의 선택된 부분을 식각 하여 하부층(1)이 노출되는 콘택홀(3)이 형성되며, 이때 얼라인먼트 키(4) 부분도 노출된다. 콘택홀(3) 및 얼라인먼트 키(4)를 포함한 층간 절연막(2)상에 금속 물질을 증착 하여 금속층(5)이 형성된다.Referring to FIG. 1A, an interlayer insulating film 2 is formed on the lower layer 1. The lower layer 1 is a semiconductor substrate or a conductive layer constituting an electrode or wiring among components of the semiconductor element, and an alignment key 4 is formed by etching a selected portion of the lower layer 1 to a predetermined depth. The selected portion of the interlayer insulating film 2 is etched to form a contact hole 3 through which the lower layer 1 is exposed, and the alignment key 4 portion is also exposed. The metal layer 5 is formed by depositing a metal material on the interlayer insulating film 2 including the contact hole 3 and the alignment key 4.

상기에서, 금속층(5)은 전도성 금속 물질을 사용하여 물리적 기상 증착(PVD) 또는 화학적 기상 증착(CVD) 방법에 의해 형성되는데, 금속 물질의 스텝 커버리지 불량으로 콘택홀(3)이 완전히 매립되지 않으며, 이로 인하여 콘택홀(3) 측면부 및 저면부에서 금속층(5)이 얇게 되고, 이러한 현상이 심할 경우 단락 현상이 발생된다.In the above, the metal layer 5 is formed by a physical vapor deposition (PVD) or chemical vapor deposition (CVD) method using a conductive metal material, and the contact hole 3 is not completely filled due to poor step coverage of the metal material. As a result, the metal layer 5 becomes thin in the side portions and the bottom portion of the contact hole 3, and when such a phenomenon is severe, a short circuit phenomenon occurs.

도 1(b)를 참조하면, 금속층(5)의 콘택 매립 특성 및 단락 현상 등을 줄이기 위해, 전면 열처리 공정을 실시하여 금속층(5)을 리플로우(reflow) 시킨다.Referring to FIG. 1B, in order to reduce contact embedding characteristics, short-circuit phenomenon, and the like of the metal layer 5, the front surface heat treatment process is performed to reflow the metal layer 5.

상기에서, 전면 열처리 리플로우 공정 동안 금속층(5)은 리플로우 되어 콘택홀(3)을 어느 정도 매립시킬 수 있으나, 콘택홀(3)을 완전히 매립시키기지 못해 콘택홀(3) 부분에 보이드(void; 6) 등을 남기게 되어 콘택 저항을 증가시키게 된다. 또한 전면 열처리 리플로우 공정 동안 얼라인먼트 키(4) 부분에도 금속층(5)이 리플로우 되므로 인하여, 금속 배선 형성을 위한 노광 공정시 금속층(5)의 리플로우된 부분(A)에서 얼라인먼트 에러(alignment error)가 발생하게 되어 스텝퍼(stepper) 노광의 정확한 설정을 어렵게 한다.In the above, the metal layer 5 may be reflowed during the entire heat treatment reflow process to fill the contact hole 3 to some extent. However, the contact hole 3 may not be completely embedded, and thus voids may be formed in the contact hole 3. void; 6) and so on, increasing the contact resistance. In addition, since the metal layer 5 is also reflowed in the alignment key 4 portion during the entire heat treatment reflow process, an alignment error in the reflowed portion A of the metal layer 5 during the exposure process for forming the metal wiring. Is generated, making it difficult to accurately set the stepper exposure.

따라서, 본 발명은 콘택홀을 양호하게 매립시켜 안정된 콘택 저항을 확보하므로, 소자의 신뢰성을 향상시킬 수 있는 반도체 소자의 금속 배선 형성 방법을 제공함에 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for forming a metal wiring of a semiconductor device which can improve contact reliability by filling contact holes with good contact resistance and improving the reliability of the device.

이러한 목적을 달성하기 위한 본 발명의 금속 배선 형성 방법은 얼라인먼트 키를 갖는 하부층상에 층간 절연막을 형성한 후, 상기 층간 절연막의 선택된 부분을 식각하여 상기 얼라인먼트 키 부분을 노출시키면서 상기 하부층의 선택된 부분이 노출되는 콘택홀을 형성하는 단계; 상기 얼라인먼트 키 및 상기 콘택홀을 포함한 상기 층간 절연막 상에 금속층을 형성하는 단계; 및 상기 얼라인먼트 키 부분을 제외한 적어도 콘택홀 부분이 포함된 금속층에 레이저 빔을 선택적으로 조사하여 상기 금속층의 선택된 부분을 리플로우 시켜 상기 콘택홀을 매립하는 단계를 포함하여 이루어지는 것을 특징으로 한다.In order to achieve the above object, the metal wiring forming method of the present invention forms an interlayer insulating film on the lower layer having the alignment key, and then selects the selected portion of the lower layer while exposing the alignment key portion by etching the selected portion of the interlayer insulating film. Forming an exposed contact hole; Forming a metal layer on the interlayer insulating film including the alignment key and the contact hole; And selectively irradiating a laser beam to the metal layer including at least the contact hole portion except for the alignment key portion to reflow the selected portion of the metal layer to fill the contact hole.

도 1(a) 및 도 1(b)는 종래 반도체 소자의 금속 배선 형성 방법을 설명하기 위한 소자의 단면도.1 (a) and 1 (b) are cross-sectional views of a device for explaining a metal wiring formation method of a conventional semiconductor device.

도 2(a) 및 도 2(b)는 본 발명의 실시예에 따른 반도체 소자의 금속 배선 형성 방법을 설명하기 위한 소자의 단면도.2 (a) and 2 (b) are cross-sectional views of a device for explaining a method for forming metal wirings of a semiconductor device according to an embodiment of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for main parts of the drawings>

1 및 11: 하부층 2 및 12: 층간 절연막1 and 11: lower layer 2 and 12: interlayer insulating film

3 및 13: 콘택홀 4 및 14: 얼라인먼트 키3 and 13: contact holes 4 and 14: alignment key

5 및 15: 금속층 6: 보이드5 and 15: metal layer 6: void

이하, 본 발명을 첨부된 도면을 참조하여 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 2(a) 및 도 2(b)는 본 발명의 실시예에 따른 반도체 소자의 금속 배선 형성 방법을 설명하기 위한 소자의 단면도이다.2 (a) and 2 (b) are cross-sectional views of a device for explaining a method for forming metal wirings of a semiconductor device according to an embodiment of the present invention.

도 2(a)를 참조하면, 하부층(11)상에 층간 절연막(12)이 형성된다. 하부층(11)은 반도체 기판이거나 반도체 소자의 구성 요소중 전극 또는 배선을 이루는 도전층이며, 이러한 하부층(11)의 선택된 부분을 일정 깊이 식각하여 얼라인먼트 키(14)가 형성된다. 층간 절연막(12)의 선택된 부분을 식각 하여 하부층(11)이 노출되는 콘택홀(13)이 형성되며, 이때 얼라인먼트 키(14) 부분도 노출된다. 콘택홀(13) 및 얼라인먼트 키(14)를 포함한 층간 절연막(12)상에 금속 물질을 증착 하여 금속층(15)이 형성된다.Referring to FIG. 2A, an interlayer insulating layer 12 is formed on the lower layer 11. The lower layer 11 is a semiconductor substrate or a conductive layer constituting an electrode or a wiring among the components of the semiconductor element. An alignment key 14 is formed by etching a selected portion of the lower layer 11 to a predetermined depth. The selected portion of the interlayer insulating layer 12 is etched to form a contact hole 13 through which the lower layer 11 is exposed. In this case, the alignment key 14 portion is also exposed. The metal layer 15 is formed by depositing a metal material on the interlayer insulating layer 12 including the contact hole 13 and the alignment key 14.

상기에서, 하부층(11)은 반도체 기판, 워드 라인, 비트 라인, 캐패시터의 전극, 다층 금속 배선 구조일 경우 하부 금속 배선 등이다. 금속층(15)은 텅스텐(W), 알루미늄(Al), 티타늄(Ti), 코발트(Co), 아연(Zn), 구리(Cu), 실리콘(Si), 백금(Pt), 금(Au) 등의 전도성 금속 물질을 사용하여 물리적 기상 증착(PVD) 또는 화학적 기상 증착(CVD) 방법에 의해 형성되는데, 금속 물질의 스텝 커버리지 불량으로 콘택홀(13)이 완전히 매립되지 않으며, 이로 인하여 콘택홀(13) 측면부 및 저면부에서 금속층(15)이 얇게 되고, 이러한 현상이 심할 경우 단락 현상이 발생된다.In the above, the lower layer 11 is a semiconductor substrate, a word line, a bit line, a capacitor electrode, or a lower metal wiring in the case of a multilayer metal wiring structure. The metal layer 15 includes tungsten (W), aluminum (Al), titanium (Ti), cobalt (Co), zinc (Zn), copper (Cu), silicon (Si), platinum (Pt), gold (Au), and the like. It is formed by a physical vapor deposition (PVD) or chemical vapor deposition (CVD) method using a conductive metal material of the, the contact hole 13 is not completely buried due to poor step coverage of the metal material, thereby contact hole 13 The metal layer 15 becomes thin in the side part and the bottom part, and when this phenomenon is severe, a short circuit phenomenon occurs.

도 2(b)를 참조하면, 금속층(15)의 콘택 매립 특성 및 단락 현상 등을 줄이기 위해, 단 파장의 레이저 빔(laser beam)을 콘택홀(13) 부분만을 선택적으로 조사하므로, 이 부분의 금속층(15)이 국부적으로 가열되어 콘택홀(13) 부분의 금속층(15)이 리플로우 되어 콘택홀(13)이 매립된다. 금속층(15)은 레이저 빔이 조사된 부분과 조사되지 않은 부분에 두께 차이가 생기게 되는데, 이러한 두께 차이를 줄여 금속층(15)의 표면 평탄화를 이루기 위해 리플로우 공정후에 화학적 기계적 연마(CMP) 공정을 실시할 수도 있다.Referring to FIG. 2B, in order to reduce the contact embedding characteristics and the short-circuit phenomenon of the metal layer 15, only a portion of the contact hole 13 is irradiated with a laser beam having a short wavelength. The metal layer 15 is locally heated to reflow the metal layer 15 in the portion of the contact hole 13 to fill the contact hole 13. The metal layer 15 has a thickness difference between the portion irradiated with the laser beam and the portion not irradiated with the laser beam, and a chemical mechanical polishing (CMP) process is performed after the reflow process in order to reduce the thickness difference to planarize the surface of the metal layer 15. You can also carry out.

상기에서, 조사되는 레이저 빔은 웨이퍼면에 대하여 수직으로 조사하거나, 수직면에 대하여 경사 각도를 주어 좌측 및 우측에서 각각 조사하거나, 경사 각도를 주어 좌측 및 우측에서 각각 조사한 후 수직으로 조사할 수 있다. 레이저 빔이 조사되는 부분은 전술한 바와 같이 콘택홀(13) 부분에만 선택적으로 조사되게 할 수 있고, 얼라인먼트 키(14) 부분을 제외한 모든 부분 또는 선택된 부분(콘택홀 부분 포함)에 조사되게 할 수 있다.In the above, the irradiated laser beam may be irradiated vertically with respect to the wafer surface, or may be irradiated from the left and right by giving an inclination angle with respect to the vertical surface, or may be irradiated vertically after irradiating from the left and right with the inclination angle respectively. The portion to which the laser beam is irradiated may be selectively irradiated only to the contact hole 13 portion as described above, and may be irradiated to all portions or selected portions (including the contact hole portion) except the alignment key 14 portion. have.

한편, 선택적 레이저 빔 리플로우 공정시, 웨이퍼를 가열하면서 실시할 수 있고, 웨이퍼를 실온보다 낮은 온도로 냉각하면서 실시할 수도 있다.In the selective laser beam reflow step, the wafer may be heated while being heated, or the wafer may be cooled to a temperature lower than room temperature.

상술한 바와 같이, 본 발명은 콘택홀을 포함한 전체 구조상에 금속 물질을 증착한 후에 단 파장의 레이저 빔을 선택적으로 조사하여 콘택홀 부분의 금속층만 리플로우 되어 콘택홀이 양호하게 매립되고, 또한 얼라인먼트 키 부분의 금속층은 리플로우 되지 않아 얼라인먼트 에러가 방지되어 스텝퍼 노광을 정확히 설정할 수 있으므로, 소자의 신뢰성을 향상시킬 수 있다.As described above, in the present invention, after depositing a metal material on the entire structure including the contact hole, the laser beam of short wavelength is selectively irradiated to reflow only the metal layer of the contact hole portion, so that the contact hole is well filled and the alignment is performed. Since the metal layer of the key portion does not reflow, alignment errors are prevented and the stepper exposure can be set accurately, so that the reliability of the device can be improved.

Claims (9)

얼라인먼트 키를 갖는 하부층상에 층간 절연막을 형성한 후, 상기 층간 절연막의 선택된 부분을 식각하여 상기 얼라인먼트 키 부분을 노출시키면서 상기 하부층의 선택된 부분이 노출되는 콘택홀을 형성하는 단계;Forming an interlayer insulating film on the lower layer having the alignment key, and then etching the selected portion of the interlayer insulating film to form a contact hole exposing the selected portion of the lower layer while exposing the alignment key portion; 상기 얼라인먼트 키 및 상기 콘택홀을 포함한 상기 층간 절연막 상에 금속층을 형성하는 단계; 및Forming a metal layer on the interlayer insulating film including the alignment key and the contact hole; And 상기 얼라인먼트 키 부분을 제외한 적어도 콘택홀 부분이 포함된 금속층에 레이저 빔을 선택적으로 조사하여 상기 금속층의 선택된 부분을 리플로우 시켜 상기 콘택홀을 매립하는 단계를 포함하여 이루어지는 것을 특징으로 하는 반도체 소자의 금속 배선 형성 방법.Selectively irradiating a laser beam to the metal layer including at least the contact hole portion except for the alignment key portion to reflow the selected portion of the metal layer to fill the contact hole. Wiring formation method. 제 1 항에 있어서,The method of claim 1, 상기 하부층은 반도체 기판, 워드 라인, 비트 라인, 캐패시터의 전극 및 금속 배선 중 어느 하나인 것을 특징으로 하는 반도체 소자의 금속 배선 형성 방법.And the lower layer is any one of a semiconductor substrate, a word line, a bit line, an electrode of a capacitor, and a metal wiring. 제 1 항에 있어서,The method of claim 1, 상기 금속층은 텅스텐(W), 알루미늄(Al), 티타늄(Ti), 코발트(Co), 아연(Zn), 구리(Cu), 실리콘(Si), 백금(Pt) 및 금(Au)중 적어도 어느 하나로 형성하는 것을 특징으로 하는 반도체 소자의 금속 배선 형성 방법.The metal layer includes at least one of tungsten (W), aluminum (Al), titanium (Ti), cobalt (Co), zinc (Zn), copper (Cu), silicon (Si), platinum (Pt), and gold (Au). A metal wiring forming method for a semiconductor device, characterized in that formed in one. 제 1 항에 있어서,The method of claim 1, 상기 금속층은 물리적 기상 증착(PVD) 및 화학적 기상 증착(CVD) 방법중 어느 하나의 방법에 의해 형성되는 것을 특징으로 하는 반도체 소자의 금속 배선 형성 방법.And the metal layer is formed by any one of physical vapor deposition (PVD) and chemical vapor deposition (CVD) methods. 제 1 항에 있어서,The method of claim 1, 상기 레이저 빔은 웨이퍼면에 대하여 수직으로 조사하는 것을 특징으로 하는 반도체 소자의 금속 배선 형성 방법.And the laser beam is irradiated perpendicularly to the wafer surface. 제 1 항에 있어서,The method of claim 1, 상기 레이저 빔은 경사 각도를 주어 좌측 및 우측에서 각각 조사하는 것을 특징으로 하는 반도체 소자의 금속 배선 형성 방법.The laser beam is a metal wiring forming method of the semiconductor element, characterized in that irradiated from the left and right, respectively given a tilt angle. 제 1 항에 있어서,The method of claim 1, 상기 레이저 빔은 경사 각도를 주어 좌측 및 우측에서 각각 조사한 후 수직으로 조사하는 것을 특징으로 하는 반도체 소자의 금속 배선 형성 방법.The laser beam is a metal wiring forming method of the semiconductor device, characterized in that irradiated from the left and right to give a tilt angle and then irradiated vertically. 제 1 항에 있어서,The method of claim 1, 상기 리플로우 공정은 웨이퍼를 가열하면서 실시하는 것을 특징으로 하는 반도체 소자의 금속 배선 형성 방법.And the reflow step is performed while heating the wafer. 제 1 항에 있어서,The method of claim 1, 상기 리플로우 공정은 웨이퍼를 실온보다 낮은 온도로 냉각하면서 실시하는 경우를 포함하는 것을 특징으로 하는 반도체 소자의 금속 배선 형성 방법.And the reflow step is performed while cooling the wafer to a temperature lower than room temperature.
KR1019970081164A 1997-12-31 1997-12-31 Method of forming a metal wiring in a semiconductor device KR100276565B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970081164A KR100276565B1 (en) 1997-12-31 1997-12-31 Method of forming a metal wiring in a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970081164A KR100276565B1 (en) 1997-12-31 1997-12-31 Method of forming a metal wiring in a semiconductor device

Publications (2)

Publication Number Publication Date
KR19990060918A KR19990060918A (en) 1999-07-26
KR100276565B1 true KR100276565B1 (en) 2001-02-01

Family

ID=40749755

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970081164A KR100276565B1 (en) 1997-12-31 1997-12-31 Method of forming a metal wiring in a semiconductor device

Country Status (1)

Country Link
KR (1) KR100276565B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7498064B2 (en) 2004-08-02 2009-03-03 Samsung Electronics Co., Ltd. Laser reflowing of phase changeable memory element to close a void therein

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06169020A (en) * 1992-12-01 1994-06-14 Nec Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06169020A (en) * 1992-12-01 1994-06-14 Nec Corp Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7498064B2 (en) 2004-08-02 2009-03-03 Samsung Electronics Co., Ltd. Laser reflowing of phase changeable memory element to close a void therein
US7575776B2 (en) 2004-08-02 2009-08-18 Samsung Electronics Co., Ltd. Reflowing of a phase changeable memory element to close voids therein

Also Published As

Publication number Publication date
KR19990060918A (en) 1999-07-26

Similar Documents

Publication Publication Date Title
US7670943B2 (en) Enhanced mechanical strength via contacts
KR101559192B1 (en) Semiconductor device structure
KR100342897B1 (en) Semiconductor device and method for manufacturing the same
JP4740538B2 (en) Manufacturing method of semiconductor device
US7312532B2 (en) Dual damascene interconnect structure with improved electro migration lifetimes
US7105445B2 (en) Interconnect structures with encasing cap and methods of making thereof
US20050245065A1 (en) Semiconductor device and method for manufacturing the same
JPH08204005A (en) Semiconductor device and its manufacturing method
KR20050015190A (en) Metal Interconnection for avoiding void and method for fabricating the same
JPH1197542A (en) Semiconductor device and manufacture therefor
US5066611A (en) Method for improving step coverage of a metallization layer on an integrated circuit by use of molybdenum as an anti-reflective coating
KR100546209B1 (en) Copper wiring formation method of semiconductor device
US5296407A (en) Method of manufacturing a contact structure for integrated circuits
KR100276565B1 (en) Method of forming a metal wiring in a semiconductor device
KR20040007863A (en) Method of forming a copper wiring in a semiconductor device
JP4886165B2 (en) Method of selectively alloying interconnect areas by deposition process
US20050224980A1 (en) Interconnect adapted for reduced electron scattering
JP2000269214A (en) Semiconductor device and manufacture thereof
JPH10125678A (en) Semiconductor device
KR100190074B1 (en) Structure of metal wiring layer &amp; forming method thereof
KR100602100B1 (en) Method of forming interconnection line for semiconductor device
KR100383756B1 (en) Method of forming a metal wiring in a semiconductor device
KR100443795B1 (en) Method of forming a copper wiring in a semiconductor device
KR100546208B1 (en) Manufacturing method of semiconductor device
KR100464267B1 (en) Method for manufacturing copper line of semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100825

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee