KR100254695B1 - Copolyester resin and its preparation method - Google Patents

Copolyester resin and its preparation method Download PDF

Info

Publication number
KR100254695B1
KR100254695B1 KR1019930029541A KR930029541A KR100254695B1 KR 100254695 B1 KR100254695 B1 KR 100254695B1 KR 1019930029541 A KR1019930029541 A KR 1019930029541A KR 930029541 A KR930029541 A KR 930029541A KR 100254695 B1 KR100254695 B1 KR 100254695B1
Authority
KR
South Korea
Prior art keywords
carboxylic acid
acid
copolyester resin
butanediol
weight
Prior art date
Application number
KR1019930029541A
Other languages
Korean (ko)
Other versions
KR950018131A (en
Inventor
김효열
황기호
전정남
Original Assignee
조민호
에스케이케미칼주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조민호, 에스케이케미칼주식회사 filed Critical 조민호
Priority to KR1019930029541A priority Critical patent/KR100254695B1/en
Publication of KR950018131A publication Critical patent/KR950018131A/en
Application granted granted Critical
Publication of KR100254695B1 publication Critical patent/KR100254695B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • C08K5/5333Esters of phosphonic acids

Abstract

PURPOSE: A copolyester resin obtained from at least one kind of bifunctional glycol, aliphatic polyester and derivatives thereof, and a process for producing copolyester resin prepared from aromatic acid ester and derivatives thereof are provided. Therefore, the obtained resin satisfies excellent physical properties and biodegradability. CONSTITUTION: This copolyester resin is obtained by using one or more diol monomers selected from ethylene glycol and 1,4-butanediol; a bifunctional aliphatic carboxylic acid-based monomer of dimethylsuccinate or a bifunctional aliphatic carboxylic acid-based monomer of succinic acid; and a polyfunctional aromatic carboxylic acid-based monomer of terephthalic acid, isophthalic acid, pyromellitic acid, trimethylpyrotrimellitate, dimethylterephthalate or dimethylisophthalate, wherein the weight ratio of ethylene glycol to 1,4-butanediol of the diol monomer is 30:70 to 0:100 and the weight ratio of aliphatic to aromatic of the carboxylic acid-based monomer is 60:40 to 99:1.

Description

코폴리에스테르 수지 및 그 제조방법Copolyester Resin and Manufacturing Method Thereof

본 발명은 코폴리에스테르 수지 및 그 제조방법에 관한 것으로, 더욱 상세하게는 적어도 1종의 이관능성 글리콜, 지방족 폴리에스테르 및 그 유도체, 그리고 방향족 에스테르산 및 그 유도체로부터 제조되는 생분해성이 우수한 코폴리에스테르 수지 및 그 제조방법에 관한 것이다.The present invention relates to a copolyester resin and a method for preparing the same, and more particularly, to a copolyester having excellent biodegradability prepared from at least one difunctional glycol, aliphatic polyester and derivatives thereof, and aromatic ester acid and derivatives thereof. An ester resin and its manufacturing method are related.

이하의 설명에서 카르복실산계 단량체라는 용어는 단량체로 사용되는 카르복실산과 그 에스테르 유도체를 포함하는 의미이다.In the following description, the term carboxylic acid monomer is meant to include carboxylic acids and ester derivatives thereof used as monomers.

최근의 사회 환경적 추세를 살펴보면, 세계적으로 환경오염이 심각한 사회문제도 대두되고 있으며, 특히 각종 용도에 사용되는 플라스틱이 난분해성 물질이기 때문에 자연환경을 파괴하고 있어서 이에 대한 규제방안이 실시되거나 도입단계에 있다.Looking at the recent social and environmental trends, social problems with serious environmental pollution are also emerging around the world. Especially, since plastics used for various uses are hardly decomposable materials, they are destroying the natural environment, and regulations or implementation steps are taken. Is in.

일반적으로 지방족 폴리에스테르는 생분해성을 가지고 있으나(Journal of Macromol. SCI-Chem., A23(3), 1986, 393~409), 융점이 낮고, 내열성 및 기계적 강도 등의 물성이 불량하여 플라스틱으로 이용하기에는 용도가 제한되는 반면에, 방향족 폴리에스테르의 경우에는 물성은 양호하나 생분해성이 없는 것으로 알려져 있다(R&D Evalulation Report No.47, January, 1990, Chart 3)In general, aliphatic polyesters are biodegradable (Journal of Macromol. SCI-Chem., A23 (3), 1986, 393 ~ 409), but have low melting point and poor physical properties such as heat resistance and mechanical strength. While the use is limited below, aromatic polyesters are known to have good physical properties but no biodegradability (R & D Evalulation Report No. 47, January, 1990, Chart 3).

또한 최근 환경오염에 대한 문제점을 해결하기 위하여 폴리에틸렌과 전분 등을 혼합하여 생태계내에서 신속하게 분해될 수 있는 고분자를 제조하고자 하는 시도가 진행되어 왔으며, 여러종류의 생분해성 고분자가 실제 이용되고 있는 상황이다.In addition, in order to solve the problem of environmental pollution, attempts have recently been made to produce polymers that can be rapidly decomposed in an ecosystem by mixing polyethylene and starch, and various biodegradable polymers are actually used. to be.

이러한 시도의 일환으로 현재 다방면에서 널리 이용되고 있는 폴리에스테르류를 이용한 생분해성 고분자의 합성이 연구되어 왔는데[참조 "Journal of Applied Polmer Science" Nol.26(1981) P.441~448], 이에 의하면 방향족 폴리에스테르를 가열 용융한 후 지방족 폴리에스테르를 촉매와 함께 첨가하여 교반하면서 반응시키면 전형적인 에스테르 교환반응이 일어나 생분해성이 있는 불규칙 공중합체가 형성되며, 생성된 공중합체의 물성은 방향족 폴리에스테르 함량에 좌우된다고 알려져 있다.As part of this attempt, the synthesis of biodegradable polymers using polyesters widely used in various fields has been studied [Journal of Applied Polmer Science] Nol. 26 (1981) P. 441-448]. After heating and melting the aromatic polyester, the aliphatic polyester is added together with the catalyst and reacted with stirring to form a typical transesterification reaction to form a biodegradable irregular copolymer. It is known to depend.

그러나 이러한 방법으로 불규칙 공중합체를 제조할 경우 폴리에스테르의 열분해가 일어나 원하는 중합도와 물성을 얻기가 힘들고 원하는 물성을 얻기 위해 방향족 폴리에스테르의 함량을 증가시킬 경우 생분해성이 떨어지는 문제점에 부딪치게 된다.However, when the irregular copolymer is prepared in this way, thermal decomposition of the polyester is difficult to obtain the desired degree of polymerization and physical properties, and when the content of the aromatic polyester is increased to obtain the desired physical properties, the biodegradability is encountered.

따라서 본 발명은 물성 및 생분해성을 동시에 향상시키기 위하여 지방족 카르복실산 단량체와 방향족 카르복실산 단량체의 반응조건을 설정하여 공중합시킴으로써 지방족 폴리에스테르의 우수한 생분해성과 방향족 폴리에스테르의 우수한 기계적 강도를 함께 지닌 코폴리에스테르를 제조하는 것을 목적으로 하고 있다.Therefore, the present invention is to copolymerize by setting the reaction conditions of the aliphatic carboxylic acid monomer and the aromatic carboxylic acid monomer in order to improve the physical properties and biodegradability at the same time, the nose having both excellent biodegradability of the aliphatic polyester and excellent mechanical strength of the aromatic polyester It aims at manufacturing polyester.

상기한 목적을 달성한 본 발명에 의하면, 에틸렌글리콜과 1,4-부탄디올 중에서 선택된 하나 이상의 디올 단량체와; 디메틸숙시네이트 또는 숙신산의 이관능성 지방족 카르복실산계 단량체와; 테레프탈산, 이소프탈산, 피로멜리트산, 트리메틸피로 트리멜리테이트, 디메틸테레프탈레이트 또는 디메틸이소프탈레이트의 다관능성 방향족 카르복실산계 단량체를 사용하고, 상기 디올 단량체 중 에틸렌글리콜 대 1,4-부탄디올의 비율을 중량비로 30:70~0:100으로 하고, 카르복실산계 단량체들중 지방족 대 방향족의 비율을 중량비로 60:40~99:1로 하여 제조된 수평균 분자량 30,000~50,000, 인장강도 300~500㎏/㎠, 신도 200~400%, 융점 90~120℃인 코폴리에스테르 수지가 제공된다.According to the present invention to achieve the above object, at least one diol monomer selected from ethylene glycol and 1,4-butanediol; Difunctional aliphatic carboxylic acid monomers of dimethylsuccinate or succinic acid; Using a polyfunctional aromatic carboxylic acid monomer of terephthalic acid, isophthalic acid, pyromellitic acid, trimethylpyro trimellitate, dimethyl terephthalate or dimethylisophthalate, the ratio of ethylene glycol to 1,4-butanediol in the diol monomers is determined by weight ratio. To 30:70 to 0: 100, and an aliphatic to aromatic ratio of the carboxylic acid monomers in a weight ratio of 60:40 to 99: 1, a number average molecular weight of 30,000 to 50,000, a tensile strength of 300 to 500 kg / Copolyester resin of cm <2>, elongation 200-400%, melting | fusing point 90-120 degreeC is provided.

이하 본 발명을 보다 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명에 있어서 카르복실산계 단랑체들중 지방족 대 방향족의 비율은 중량비로 60:40~99:1로 하는 것이 적당하다. 카르복실산계 단량체들중 방향족 카르복실산계 단량체가 40 중량부 초과되어 첨가될 때는 융점도 떨어지고 생분해성도 떨어지며, 또한 1 중량부 미만일 경우 경도측면이 불량하다. 사용될 수 있는 카르복실산계 단량체의 예로는 지방족 카르복실산계 단량체로서 디메틸 숙시네이트 또는 숙신산과, 방향족 카르복실산 단량체로서 디메틸테레프탈레이트, 트리메틸트리멜리테이트, 디메틸이소프탈레이트, 테레프탈산, 이소프탈산 또는 피로멜리트산이 있다.In the present invention, the ratio of aliphatic to aromatic in the carboxylic acid monomers is preferably 60:40 to 99: 1 by weight. Among the carboxylic acid monomers, when the aromatic carboxylic acid monomer is added in an amount of more than 40 parts by weight, the melting point is lowered and the biodegradability is also decreased, and when less than 1 part by weight, the hardness is poor. Examples of carboxylic acid monomers that can be used include dimethyl succinate or succinic acid as aliphatic carboxylic acid monomers, and dimethyl terephthalate, trimethyl trimellitate, dimethyl isophthalate, terephthalic acid, isophthalic acid or pyromellitate as aromatic carboxylic acid monomers. There is a mountain.

디올 단량체로는 에틸렌글리콜과 1,4-부탄디올 중에서 선택된 하나 이상을 사용하며, 디올 단량체 중 에틸렌글리콜 대 1,4-부탄디올의 비율을 중량비로 30:70~0:100으로 하는 것이 바람직하다. 만일, 에틸렌글리콜이 30%를 초과되는 경우에는 원하는 융점을 갖지 못한다.At least one selected from ethylene glycol and 1,4-butanediol is used as the diol monomer, and the ratio of ethylene glycol to 1,4-butanediol in the diol monomer is preferably 30:70 to 0: 100 by weight. If ethylene glycol exceeds 30%, it does not have the desired melting point.

또한 단량체로 사용되는 카르복실산계 단량체 대 디올 단량체의 몰비는 1:1.25~1:2가 바람직하다. 상기 몰비가 1:1.25 보다 낮은 경우에는 색상이 불량하고 반응성이 떨어지며, 1:2를 초과하는 경우 반응성의 향상없이 제조원가만 높아진다.The molar ratio of carboxylic acid monomer to diol monomer used as the monomer is preferably 1: 1.25 to 1: 2. When the molar ratio is lower than 1: 1.25, the color is poor and the reactivity is lowered. When the molar ratio is higher than 1: 2, only the manufacturing cost is increased without improving the reactivity.

본 발명의 코폴리에스테르는 상기한 단량체들을 150~230℃의 온도 범위에서 에스테르화반응 또는 에스테르교환반응시키고나서, 160~250℃의 온도에서 축중합하여 제조할 수 있다. 이때 에스테르화반응 또는 에스테르교환반응 초기에 에스테르화반응 또는 에스테르교환반응 촉매를 첨가하고, 에스테르화반응 또는 에스테르교환반응 말기 또는 축중합 초기에 축중합 촉매와 안정제를 첨가하는 것이 바람직하며, 중합시간은 촉매와 안정제의 양에 따라 차이가 있지만 90~300분 사이가 적당하다.The copolyester of the present invention may be prepared by condensation polymerization of the above monomers at a temperature range of 150 to 230 ° C, followed by esterification or transesterification at a temperature of 160 to 250 ° C. In this case, it is preferable to add an esterification reaction or transesterification catalyst at the beginning of the esterification reaction or transesterification reaction, and to add a condensation polymerization catalyst and a stabilizer at the end of the esterification or transesterification reaction or at the beginning of the condensation polymerization. Although it depends on the amount of catalyst and stabilizer, it is suitable between 90 and 300 minutes.

안정제로는 네오펜틸-디아릴-옥시트리포스페이트, 트리페닐포스핀, 트리메틸포스페이트 등을 들 수 있으나, 특히 트리메틸포스페이트가 유리하고 사용량은 0.02~1 중량부가 바람직하다. 안정제의 사용량이 0.02 중량부 미만일 경우는 첨가효과가 불충분하고, 1 중량부 초과일 때는 반응시간이 길어져 물성이 저하되는 문제가 발생한다.Examples of the stabilizer include neopentyl-diaryl-oxytriphosphate, triphenylphosphine, trimethyl phosphate, and the like, in particular trimethyl phosphate is advantageous and the amount of use is preferably 0.02 to 1 parts by weight. If the amount of the stabilizer is less than 0.02 parts by weight, the effect of addition is insufficient. If the amount of the stabilizer is more than 1 part by weight, the reaction time becomes long, resulting in a problem of deterioration of physical properties.

또한 에스테르화 반응 또는 에스테르교환반응 초기에 첨가하는 촉매로는 테트라부틸티타네이트가 적합하며, 그 첨가량은 0.01~1 중량부가 적합하다. 테트라부틸티타네이트의 첨가량이 0.01 중량부 미만이면 반응속도가 느려져 결국 메탄올 또는 물의 유출이 느려지게 되고, 1 중량부 초과시는 메탄올 및 물의 유출은 빠르게 되나 제조되는 코폴리에스테르의 색상이 불량하게 된다.In addition, tetrabutyl titanate is suitable as a catalyst added at the beginning of an esterification reaction or transesterification reaction, and the addition amount is 0.01-1 weight part. When the amount of tetrabutyl titanate added is less than 0.01 part by weight, the reaction rate is slowed, and thus the outflow of methanol or water is slowed down. When the amount of tetrabutyl titanate is more than 1 part by weight, the outflow of methanol and water is rapid, but the color of the copolyester produced is poor.

또한 축중합시에는 촉매로서 디부틸틴옥사이드, 테트라부틸티타네이트 등을 사용할 수 있다. 축중합 촉매의 첨가량은 0.1~1.5 중량부가 적합하다. 축중합 촉매의 첨가량이 0.1 중량부 미만이면 고유점도가 증가되지 않고 반응속도가 느리며, 1.5중량부를 초과할 경우 반응은 빠르나 색상이 나빠진다.In the case of polycondensation, dibutyl tin oxide, tetrabutyl titanate or the like can be used as a catalyst. The amount of the polycondensation catalyst added is preferably 0.1 to 1.5 parts by weight. If the addition amount of the polycondensation catalyst is less than 0.1 parts by weight, the intrinsic viscosity does not increase and the reaction rate is slow.

이하 본 발명을 실시예를 통하여 더욱 구체적으로 설명하면 다음과 같다. 단, 본 발명은 실시예로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, this invention is not limited to an Example.

하기 실시예에서 제시되는 코폴리에스테르 수지의 생분해성 평가는 공지의 방법(Journal of Applied Polymer Science, Vol. 24 (1979), P.1701~1711)에 따라 실시한 것이다. 이에 대해서 설명하면, 우선 반응용액으로는 pH가 7.0인 100 마이크로몰의 인산완충용액을 사용하였으며, 이 용액에 제조된 코폴리에스테르 분말 또는 0.22~0.27㎜ 두께의 필름을 20㎎을 첨가하여 총 반응액의 부피를 1㎖로 하였다. 이후 이 반응액을 37℃에서 16시간동안 150rpm으로 교반하면서 반응시킨후 반응액을 여과하여 여과액중 수용성의 총 탄소량을 측정하여 하기 식에 대입하여 생분해율을 계산하였다.Evaluation of the biodegradability of the copolyester resin presented in the following examples is carried out according to a known method (Journal of Applied Polymer Science, Vol. 24 (1979), P.1701 ~ 1711). To explain this, first, 100 micromolar phosphate buffer solution having a pH of 7.0 was used as the reaction solution, and 20 mg of copolyester powder or 0.22-0.27 mm thick film was added to the solution. The volume of the liquid was 1 ml. Thereafter, the reaction solution was reacted with stirring at 150 rpm for 16 hours at 37 ° C., and then the reaction solution was filtered to measure the total amount of water-soluble carbon in the filtrate, and substituted in the following formula to calculate the biodegradation rate.

생분해율(%)=(수용액중의 총 탄소량/사용된 폴리머량)×100Biodegradation rate (%) = (total amount of carbon in aqueous solution / amount of polymer used) x 100

또한 융점은 승온속도를 분당 10℃로하여 시차주사열량분석기(DSC)로 측정하였으며, 인장강도 및 신도는 만능시험기(UTM)로 측정하였다.In addition, the melting point was measured by differential scanning calorimetry (DSC) at a temperature rise rate of 10 ° C. per minute, and tensile strength and elongation were measured by a universal testing machine (UTM).

[실시예 1]Example 1

가열용융축합반응관에 디메틸숙시네이트 80.3g, 디메틸테레프탈레이트 9.4g, 1,4-부탄디올 99.1g, 에틸렌글리콜 6.2g과 촉매인 테트라 부틸티타네이트 0.03g을 혼합하고 온도를 200℃로 승온시켜 메탄올이 유출될 때까지 반응시켰다.80.3 g of dimethyl succinate, 9.4 g of dimethyl terephthalate, 99.1 g of 1,4-butanediol, 6.2 g of ethylene glycol, and 0.03 g of tetrabutyl titanate as catalysts were mixed and heated to 200 ° C. The reaction was carried out until it flowed out.

에스테르교환반응이 끝난후 촉매인 테트라부틸티타네이트 0.03g, 디부틸틴옥사이드 0.5g 및 안정제인 트리메틸포스페이트 0.25g을 에틸렌글리콜 또는 1,4-부탄디올에 슬러리하여 첨가한 다음, 230℃에서 상기 혼합물을 10분 동안 잘 혼합한후 온도를 245℃로 서서히 승온시키면서 압력을 0.03mmHg로하여 축중합을 하였다. 원하는 점도에 해당하는 부하로 측정하여 반응을 중단시킨후 토출시켜 코폴리에스테르를 제조하였다.After the completion of the transesterification reaction, 0.03 g of tetrabutyl titanate, 0.5 g of dibutyl tin oxide, and 0.25 g of trimethyl phosphate as a stabilizer were added by slurry to ethylene glycol or 1,4-butanediol, and then the mixture was added at 230 ° C. After 10 minutes of mixing well, condensation polymerization was carried out at a pressure of 0.03 mmHg while gradually raising the temperature to 245 ° C. Copolyesters were prepared by stopping the reaction after discharging by measuring the load corresponding to the desired viscosity.

얻어진 코폴리에스테르의 융점, 인장강도, 신도 및 생분해율을 측정하였다. 측정결과는 하기 표 1에 제시된다.Melting point, tensile strength, elongation and biodegradation rate of the obtained copolyester were measured. The measurement results are shown in Table 1 below.

[실시예 2~7]EXAMPLES 2-7

표 1에 제시된 바와 같이 단량체의 조성을 다양하게 변화시킨 것을 제외하고는 실시예 1과 동일한 절차를 반복하였다.The same procedure as in Example 1 was repeated except that various changes were made to the composition of the monomers as shown in Table 1.

[비교예 1]Comparative Example 1

가열용융축합반응관에 디메틸숙시네이트 90.6g, 디메틸테레프탈레이트 97g, 1,4-부탄디올 153g, 에틸렌글리콜 6.2g과 촉매인 테트라 부틸티타네이트 0.03g을 혼합하고 온도를 200℃로 승온시켜 메탄올이 유출될 때까지 반응시킨다.90.6 g of dimethyl succinate, 97 g of dimethyl terephthalate, 153 g of 1,4-butanediol, 6.2 g of ethylene glycol, and 0.03 g of tetrabutyl titanate as catalysts were heated and the temperature was raised to 200 ° C. React until

에스테르교환반응이 끝난후 촉매인 테트라부틸티타네이트 0.03g, 디부틸틴옥사이드 0.5g 및 안정제인 트리메틸포스페이트 0.25g을 에틸렌글리콜 또는 1,4-부탄디올에 슬러리하여 첨가한 다음, 230℃에서 상기 혼합물을 10분동안 잘 혼합한후 온도를 245℃로 서서히 승온시키면서 압력을 0.03mmHg로하여 축중합한 다음 원하는 점도에 해당하는 부하로 측정하여 반응을 중단시킨후 토출시켜 중합체를 제조하였다.After the completion of the transesterification reaction, 0.03 g of tetrabutyl titanate, 0.5 g of dibutyl tin oxide, and 0.25 g of trimethyl phosphate as a stabilizer were added by slurry to ethylene glycol or 1,4-butanediol, and then the mixture was added at 230 ° C. After mixing well for 10 minutes, the temperature was gradually raised to 245 ° C. while condensation polymerization was carried out at a pressure of 0.03 mmHg, and measured under a load corresponding to a desired viscosity.

얻어진 중합체의 융점, 인장강도, 신도 및 생분해율을 측정하였다. 측정결과는 하기 표 1에 제시된다.Melting point, tensile strength, elongation and biodegradation rate of the obtained polymer were measured. The measurement results are shown in Table 1 below.

[비교예 2]Comparative Example 2

표 1에 제시된 바와 같이 단량체의 조성을 다양하게 변화시킨 것을 제외하고는 비교예 1과 동일한 절차를 반복하였다.The same procedure as in Comparative Example 1 was repeated except that the composition of the monomers was variously changed as shown in Table 1.

Claims (5)

에틸렌글리콜과 1,4-부탄디올 중에서 선택된 하나 이상의 디올 단량체와; 디메틸숙시네이트 또는 숙신산의 이관능성 지방족 카르복실산계 단량체와; 테레프탈산, 이소프탈산, 피로멜리트산, 트리메틸피로 트리멜리테이트, 디메틸테레프탈레이트 또는 디메틸이소프탈레이트의 다관능성 방향족 카르복실산계 단량체를 사용하고, 상기 디올 단량체 중 에틸렌글리콜 대 1,4-부탄디올의 비율을 중량비로 30:70~0:100으로 하고, 상기 카르복실산계 단량체들중 지방족 대 방향족의 비율을 중량비로 60:40~99:1로 하여 제조된 수평균 분자량 30,000~50,000, 인장강도 300~500㎏/㎠, 신도 200~400%, 융점 90~120℃인 코폴리에스테르 수지.At least one diol monomer selected from ethylene glycol and 1,4-butanediol; Difunctional aliphatic carboxylic acid monomers of dimethylsuccinate or succinic acid; Using a polyfunctional aromatic carboxylic acid monomer of terephthalic acid, isophthalic acid, pyromellitic acid, trimethylpyro trimellitate, dimethyl terephthalate or dimethylisophthalate, the ratio of ethylene glycol to 1,4-butanediol in the diol monomers is determined by weight ratio. To 30:70 to 0: 100, and an aliphatic to aromatic ratio of the carboxylic acid monomers in a weight ratio of 60:40 to 99: 1, a number average molecular weight of 30,000 to 50,000, and a tensile strength of 300 to 500 kg. / Cm 2, elongation 200 to 400%, melting point 90 ~ 120 ℃ copolyester resin. 에틸렌글리콜과 1,4-부탄디올 중에서 선택된 하나 이상의 디올 단량체와; 디메틸숙시네이트 또는 숙신산의 이관능성 지방족 카르복실산계 단량체와; 테레프탈산, 이소프탈산, 피로멜리트산, 트리메틸피로 트리멜리테이트, 디메틸테레프탈레이트 또는 디메틸이소프탈레이트의 다관능성 방향족 카르복실산계 단량체를 상기 디올 단량체 중 에틸렌글리콜 대 1,4-부탄디올의 중량비로 30:70~0:100 및 상기 카르복실산계 단량체들중 지방족 대 방향족의 중량비 60:40~99:1로 투입하고 0.01~1 중량부의 촉매를 투입하여 에스테르화반응 또는 에스테르교환반응시키고, 0.1~1.5 중량부의 축중합촉매 및 0.02~1 중량부의 안정제를 에스테르화반응 또는 에스테르교환반응 말기 또는 축중합 초기에 첨가하여 축중합하는 것을 특징으로하는 코폴리에스테르 수지의 제조방법.At least one diol monomer selected from ethylene glycol and 1,4-butanediol; Difunctional aliphatic carboxylic acid monomers of dimethylsuccinate or succinic acid; The polyfunctional aromatic carboxylic acid monomer of terephthalic acid, isophthalic acid, pyromellitic acid, trimethylpyro trimellitate, dimethyl terephthalate or dimethyl isophthalate may be used in a weight ratio of ethylene glycol to 1,4-butanediol in the diol monomer. 0: 100 and the weight ratio of aliphatic to aromatic among the carboxylic acid monomers is 60:40 to 99: 1, and 0.01 to 1 parts by weight of catalyst is added for esterification or transesterification, and 0.1 to 1.5 parts by weight of shaft A method for producing a copolyester resin, comprising adding a polymerization catalyst and 0.02 to 1 part by weight of a stabilizer at the end of esterification or transesterification or at the beginning of condensation polymerization. 제2항에 있어서, 에스테르교환반응 촉매로는 테트라부틸티타네이트를 사용함을 특징으로 하는 코폴리에스테르 수지의 제조방법.The method for preparing copolyester resin according to claim 2, wherein tetrabutyl titanate is used as the transesterification catalyst. 제2항에 있어서, 축중합시 촉매로는 테트라부틸티타네이트, 테트라에틸티타네이트, 디부틸틴옥사이드를 사용함을 특징으로 하는 코폴리에스테르 수지의 제조방법.The method for preparing copolyester resin according to claim 2, wherein tetrabutyl titanate, tetraethyl titanate and dibutyl tin oxide are used as a catalyst during the polycondensation. 제2항에 있어서, 안정제로는 트리메틸포스페이트를 사용함을 특징으로 하는 코폴리에스테르 수지의 제조방법.The method for producing a copolyester resin according to claim 2, wherein trimethyl phosphate is used as a stabilizer.
KR1019930029541A 1993-12-24 1993-12-24 Copolyester resin and its preparation method KR100254695B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930029541A KR100254695B1 (en) 1993-12-24 1993-12-24 Copolyester resin and its preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930029541A KR100254695B1 (en) 1993-12-24 1993-12-24 Copolyester resin and its preparation method

Publications (2)

Publication Number Publication Date
KR950018131A KR950018131A (en) 1995-07-22
KR100254695B1 true KR100254695B1 (en) 2000-05-01

Family

ID=19372572

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930029541A KR100254695B1 (en) 1993-12-24 1993-12-24 Copolyester resin and its preparation method

Country Status (1)

Country Link
KR (1) KR100254695B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100349595B1 (en) * 1998-06-03 2002-10-19 주식회사 엘지화학 Process for producing biodegradable copolyester
KR100366484B1 (en) * 1999-12-11 2003-01-14 주식회사 이래화학 Copolyester resin composition and a process of preparation thereof
KR100368533B1 (en) * 1998-07-27 2003-03-26 주식회사 엘지화학 Manufacturing method of biodegradable aliphatic polyester
WO2014030827A1 (en) * 2012-08-22 2014-02-27 삼성정밀화학 주식회사 Method for preparing biodegradable polyester copolymer resin

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100330380B1 (en) * 1994-12-21 2002-10-25 에스케이케미칼주식회사 Thermoplastic aliphatic polyester resin and process for producing the same
KR100330379B1 (en) * 1994-12-21 2002-08-28 에스케이케미칼주식회사 Thermoplastic aliphatic polyester resin with excellent transparency and its manufacturing method
KR100366483B1 (en) * 1999-12-17 2003-01-14 주식회사 이래화학 Copolyester resin composition and a process of preparation thereof
KR20030028444A (en) * 2002-11-26 2003-04-08 주식회사 이엔아이 Polyester resin composition having a biodegradability and a solubility in water, manufacturing method thereof and products of using it

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01229042A (en) * 1988-03-08 1989-09-12 Toray Ind Inc Readily cuttable polyester film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01229042A (en) * 1988-03-08 1989-09-12 Toray Ind Inc Readily cuttable polyester film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100349595B1 (en) * 1998-06-03 2002-10-19 주식회사 엘지화학 Process for producing biodegradable copolyester
KR100368533B1 (en) * 1998-07-27 2003-03-26 주식회사 엘지화학 Manufacturing method of biodegradable aliphatic polyester
KR100366484B1 (en) * 1999-12-11 2003-01-14 주식회사 이래화학 Copolyester resin composition and a process of preparation thereof
WO2014030827A1 (en) * 2012-08-22 2014-02-27 삼성정밀화학 주식회사 Method for preparing biodegradable polyester copolymer resin

Also Published As

Publication number Publication date
KR950018131A (en) 1995-07-22

Similar Documents

Publication Publication Date Title
KR0120326B1 (en) Thermoplastic biodegrable, and aliphatic polyester and method of making the same
KR100366484B1 (en) Copolyester resin composition and a process of preparation thereof
US5612423A (en) Process for manufacturing polyester copolymers containing terephthalate and naphthalate units
US11912818B2 (en) Method for synthesizing aromatic-aliphatic copolyester without catalyst and product thereof
KR100254695B1 (en) Copolyester resin and its preparation method
US4287332A (en) Process for improving the chemical resistance of aromatic polyesters
US3288755A (en) Process for the manufacture of copolyetheresters
US4923953A (en) Molding compounds comprising a thermoplastically processible, aromatic polyester imide
US3310532A (en) Method for preparation of modified polyesters having fiber- and film-forming properties
KR960015446B1 (en) Copolyester resin and method for manufacturing the same
JPH08127641A (en) Polyester container for medical care
KR930010563B1 (en) Producing method of polyester co-polymer
JPH06293707A (en) Hydroxyethyl dibenzoic acid
EP0075527A1 (en) High melt strength elastomeric copolyesters
US4581398A (en) Hydrolysis-resistant thermoplastic molding composition comprising high molecular weight polybutylene terephthalatepolyester and a dicarboxylic acid salt
KR0121998B1 (en) Thermoplastic biodegrable resin and method for making thereof
KR100330380B1 (en) Thermoplastic aliphatic polyester resin and process for producing the same
KR960007606B1 (en) Alipatic polyester resin and the method manufacturing the same
KR100330379B1 (en) Thermoplastic aliphatic polyester resin with excellent transparency and its manufacturing method
KR0121996B1 (en) Biodegrable aliphatic polyester resin composition and method for making thereof
US3475381A (en) Preparation of polyethylene terephthalate by direct esterification in the presence of a metal citrate as a direct esterification catalytic additive
KR100308535B1 (en) Polyester resin composition and method for producing the same
KR960012437B1 (en) Method for manufacturing high viscosity polyester
JP3374617B2 (en) Method for producing aliphatic polyester copolymer
KR960011008B1 (en) Method for manufacturing polyester copolymer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120127

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20130121

Year of fee payment: 14

EXPY Expiration of term